online-gmm-decoding.cc 16.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
// online2/online-gmm-decoding.cc

// Copyright    2013-2014  Johns Hopkins University (author: Daniel Povey)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include "online2/online-gmm-decoding.h"
#include "lat/lattice-functions.h"
#include "lat/determinize-lattice-pruned.h"

namespace kaldi {

void OnlineGmmAdaptationState::Read(std::istream &in_stream, bool binary) {
  ExpectToken(in_stream, binary, "<ONLINEGMMADAPTATIONSTATE>");
  ExpectToken(in_stream, binary, "<TRANSFORM>");
  transform.Read(in_stream, binary);
  ExpectToken(in_stream, binary, "<CMVNSTATS>");
  cmvn_state.Read(in_stream, binary);
  ExpectToken(in_stream, binary, "<SPKSTATS>");
  spk_stats.Read(in_stream, binary, false);
  ExpectToken(in_stream, binary, "</ONLINEGMMADAPTATIONSTATE>");
}

void OnlineGmmAdaptationState::Write(std::ostream &out_stream, bool binary) const {
  WriteToken(out_stream, binary, "<ONLINEGMMADAPTATIONSTATE>");
  WriteToken(out_stream, binary, "<TRANSFORM>");
  transform.Write(out_stream, binary);
  WriteToken(out_stream, binary, "<CMVNSTATS>");
  cmvn_state.Write(out_stream, binary);
  WriteToken(out_stream, binary, "<SPKSTATS>");
  spk_stats.Write(out_stream, binary);
  WriteToken(out_stream, binary, "</ONLINEGMMADAPTATIONSTATE>");
}

SingleUtteranceGmmDecoder::SingleUtteranceGmmDecoder(
    const OnlineGmmDecodingConfig &config,
    const OnlineGmmDecodingModels &models,                            
    const OnlineFeaturePipeline &feature_prototype,
    const fst::Fst<fst::StdArc> &fst,
    const OnlineGmmAdaptationState &adaptation_state):
    config_(config), models_(models),
    feature_pipeline_(feature_prototype.New()),
    orig_adaptation_state_(adaptation_state),
    adaptation_state_(adaptation_state),
    decoder_(fst, config.faster_decoder_opts) {
  if (!SplitStringToIntegers(config_.silence_phones, ":", false,
                             &silence_phones_))
    KALDI_ERR << "Bad --silence-phones option '"
              << config_.silence_phones << "'";
  SortAndUniq(&silence_phones_);
  feature_pipeline_->SetTransform(adaptation_state_.transform);
  decoder_.InitDecoding();
}

// Advance the decoding as far as we can, and possibly estimate fMLLR.
void SingleUtteranceGmmDecoder::AdvanceDecoding() {

  const AmDiagGmm &am_gmm = (HaveTransform() ? models_.GetModel() :
                             models_.GetOnlineAlignmentModel());

  // The decodable object is lightweight, we lose nothing
  // from constructing it each time we want to decode more of the
  // input.
  DecodableDiagGmmScaledOnline decodable(am_gmm,
                                         models_.GetTransitionModel(),
                                         config_.acoustic_scale,
                                         feature_pipeline_);

  int32 old_frames = decoder_.NumFramesDecoded();
  
  // This will decode as many frames as are currently available.
  decoder_.AdvanceDecoding(&decodable);

  
  {  // possibly estimate fMLLR.
    int32 new_frames = decoder_.NumFramesDecoded();
    BaseFloat frame_shift = feature_pipeline_->FrameShiftInSeconds();
    // if the original adaptation state (at utterance-start) had no transform,
    // then this means it's the first utt of the speaker... even if not, if we
    // don't have a transform it probably makes sense to treat it as the 1st utt
    // of the speaker, i.e. to do fMLLR adaptation sooner.
    bool is_first_utterance_of_speaker =
        (orig_adaptation_state_.transform.NumRows() == 0);
    bool end_of_utterance = false;
    if (config_.adaptation_policy_opts.DoAdapt(old_frames * frame_shift,
                                               new_frames * frame_shift,
                                               is_first_utterance_of_speaker))
      this->EstimateFmllr(end_of_utterance);
  }
}

void SingleUtteranceGmmDecoder::FinalizeDecoding() {
  decoder_.FinalizeDecoding();
}

// gets Gaussian posteriors for purposes of fMLLR estimation.
// We exclude the silence phones from the Gaussian posteriors.
bool SingleUtteranceGmmDecoder::GetGaussianPosteriors(bool end_of_utterance,
                                                      GaussPost *gpost) {
  // Gets the Gaussian-level posteriors for this utterance, using whatever
  // features and model we are currently decoding with.  We'll use these
  // to estimate basis-fMLLR with.
  if (decoder_.NumFramesDecoded() == 0) {
    KALDI_WARN << "You have decoded no data so cannot estimate fMLLR.";
    return false;
  }
  
  KALDI_ASSERT(config_.fmllr_lattice_beam > 0.0);
  
  // Note: we'll just use whatever acoustic scaling factor we were decoding
  // with.  This is in the lattice that we get from decoder_.GetRawLattice().
  Lattice raw_lat;
  decoder_.GetRawLatticePruned(&raw_lat, end_of_utterance,
                               config_.fmllr_lattice_beam);
  
  // At this point we could rescore the lattice if we wanted, and
  // this might improve the accuracy on long utterances that were
  // the first utterance of that speaker, if we had already
  // estimated the fMLLR by the time we reach this code (e.g. this
  // was the second call).  We don't do this right now.
  
  PruneLattice(config_.fmllr_lattice_beam, &raw_lat);

#if 1 // Do determinization. 
  Lattice det_lat; // lattice-determinized lattice-- represent this as Lattice
                   // not CompactLattice, as LatticeForwardBackward() does not
                   // accept CompactLattice.


  fst::Invert(&raw_lat); // want to determinize on words.
  fst::ILabelCompare<kaldi::LatticeArc> ilabel_comp;
  fst::ArcSort(&raw_lat, ilabel_comp); // improves efficiency of determinization
  
  fst::DeterminizeLatticePruned(raw_lat,
                                double(config_.fmllr_lattice_beam),
                                &det_lat);

  fst::Invert(&det_lat); // invert back.
  
  if (det_lat.NumStates() == 0) {
    // Do nothing if the lattice is empty.  This should not happen.
    KALDI_WARN << "Got empty lattice.  Not estimating fMLLR.";
    return false;
  }
#else
  Lattice &det_lat = raw_lat; // Don't determinize.
#endif
  TopSortLatticeIfNeeded(&det_lat);
  
  // Note: the acoustic scale we use here is whatever we decoded with.
  Posterior post;
  BaseFloat tot_fb_like = LatticeForwardBackward(det_lat, &post);

  KALDI_VLOG(3) << "Lattice forward-backward likelihood was "
                << (tot_fb_like / post.size()) << " per frame over " << post.size()
                << " frames.";

  ConstIntegerSet<int32> silence_set(silence_phones_);  // faster lookup
  const TransitionModel &trans_model = models_.GetTransitionModel();
  WeightSilencePost(trans_model, silence_set,
                    config_.silence_weight, &post);  
  
  const AmDiagGmm &am_gmm = (HaveTransform() ? models_.GetModel() :
                             models_.GetOnlineAlignmentModel());


  Posterior pdf_post;
  ConvertPosteriorToPdfs(trans_model, post, &pdf_post);
  
  Vector<BaseFloat> feat(feature_pipeline_->Dim());

  double tot_like = 0.0, tot_weight = 0.0;
  gpost->resize(pdf_post.size());
  for (size_t i = 0; i < pdf_post.size(); i++) {
    feature_pipeline_->GetFrame(i, &feat);
    for (size_t j = 0; j < pdf_post[i].size(); j++) {
      int32 pdf_id = pdf_post[i][j].first;
      BaseFloat weight = pdf_post[i][j].second;
      const DiagGmm &gmm = am_gmm.GetPdf(pdf_id);
      Vector<BaseFloat> this_post_vec;
      BaseFloat like = gmm.ComponentPosteriors(feat, &this_post_vec);
      this_post_vec.Scale(weight);
      tot_like += like * weight;
      tot_weight += weight;
      (*gpost)[i].push_back(std::make_pair(pdf_id, this_post_vec));
    }
  }
  KALDI_VLOG(3) << "Average likelihood weighted by posterior was "
                << (tot_like / tot_weight) << " over " << tot_weight
                << " frames (after downweighting silence).";  
  return true;
}


void SingleUtteranceGmmDecoder::EstimateFmllr(bool end_of_utterance) {
  if (decoder_.NumFramesDecoded() == 0) {
    KALDI_WARN << "You have decoded no data so cannot estimate fMLLR.";
  }

  if (GetVerboseLevel() >= 2) {
    Matrix<BaseFloat> feats;
    feature_pipeline_->GetAsMatrix(&feats);
    KALDI_VLOG(2) << "Features are " << feats;
  }
  

  GaussPost gpost;
  GetGaussianPosteriors(end_of_utterance, &gpost);
  
  FmllrDiagGmmAccs &spk_stats = adaptation_state_.spk_stats;
  
  if (spk_stats.beta_ !=
      orig_adaptation_state_.spk_stats.beta_) {
    // This could happen if the user called EstimateFmllr() twice on the
    // same utterance... we don't want to count any stats twice so we
    // have to reset the stats to what they were before this utterance
    // (possibly empty).
    spk_stats = orig_adaptation_state_.spk_stats;
  }
  
  int32 dim = feature_pipeline_->Dim();
  if (spk_stats.Dim() == 0)
    spk_stats.Init(dim);
  
  Matrix<BaseFloat> empty_transform;
  feature_pipeline_->SetTransform(empty_transform);
  Vector<BaseFloat> feat(dim);

  if (adaptation_state_.transform.NumRows() == 0) {
    // If this is the first time we're estimating fMLLR, freeze the CMVN to its
    // current value.  It doesn't matter too much what value this is, since we
    // have already computed the Gaussian-level alignments (it may have a small
    // effect if the basis is very small and doesn't include an offset as part
    // of the transform).
    feature_pipeline_->FreezeCmvn();
  }
  
  // GetModel() returns the model to be used for estimating
  // transforms.
  const AmDiagGmm &am_gmm = models_.GetModel();
  
  for (size_t i = 0; i < gpost.size(); i++) {
    feature_pipeline_->GetFrame(i, &feat);    
    for (size_t j = 0; j < gpost[i].size(); j++) {
      int32 pdf_id = gpost[i][j].first; // caution: this gpost has pdf-id
                                        // instead of transition-id, which is
                                        // unusual.
      const Vector<BaseFloat> &posterior(gpost[i][j].second);
      spk_stats.AccumulateFromPosteriors(am_gmm.GetPdf(pdf_id),
                                         feat, posterior);
    }
  }
  
  const BasisFmllrEstimate &basis = models_.GetFmllrBasis();
  if (basis.Dim() == 0)
    KALDI_ERR << "In order to estimate fMLLR, you need to supply the "
              << "--fmllr-basis option.";
  Vector<BaseFloat> basis_coeffs;
  BaseFloat impr = basis.ComputeTransform(spk_stats,
                                          &adaptation_state_.transform,
                                          &basis_coeffs, config_.basis_opts);
  KALDI_VLOG(3) << "Objective function improvement from basis-fMLLR is "
                << (impr / spk_stats.beta_) << " per frame, over "
                << spk_stats.beta_ << " frames, #params estimated is "
                << basis_coeffs.Dim();
  feature_pipeline_->SetTransform(adaptation_state_.transform);
}


bool SingleUtteranceGmmDecoder::HaveTransform() const {
  return (feature_pipeline_->HaveFmllrTransform());
}

void SingleUtteranceGmmDecoder::GetAdaptationState(
    OnlineGmmAdaptationState *adaptation_state) const {
  *adaptation_state = adaptation_state_;
  feature_pipeline_->GetCmvnState(&adaptation_state->cmvn_state);
}

bool SingleUtteranceGmmDecoder::RescoringIsNeeded() const {
  if (orig_adaptation_state_.transform.NumRows() !=
      adaptation_state_.transform.NumRows()) return true;  // fMLLR was estimated
  if (!orig_adaptation_state_.transform.ApproxEqual(
          adaptation_state_.transform)) return true;  // fMLLR was re-estimated
  if (adaptation_state_.transform.NumRows() != 0 &&
      &models_.GetModel() != &models_.GetFinalModel())
    return true; // we have an fMLLR transform, and a discriminatively estimated
                 // model which differs from the one used to estimate fMLLR.
  return false;
}

SingleUtteranceGmmDecoder::~SingleUtteranceGmmDecoder() {
  delete feature_pipeline_;
}


bool SingleUtteranceGmmDecoder::EndpointDetected(
    const OnlineEndpointConfig &config) {
  const TransitionModel &tmodel = models_.GetTransitionModel();
  return kaldi::EndpointDetected(config, tmodel,
                                 feature_pipeline_->FrameShiftInSeconds(),
                                 decoder_);
}

void SingleUtteranceGmmDecoder::GetLattice(bool rescore_if_needed,
                                           bool end_of_utterance,
                                           CompactLattice *clat) const {
  Lattice lat;
  double lat_beam = config_.faster_decoder_opts.lattice_beam;
  decoder_.GetRawLattice(&lat, end_of_utterance);
  if (rescore_if_needed && RescoringIsNeeded()) {
    DecodableDiagGmmScaledOnline decodable(models_.GetFinalModel(),
                                           models_.GetTransitionModel(),
                                           config_.acoustic_scale,
                                           feature_pipeline_);

    if (!kaldi::RescoreLattice(&decodable, &lat))
      KALDI_WARN << "Error rescoring lattice";
  }
  PruneLattice(lat_beam, &lat);

  DeterminizeLatticePhonePrunedWrapper(models_.GetTransitionModel(),
                                       &lat, lat_beam, clat,
                                       config_.faster_decoder_opts.det_opts);
  
}

void SingleUtteranceGmmDecoder::GetBestPath(bool end_of_utterance,
                                            Lattice *best_path) const {
  decoder_.GetBestPath(best_path, end_of_utterance);
}

OnlineGmmDecodingModels::OnlineGmmDecodingModels(
    const OnlineGmmDecodingConfig &config) {
  KALDI_ASSERT(!config.model_rxfilename.empty() &&
               "You must supply the --model option");

  {
    bool binary;
    Input ki(config.model_rxfilename, &binary);
    tmodel_.Read(ki.Stream(), binary);
    model_.Read(ki.Stream(), binary);
  }
  
  if (!config.online_alimdl_rxfilename.empty()) {
    bool binary;
    Input ki(config.online_alimdl_rxfilename, &binary);
    TransitionModel tmodel;
    tmodel.Read(ki.Stream(), binary);
    if (!tmodel.Compatible(tmodel_))
      KALDI_ERR << "Incompatible models given to the --model and "
                << "--online-alignment-model options";
    online_alignment_model_.Read(ki.Stream(), binary);
  }

  if (!config.rescore_model_rxfilename.empty()) {
    bool binary;
    Input ki(config.rescore_model_rxfilename, &binary);
    TransitionModel tmodel;
    tmodel.Read(ki.Stream(), binary);
    if (!tmodel.Compatible(tmodel_))
      KALDI_ERR << "Incompatible models given to the --model and "
                << "--final-model options";
    rescore_model_.Read(ki.Stream(), binary);
  }

  if (!config.fmllr_basis_rxfilename.empty()) {
    // We could just as easily use ReadKaldiObject() here.
    bool binary;
    Input ki(config.fmllr_basis_rxfilename, &binary);
    fmllr_basis_.Read(ki.Stream(), binary);
  }
}


const TransitionModel &OnlineGmmDecodingModels::GetTransitionModel() const {
  return tmodel_;
}

const AmDiagGmm &OnlineGmmDecodingModels::GetOnlineAlignmentModel() const {
  if (online_alignment_model_.NumPdfs() != 0)
    return online_alignment_model_;
  else
    return model_;
}

const AmDiagGmm &OnlineGmmDecodingModels::GetModel() const {
  return model_;
}

const AmDiagGmm &OnlineGmmDecodingModels::GetFinalModel() const {
  if (rescore_model_.NumPdfs() != 0)
    return rescore_model_;
  else
    return model_;
}

const BasisFmllrEstimate &OnlineGmmDecodingModels::GetFmllrBasis() const {
  return fmllr_basis_;  
}


void OnlineGmmDecodingAdaptationPolicyConfig::Check() const {
  KALDI_ASSERT(adaptation_first_utt_delay > 0.0 &&
               adaptation_first_utt_ratio > 1.0);
  KALDI_ASSERT(adaptation_delay > 0.0 &&
               adaptation_ratio > 1.0);
}

bool OnlineGmmDecodingAdaptationPolicyConfig::DoAdapt(
    BaseFloat chunk_begin_secs,
    BaseFloat chunk_end_secs,
    bool is_first_utterance) const {
  Check();
  if (is_first_utterance) {
    // We aim to return true if a member of the sequence
    // ( adaptation_first_utt_delay * adaptation_first_utt_ratio^n )
    // for  n = 0, 1, 2, ...
    // is in the range [ chunk_begin_secs, chunk_end_secs ).
    BaseFloat delay = adaptation_first_utt_delay;
    while (delay < chunk_begin_secs)
      delay *= adaptation_first_utt_ratio;
    return (delay < chunk_end_secs);
  } else {
    // as above, but remove "first_utt".
    BaseFloat delay = adaptation_delay;
    while (delay < chunk_begin_secs)
      delay *= adaptation_ratio;
    return (delay < chunk_end_secs);
  }
}


}  // namespace kaldi