rnnlm-example.cc 28.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
// rnnlm/rnnlm-example.cc

// Copyright 2017  Daniel Povey

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include <numeric>
#include "rnnlm/rnnlm-example.h"

namespace kaldi {
namespace rnnlm {

void RnnlmExample::Write(std::ostream &os, bool binary) const {
  WriteToken(os, binary, "<RnnlmExample>");
  WriteToken(os, binary, "<VocabSize>");
  WriteBasicType(os, binary, vocab_size);
  WriteToken(os, binary, "<NumChunks>");
  WriteBasicType(os, binary, num_chunks);
  WriteToken(os, binary, "<ChunkLength>");
  WriteBasicType(os, binary, chunk_length);
  WriteToken(os, binary, "<SampleGroupSize>");
  WriteBasicType(os, binary, sample_group_size);
  WriteToken(os, binary, "<NumSamples>");
  WriteBasicType(os, binary, num_samples);
  WriteToken(os, binary, "<InputWords>");
  WriteIntegerVector(os, binary, input_words);
  WriteToken(os, binary, "<OutputWords>");
  WriteIntegerVector(os, binary, output_words);
  WriteToken(os, binary, "<OutputWeights>");
  output_weights.Write(os, binary);
  WriteToken(os, binary, "<SampledWords>");
  WriteIntegerVector(os, binary, sampled_words);
  WriteToken(os, binary, "<SampleInvProbs>");
  sample_inv_probs.Write(os, binary);
  WriteToken(os, binary, "</RnnlmExample>");
}

void RnnlmExample::Read(std::istream &is, bool binary) {
  ExpectToken(is, binary, "<RnnlmExample>");
  ExpectToken(is, binary, "<VocabSize>");
  ReadBasicType(is, binary, &vocab_size);
  ExpectToken(is, binary, "<NumChunks>");
  ReadBasicType(is, binary, &num_chunks);
  ExpectToken(is, binary, "<ChunkLength>");
  ReadBasicType(is, binary, &chunk_length);
  ExpectToken(is, binary, "<SampleGroupSize>");
  ReadBasicType(is, binary, &sample_group_size);
  ExpectToken(is, binary, "<NumSamples>");
  ReadBasicType(is, binary, &num_samples);
  ExpectToken(is, binary, "<InputWords>");
  ReadIntegerVector(is, binary, &input_words);
  ExpectToken(is, binary, "<OutputWords>");
  ReadIntegerVector(is, binary, &output_words);
  ExpectToken(is, binary, "<OutputWeights>");
  output_weights.Read(is, binary);
  ExpectToken(is, binary, "<SampledWords>");
  ReadIntegerVector(is, binary, &sampled_words);
  ExpectToken(is, binary, "<SampleInvProbs>");
  sample_inv_probs.Read(is, binary);
  ExpectToken(is, binary, "</RnnlmExample>");
}

RnnlmExampleSampler::RnnlmExampleSampler(
    const RnnlmEgsConfig &config, const SamplingLm &arpa_sampling):
    config_(config), arpa_sampling_(arpa_sampling) {
  config_.Check();

  // The unigram distribution from the LM, modified according to
  // config_.special_symbol_prob and config_.uniform_prob_mass...
  std::vector<BaseFloat> unigram_distribution =
      arpa_sampling.GetUnigramDistribution();
  double sum = std::accumulate(unigram_distribution.begin(),
                                  unigram_distribution.end(),
                                  0.0);
  KALDI_ASSERT(std::fabs(sum - 1.0) < 0.01 &&
               "Unigram distribution from ARPA does not sum "
               "to (close to) 1");
  int32 num_words = unigram_distribution.size();
  if (config_.uniform_prob_mass > 0.0) {
    BaseFloat x = config_.uniform_prob_mass / (num_words - 1);
    for (int32 i = 1; i < num_words; i++)
      if (i != config_.bos_symbol && i != config_.brk_symbol)
        unigram_distribution[i] += x;
  }
  // If these are not zero, either something is wrong with your language model
  // or you supplied the wrong --bos-symbol or --brk-symbol options.  We allow
  // tiny values because the ARPA files sometimes give -99 as the unigram prob
  // for <s>.
  KALDI_ASSERT(unigram_distribution[config_.bos_symbol] < 1.0e-10);
  // we don't check that the <brk> symbol has very tiny prob because
  // it could have accumulated some probability mass via smoothing;
  // this is harmless.

  unigram_distribution[config_.bos_symbol] = config_.special_symbol_prob;
  unigram_distribution[config_.brk_symbol] = config_.special_symbol_prob;
  double new_sum = std::accumulate(unigram_distribution.begin(),
                                   unigram_distribution.end(),
                                   0.0),
      scale = 1.0 / new_sum;
  // rescale so it sums to almost 1; this is a requirement of the constructor
  // of class Sampler.

  int32 num_words_nonzero_prob = 0;
  for (std::vector<BaseFloat>::iterator iter = unigram_distribution.begin(),
           end = unigram_distribution.end(); iter != end; ++iter) {
    if (*iter != 0.0) num_words_nonzero_prob++;
    *iter *= scale;
  }

  if (config_.num_samples > num_words_nonzero_prob) {
    KALDI_WARN << "The number of samples (--num-samples=" << config_.num_samples
               << ") exceeds the number of words with nonzero probability "
               << num_words_nonzero_prob << " -> not doing sampling.  You could "
               << "skip creating the ARPA file, and not provide it, which "
               << "might save some bother.";
    config_.num_samples = 0;
  }
  if (config_.num_samples == 0) {
    sampler_ = NULL;
  } else {
    sampler_ = new Sampler(unigram_distribution);
  }
}


void RnnlmExampleSampler::SampleForMinibatch(RnnlmExample *minibatch) const {
  if (sampler_ == NULL) return;  // we're not actually sampling.
  KALDI_ASSERT(minibatch->chunk_length == config_.chunk_length &&
               minibatch->num_chunks == config_.num_chunks_per_minibatch &&
               config_.chunk_length % config_.sample_group_size == 0 &&
               static_cast<int32>(minibatch->input_words.size()) ==
               config_.chunk_length * config_.num_chunks_per_minibatch);
  int32 num_samples = config_.num_samples,
      sample_group_size = config_.sample_group_size,
      chunk_length = config_.chunk_length,
      num_groups = chunk_length / sample_group_size;
  minibatch->num_samples = num_samples;
  minibatch->sample_group_size = sample_group_size;
  minibatch->sampled_words.resize(num_groups * num_samples);
  minibatch->sample_inv_probs.Resize(num_groups * num_samples);

  for (int32 g = 0; g < num_groups; g++) {
    SampleForGroup(g, minibatch);
  }
}


void RnnlmExampleSampler::SampleForGroup(int32 g,
                                         RnnlmExample *minibatch) const {
  // All words that appear on the output are required to appear in the sample.  we
  // need to figure what this set of words is.
  int32 num_chunks_per_minibatch = config_.num_chunks_per_minibatch;
  std::vector<int32> words_we_must_sample;
  for (int32 t = g * config_.sample_group_size;
       t < (g + 1) * config_.sample_group_size; t++) {
    for (int32 n = 0; n < num_chunks_per_minibatch; n++) {
      int32 i = t * num_chunks_per_minibatch + n;
      int32 output_word = minibatch->output_words[i];
      words_we_must_sample.push_back(output_word);
    }
  }
  SortAndUniq(&words_we_must_sample);

  // 'hist_weights' is a representation of a weighted set of histories.
  std::vector<std::pair<std::vector<int32>, BaseFloat> > hist_weights;
  GetHistoriesForGroup(g, *minibatch, &hist_weights);
  KALDI_ASSERT(!hist_weights.empty());  // we made sure of this.

  // 'higher_order_probs' and 'unigram_weight' are a compact representation of
  // an (unnormalized) distribution that is the suitably weighted sum of the
  // distributions that the language model predicts given the history states
  // present in 'hist_weights'.
  // We represent the distribution in this way, instead of just as a vector,
  // so that it is efficient even when the vocabulary size is very large.
  std::vector<std::pair<int32, BaseFloat> > higher_order_probs;
  BaseFloat unigram_weight = arpa_sampling_.GetDistribution(hist_weights,
                                                            &higher_order_probs);

  // 'sample' will be a list of pairs (integer word-id, inclusion probability).
  std::vector<std::pair<int32, BaseFloat> > sample;

  // the 'sampler_' object knows how to sample from an unnormalized distribution
  // represented as unigram-weight and a list of higher-than-unigram (word-id,
  // additional-weight) pairs.
  int32 num_samples = config_.num_samples;
  sampler_->SampleWords(num_samples, unigram_weight,
                        higher_order_probs, words_we_must_sample,
                        &sample);
  KALDI_ASSERT(sample.size() == static_cast<size_t>(num_samples));
  std::sort(sample.begin(), sample.end());
  // write to the 'sampled_words' and 'sample_inv_probs' arrays.
  for (int32 s = 0; s < num_samples; s++) {
    int32 i = (g * num_samples) + s;
    minibatch->sampled_words[i] = sample[s].first;
    KALDI_ASSERT(sample[s].second > 0.0);
    minibatch->sample_inv_probs(i) = 1.0 / sample[s].second;
  }
  RenumberOutputWordsForGroup(g, minibatch);
}

void RnnlmExampleSampler::RenumberOutputWordsForGroup(
    int32 g, RnnlmExample *minibatch) const {
  int32 sample_group_size = config_.sample_group_size,
      num_samples = config_.num_samples,
      num_chunks_per_minibatch = config_.num_chunks_per_minibatch,
      num_outputs_per_group = sample_group_size * num_chunks_per_minibatch,
      vocab_size = minibatch->vocab_size;

  // get the range of 'sampled_words' that covers this group.
  const int32 *sampled_words_ptr = &(minibatch->sampled_words[0]),
      *sampled_words_begin = sampled_words_ptr + (g * num_samples),
      *sampled_words_end = sampled_words_begin + num_samples;

  int32 *output_words_ptr = &(minibatch->output_words[0]),
      *output_words_iter = output_words_ptr + (g * num_outputs_per_group),
      *output_words_end = output_words_iter + num_outputs_per_group;
  for (; output_words_iter != output_words_end; ++output_words_iter) {
    int32 output_word = *output_words_iter;
    // note: output_word is > 0 because epsilon won't ever occur there,
    // although in a sense 0 is a valid output-word id.
    KALDI_ASSERT(output_word > 0 && output_word < vocab_size);
    const int32 *sampled_words_ptr = std::lower_bound(sampled_words_begin,
                                                      sampled_words_end,
                                                      output_word);
    if (*sampled_words_ptr != output_word) {
      KALDI_ERR << "Output word not found in samples (indicates code error)";
    }
    int32 renumbered_output_word = sampled_words_ptr - sampled_words_begin;
    *output_words_iter = renumbered_output_word;
  }
}


void RnnlmExampleSampler::GetHistoriesForGroup(
    int32 g, const RnnlmExample &minibatch,
    std::vector<std::pair<std::vector<int32>, BaseFloat> > *hist_weights) const {
  // initially store as an unordered_map so we can remove duplicates.

  // hist_to_weight maps from the history to the (unnormalized) weight for that
  // history.  It represents a weighted combination of history-states that we
  // will get a distribution for (from the ARPA LM) and sample from.
  std::unordered_map<std::vector<int32>, BaseFloat, VectorHasher<int32> > hist_to_weight;

  hist_weights->clear();
  KALDI_ASSERT(arpa_sampling_.Order() > 0);
  int32 max_history_length = arpa_sampling_.Order() - 1,
      num_chunks_per_minibatch = config_.num_chunks_per_minibatch;

  // This block sets up the 'hist_to_weight' map.  Note: sample_group_size
  // will normally be small, like 1, 2 or 4.
  for (int32 t = g * config_.sample_group_size;
       t < (g + 1) * config_.sample_group_size; t++) {
    for (int32 n = 0; n < num_chunks_per_minibatch; n++) {
      int32 i = t * num_chunks_per_minibatch + n;
      BaseFloat this_weight = minibatch.output_weights(i);
      KALDI_ASSERT(this_weight >= 0);
      if (this_weight == 0.0)
        continue;
      std::vector<int32> history;
      GetHistory(t, n, minibatch, max_history_length, &history);
      // note: if the key did not exist in the map, it is as
      // if the value were zero, see here:
      // https://stackoverflow.com/questions/8943261/stdunordered-map-initialization
      // .. this is at least since C++11, maybe since C++03.
      hist_to_weight[history] += this_weight;
    }
  }
  if (hist_to_weight.empty()) {
    KALDI_WARN << "No histories seen (we don't expect to see this very often)";
    std::vector<int32> empty_history;
    hist_to_weight[empty_history] = 1.0;
  }
  std::unordered_map<std::vector<int32>, BaseFloat, VectorHasher<int32> >::const_iterator
      iter = hist_to_weight.begin(), end = hist_to_weight.end();
  hist_weights->reserve(hist_to_weight.size());
  for (; iter != end; ++iter)
    hist_weights->push_back(std::pair<std::vector<int32>, BaseFloat>(
        iter->first, iter->second));
}

void RnnlmExampleSampler::GetHistory(
    int32 t, int32 n,
    const RnnlmExample &minibatch,
    int32 max_history_length,
    std::vector<int32> *history) const {
  history->reserve(max_history_length);
  history->clear();
  int32 num_chunks_per_minibatch = config_.num_chunks_per_minibatch;

  // e.g. if 'max_history_length' is 2, we iterate over t_step = [0, -1].
  // you'll notice that the first history-position we look for when
  // predicting position 't' is 'hist_t = t + 0 = t'.  This may be
  // surprising-- you might be expecting that t-1 would be the first
  // position we'd look at-- but notice that we're looking at the
  // input word, not the output word.
  for (int32 t_step = 0; t_step > -max_history_length; t_step--) {
    int32 hist_t = t + t_step;
    KALDI_ASSERT(hist_t >= 0);  // .. or we should have done 'break' below
                                // before reaching this value of t_step.  If
                                // this assert fails it means that a minibatch
                                // doesn't start with input_word equal to
                                // bos_symbol or brk_symbol, which is a bug.
    int32 i = hist_t * num_chunks_per_minibatch + n,
        history_word = minibatch.input_words[i];
    history->push_back(history_word);
    if (history_word == config_.bos_symbol ||
        history_word == config_.brk_symbol)
      break;
  }
  // we want the most recent word to be the last word in 'history', so the order
  // needs to be reversed.
  std::reverse(history->begin(), history->end());
}



void RnnlmExampleCreator::AcceptSequence(
    BaseFloat weight, const std::vector<int32> &words) {
  CheckSequence(weight, words);
  SplitSequenceIntoChunks(weight, words);
  num_sequences_processed_++;
  while (chunks_.size() > static_cast<size_t>(config_.chunk_buffer_size)) {
    if (!ProcessOneMinibatch())
      break;
  }
}

RnnlmExampleCreator::~RnnlmExampleCreator() {
  Flush();
  BaseFloat words_per_chunk = num_words_processed_ * 1.0 /
      num_chunks_processed_,
      chunks_per_minibatch = num_chunks_processed_ * 1.0 /
      num_minibatches_written_;
  KALDI_LOG << "Combined " << num_sequences_processed_ << "/"
            << num_chunks_processed_
            << " sequences/chunks into " << num_minibatches_written_
            << " minibatches (" << chunks_.size()
            << " chunks left over)";
 KALDI_LOG << "Overall there were "
           << words_per_chunk << " words per chunk; "
           << chunks_per_minibatch << " chunks per minibatch.";
 for (size_t i = 0; i < chunks_.size(); i++)
   delete chunks_[i];
}

RnnlmExampleCreator::SingleMinibatchCreator::SingleMinibatchCreator(
    const RnnlmEgsConfig &config):
    config_(config),
    eg_chunks_(config_.num_chunks_per_minibatch) {
  for (int32 i = 0; i < config_.num_chunks_per_minibatch; i++)
    empty_eg_chunks_.push_back(i);
}

bool RnnlmExampleCreator::SingleMinibatchCreator::AcceptChunk(
    RnnlmExampleCreator::SequenceChunk *chunk) {
  int32 chunk_len = chunk->Length();
  if (chunk_len == config_.chunk_length) {  // maximum-sized chunk.
    if (empty_eg_chunks_.empty()) {
      return false;
    } else  {
      int32 i = empty_eg_chunks_.back();
      KALDI_ASSERT(size_t(i) < eg_chunks_.size() && eg_chunks_[i].empty());
      eg_chunks_[i].push_back(chunk);
      empty_eg_chunks_.pop_back();
      return true;
    }
  } else {  // smaller-sized chunk than maximum chunk size.
    KALDI_ASSERT(chunk_len < config_.chunk_length);
    // Find the index best_i into partial_eg_chunks_, such
    // that partial_eg_chunks_[best_i] is a pair (best_j,
    // best_space_left) such that space_left >= chunk_len, with
    // best_space_left as small as possible.
    int32 best_i = -1, best_j = -1,
        best_space_left = std::numeric_limits<int32>::max(),
        size = partial_eg_chunks_.size();
    for (int32 i = 0; i < size; i++) {
      int32 this_space_left = partial_eg_chunks_[i].second;
      if (this_space_left >= chunk_len && this_space_left < best_space_left) {
        best_i = i;
        best_j = partial_eg_chunks_[i].first;
        best_space_left = this_space_left;
      }
    }
    if (best_i != -1) {
      partial_eg_chunks_[best_i] = partial_eg_chunks_.back();
      partial_eg_chunks_.pop_back();
    } else {
      // consume a currently-unused chunk, if available.
      if (empty_eg_chunks_.empty()) {
        return false;
      } else {
        best_j = empty_eg_chunks_.back();
        empty_eg_chunks_.pop_back();
        best_space_left = config_.chunk_length;
      }
    }
    int32 new_space_left = best_space_left - chunk_len;
    KALDI_ASSERT(new_space_left >= 0);
    if (new_space_left > 0) {
      partial_eg_chunks_.push_back(std::pair<int32, int32>(best_j,
                                                           new_space_left));
    }
    eg_chunks_[best_j].push_back(chunk);
    return true;
  }
}


RnnlmExampleCreator::SingleMinibatchCreator::~SingleMinibatchCreator() {
  for (size_t i = 0; i < eg_chunks_.size(); i++)
    for (size_t j = 0; j < eg_chunks_[i].size(); j++)
      delete eg_chunks_[i][j];
}


void RnnlmExampleCreator::SingleMinibatchCreator::CreateMinibatchOneSequence(
    int32 n, RnnlmExample *minibatch) {
  // Much of the code here is about figuring out what to do if we haven't
  // completely used up the potential length of the sequence.  We first try
  // giving extra left-context to any split-up pieces of sequence that could potentially
  // use extra left-context; when that avenue is exhausted, we
  // pad at the end with </s> symbols with zero weight.


  KALDI_ASSERT(static_cast<size_t>(n) < eg_chunks_.size());
  const std::vector<SequenceChunk*> &this_chunks = eg_chunks_[n];
  int32 num_chunks = this_chunks.size();
  // note: often num_chunks will be 1, occasionally 0 (if we've run out of
  // data), and sometimes more than 1 (if we're appending multiple chunks
  // together because they were shorter than config_.chunk_length).


  // total_current_chunk_length is the total Length() of all the chunks.
  int32 total_current_chunk_length = 0;
  for (int32 c = 0; c < num_chunks; c++) {
    total_current_chunk_length += this_chunks[c]->Length();
  }
  KALDI_ASSERT(total_current_chunk_length <= config_.chunk_length);
  int32 extra_length_available = config_.chunk_length - total_current_chunk_length;

  while (true) {
    bool changed = false;
    for (int32 c = 0; c < num_chunks; c++) {
      if (this_chunks[c]->context_begin > 0 && extra_length_available > 0) {
        changed = true;
        this_chunks[c]->context_begin--;
        extra_length_available--;
      }
    }
    if (!changed)
      break;
  }

  int32 pos = 0;  // position in the sequence (we increase this every time a word
                  // gets added).
  for (int32 c = 0; c < num_chunks; c++) {
    SequenceChunk &chunk = *(this_chunks[c]);

    // note: begin and end are the indexes of the first and the last-plus-one
    // words in the sequence that we *predict*.
    // you can think of real_begin as the index of the first real word in the
    // sequence that we use as left context (however it will be preceded by
    // either a <s> or a <brk>, depending whether 'real_begin' is 0 or >0).
    // For these positions that are only used as left context, and not predicted
    // the weight of the output (predicted) word is zero.  'begin' is the index
    // of the first predicted word.
    int32 context_begin = chunk.context_begin,
        begin = chunk.begin,
        end = chunk.end;
    for (int32 i = context_begin; i < end; i++) {
      int32 output_word = (*chunk.sequence)[i],
          input_word;
      if (i == context_begin) {
        if (context_begin == 0) input_word = config_.bos_symbol;
        else input_word = config_.brk_symbol;
      } else {
        input_word = (*chunk.sequence)[i - 1];
      }
      BaseFloat weight = (i < begin ? 0.0 : chunk.weight);
      Set(n, pos, input_word, output_word, weight, minibatch);
      pos++;
    }
  }
  for (; pos < config_.chunk_length; pos++) {
    // fill the rest with <s> as input and </s> as output
    // and weight of 0.0.  The symbol-id doesn't really matter
    // so we pick ones that we know are valid inputs and outputs.
    int32 input_word = config_.bos_symbol,
        output_word = config_.eos_symbol;
    BaseFloat weight = 0.0;
    Set(n, pos, input_word, output_word, weight, minibatch);
  }
}


void RnnlmExampleCreator::SingleMinibatchCreator::Set(
    int32 n, int32 t, int32 input_word, int32 output_word,
    BaseFloat weight, RnnlmExample *minibatch) const {
  KALDI_ASSERT(n >= 0 && n < config_.num_chunks_per_minibatch &&
               t >= 0 && t < config_.chunk_length &&
               weight >= 0.0);

  int32 i = t * config_.num_chunks_per_minibatch + n;
  minibatch->input_words[i] = input_word;
  minibatch->output_words[i] = output_word;
  minibatch->output_weights(i) = weight;
}


void RnnlmExampleCreator::SingleMinibatchCreator::CreateMinibatch(
    RnnlmExample *minibatch) {
  minibatch->vocab_size = config_.vocab_size;
  minibatch->num_chunks = config_.num_chunks_per_minibatch;
  minibatch->chunk_length = config_.chunk_length;
  minibatch->num_samples = config_.num_samples;
  int32 num_words = config_.chunk_length * config_.num_chunks_per_minibatch;
  minibatch->input_words.resize(num_words);
  minibatch->output_words.resize(num_words);
  minibatch->output_weights.Resize(num_words);
  minibatch->sampled_words.clear();
  for (int32 n = 0; n < config_.num_chunks_per_minibatch; n++) {
    CreateMinibatchOneSequence(n, minibatch);
  }
}

RnnlmExampleCreator::SequenceChunk* RnnlmExampleCreator::GetRandomChunk() {
  KALDI_ASSERT(!chunks_.empty());
  int32 pos = RandInt(0, chunks_.size() - 1);
  SequenceChunk *ans = chunks_[pos];
  chunks_[pos] = chunks_.back();
  chunks_.pop_back();
  return ans;
}

bool RnnlmExampleCreator::ProcessOneMinibatch() {
  // A couple of configuration values that are not important enough
  // to go in the config...
  // 'chunks_proportion' controls when we discard a small number of
  // chunks rather than form a new minibatch, after we've finished
  // reading the data and have a small bit left over.
  const BaseFloat chunks_proportion = 0.0;  // TODO: revert to 0.5.
  // 'max_rejections' is the maximum number of successive chunks that
  // can be rejected for being 'too big', before we give up an accept
  // the minibatch as-is.
  const int32 max_rejections = 5;

  if (chunks_.size() <
      std::max<size_t>(1,
                       config_.num_chunks_per_minibatch * chunks_proportion)) {
    // there's not enough data to form one minibatch.
    return false;
  }
  SingleMinibatchCreator s(config_);
  int32 cur_rejections = 0;
  while (!chunks_.empty() && cur_rejections < max_rejections) {
    int32 i = RandInt(0, chunks_.size() - 1);
    if (s.AcceptChunk(chunks_[i])) {
      num_chunks_processed_++;
      num_words_processed_ += chunks_[i]->Length();
      chunks_[i] = chunks_.back();
      chunks_.pop_back();
      cur_rejections = 0;
    } else {
      cur_rejections++;
    }
  }
  RnnlmExample *minibatch = new RnnlmExample();
  s.CreateMinibatch(minibatch);
  std::ostringstream os;
  os << "minibatch-" << num_minibatches_written_;
  std::string key = os.str();
  num_minibatches_written_++;
  if (minibatch_sampler_ == NULL) {
    // write it directly from this function.
    writer_->Write(key, *minibatch);
    delete minibatch;
  } else {
    // the sampling, since it can be slow, will be done in parallel by as many
    // background threads as the user specified via the --num-threads option.
    // SamplerTask will also write it out.
    sampling_sequencer_.Run(new SamplerTask(*minibatch_sampler_,
                                            key, writer_, minibatch));
  }
  return true;
}


void RnnlmExampleCreator::SplitSequenceIntoChunks(
    BaseFloat weight, const std::vector<int32> &words) {
  std::shared_ptr<std::vector<int32> > ptr (new std::vector<int32>());
  ptr->reserve(words.size() + 1);
  ptr->insert(ptr->end(), words.begin(), words.end());
  ptr->push_back(config_.eos_symbol);  // add the terminating </s>.

  int32 sequence_length = ptr->size();  // == words.size() + 1
  if (sequence_length <= config_.chunk_length) {
    chunks_.push_back(new SequenceChunk(config_, ptr, weight,
                                        0, sequence_length));
  } else {
    std::vector<int32> chunk_lengths;
    ChooseChunkLengths(sequence_length, &chunk_lengths);
    int32 cur_start = 0;
    for (size_t i = 0; i < chunk_lengths.size(); i++) {
      int32 this_end = cur_start + chunk_lengths[i];
      chunks_.push_back(new SequenceChunk(config_, ptr, weight,
                                          cur_start, this_end));
      cur_start = this_end;
    }
  }
}

// see comment in rnnlm-example.h, by its declaration.
void RnnlmExampleCreator::ChooseChunkLengths(
    int32 sequence_length,
    std::vector<int32> *chunk_lengths) {
  KALDI_ASSERT(sequence_length > config_.chunk_length);
  chunk_lengths->clear();
  int32 tot = sequence_length - config_.min_split_context,
     chunk_length_no_context = config_.chunk_length - config_.min_split_context;
  KALDI_ASSERT(chunk_length_no_context > 0);
  // divide 'tot' into pieces of size <= config_.chunk_length - config_.min_split_context.

  // note:
  for (int32 i = 0; i < tot / chunk_length_no_context; i++)
    chunk_lengths->push_back(chunk_length_no_context);
  KALDI_ASSERT(!chunk_lengths->empty());
  int32 remaining_size = tot % chunk_length_no_context;
  if (remaining_size != 0) {
    // put the smaller piece in a random location.
    (*chunk_lengths)[RandInt(0, chunk_lengths->size() - 1)] = remaining_size;
    chunk_lengths->push_back(chunk_length_no_context);
  }
  (*chunk_lengths)[0] += config_.min_split_context;
  KALDI_ASSERT(std::accumulate(chunk_lengths->begin(), chunk_lengths->end(), 0)
               == sequence_length);
}

void RnnlmExampleCreator::CheckSequence(
    BaseFloat weight,
    const std::vector<int32> &words) {
  KALDI_ASSERT(weight > 0.0);
  int32 bos_symbol = config_.bos_symbol,
      brk_symbol = config_.brk_symbol,
      eos_symbol = config_.eos_symbol,
      vocab_size = config_.vocab_size;
  for (size_t i = 0; i < words.size(); i++) {
    // note: eos_symbol within a sequence isn't disallowed; this
    // is allowed as a way to encode multiple turns of a conversation,
    // and similar scenarios.
    KALDI_ASSERT(words[i] != bos_symbol && words[i] != brk_symbol &&
                 words[i] > 0 && words[i] < vocab_size);
  }
  if (!words.empty() && words.back() == eos_symbol) {
    // we may rate-limit this warning eventually if people legitimately need to
    // do this.
    KALDI_WARN << "Raw word sequence contains </s> at the end.  "
        "Is this a bug in your data preparation?  We'll add another one.";
  }
}

void RnnlmExampleCreator::Check() const {
  config_.Check();
  if (minibatch_sampler_ != NULL) {
    if (minibatch_sampler_->VocabSize() > config_.vocab_size) {
      KALDI_ERR << "Option --vocab-size=" << config_.vocab_size
                << " is inconsistent with the language model.";
    }
  }
}

void RnnlmExampleCreator::Process(std::istream &is) {
  int32 num_lines = 0;
  std::vector<int32> words;
  std::string line;
  while (getline(is, line)) {
    num_lines++;
    std::istringstream line_is(line);
    BaseFloat weight;
    line_is >> weight;
    words.clear();
    int32 word;
    while (line_is >> word) {
      words.push_back(word);
    }
    if (!line_is.eof()) {
      KALDI_ERR << "Could not interpret input: " << line;
    }
    this->AcceptSequence(weight, words);
  }
  KALDI_LOG << "Processed " << num_lines << " lines of input.";
}

void RnnlmExample::Swap(RnnlmExample *other) {
  std::swap(vocab_size, other->vocab_size);
  std::swap(num_chunks, other->num_chunks);
  std::swap(chunk_length, other->chunk_length);
  std::swap(sample_group_size, other->sample_group_size);
  std::swap(num_samples, other->num_samples);
  input_words.swap(other->input_words);
  output_words.swap(other->output_words);
  output_weights.Swap(&(other->output_weights));
  sampled_words.swap(other->sampled_words);
  sample_inv_probs.Swap(&(other->sample_inv_probs));
}

}  // namespace rnnlm
}  // namespace kaldi