sampler.cc 20.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
// rnnlm/sampler.cc

// Copyright 2017  Daniel Povey

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <numeric>
#include <queue>
#include "rnnlm/sampler.h"
#include "base/kaldi-math.h"
#include "util/stl-utils.h"

namespace kaldi {
namespace rnnlm {


void SampleWithoutReplacement(const std::vector<double> &probs,
                              std::vector<int32> *sample) {

  // This outer loop over 't' will *almost always* just run for t == 0.  The
  // loop is necessary only to handle a pathological case.
  for (int32 t = 0; t < 10; t++) {
    sample->clear();
    int32 n = probs.size();

#define DO_SHUFFLE 0

#if DO_SHUFFLE
    // Removing the random shuffling for now because it turns out that
    // with multiple threads, it has to do locking inside the call to rand(),
    // which is quite slow; and using re-entrant random number generators with
    // this is quite complicated.  Anyway this wasn't necessary.
    // Maybe at some later point we can redo the data structures.


    // We randomize the order in which we process the indexes,
    // in order to reduce correlations.. not that this will
    // matter for most applications.
    std::vector<int32> order(n);
    for (int32 i = 0; i < n; i++) order[i] = i;
    std::random_shuffle(order.begin(), order.end());
#endif

    double r = RandUniform();  // r <= 0 <= 1.

    double c = -r;  // c is a kind of counter, to which we add the probabilities
                    // we we process them..  Whenever it becomes >= 0, we add something
                    // to the sample and subtract 1 from c.
    for (int32 i = 0; i < n; i++) {
#if DO_SHUFFLE
      int32 j = order[i];
#else
      int32 j = i;
#endif
      double p = probs[j];
      c += p;
      if (c >= 0) {
        sample->push_back(j);
        c -= 1.0;
      }
    }

    // you can verify by looking at the few lines of code above that
    // 'total_prob' is the total of the 'probs' array.
    double total_prob = c + sample->size() + r;
    int32 k = std::round(total_prob);
    if (std::abs(total_prob - k) > 1.0e-04) {
      // If this happened then the preconditions for this function are
      // violated-- the probs were not well enough normalized.  In double
      // precision the relative rounding error is about 10^-16, so to get an
      // error of 1.0e-04 from rounding we'd have to have 10^12 numbers which in
      // double precision would take 8000 G of memory-- unlikely.
      KALDI_ERR << "The sum of the inputs was " << k << " + "
                << (total_prob - k)
                << " which is too far from a whole number.";
    }
    if (sample->size() == k) {
      return;
    } else {
      // The only possible situations where the sample-size != k and we didn't
      // already crash, are when
      // c + r < 0.9999 or c + r > 0.9999.
      // Since -1 <= c < 0 and 0 <= r <= 1, this is only possible when r < 0.0001
      // and c < -0.9999, or r > 0.9999 and c >= -0.0001.

      // give it a bit of extra space in the assertion.
      KALDI_ASSERT((r < 0.00011 && c < -0.99985) ||
                   (r > 0.99985 && c > -0.00011));

      // .. and continue around the loop.
      // Having 'r' take these values is extremely improbable, so
      // it will be rare to go around the loop more than once.
    }
  }
  KALDI_ERR << "Looped too many times: likely bug.";
}


void CheckDistribution(const Distribution &d) {
  Distribution::const_iterator iter = d.begin(),
      endm1 = d.end() - 1;
  if (d.empty())
    return;
  for (; iter != endm1; ++iter) {
    KALDI_ASSERT(iter->second > 0.0 &&
                 iter->first < (iter+1)->first);
  }
  KALDI_ASSERT(d.back().second > 0.0);
}

void WeightDistribution(BaseFloat weight,
                        Distribution *d) {
  Distribution::iterator iter = d->begin(),
      end = d->end();
  for (; iter != end; ++iter)
    iter->second *= weight;
}


BaseFloat TotalOfDistribution(const Distribution &d) {
  double tot = 0.0;
  Distribution::const_iterator iter = d.begin(),
      end = d.end();
  for (; iter != end; ++iter)
    tot += iter->second;
  return tot;
}


const double* SampleFromCdf(const double *cdf_start,
                            const double *cdf_end) {
  double tot_prob = *cdf_end - *cdf_start;
  KALDI_ASSERT(cdf_end > cdf_start && tot_prob > 0.0);
  double cutoff = *cdf_start + tot_prob * RandUniform();
  if (cutoff >= *cdf_end) {
    // Mathematically speaking this should not happen; if it happens it is due
    // to roundoff.  It should be extremely rare in any case.
    cutoff = *cdf_start;
  }
  // With respect to the sample where [*cdf_start.. *cdf_end]
  // is [ 0.50, 0.55, 0.65, 0.70 ], suppose the randomly
  // sampled 'cutoff' is 0.68.  The std::upper_bound call
  // below finds the first location in the range
  // [ 0.55, 0.65, 0.70 ] that is > 0.68, which
  // in this case is '0.70'.  We then return that
  // pointer minus one, which is the pointer to 0.65.
  const double *ans = std::upper_bound(cdf_start + 1,
                                       cdf_end + 1,
                                       cutoff) - 1;
  // if the following assertion fails, it means that upper_bound returned
  // cdf_end + 1, which means that *cdf_end was not > 'cutoff'.  But we
  // ensured above that *cdf_end was > cutoff, so this should not happen.
  KALDI_ASSERT(ans != cdf_end);
  // If the following fails, it would be an error in our logic or in
  // std::upper_bound.
  KALDI_ASSERT(ans[1] != ans[0]);
  return ans;
}


// Merges two distributions, summing the probabilities of any elements that
// occur in both.
void MergeDistributions(const Distribution &d1,
                        const Distribution &d2,
                        Distribution *d) {
  if (GetVerboseLevel() >= 2) {
    CheckDistribution(d1);
    CheckDistribution(d2);
  }
  d->resize(d1.size() + d2.size());
  // we could write a single function that does the jobs of the
  // two things below, which might improve speed slightly, if
  // this becomes a bottleneck.
  std::merge(d1.begin(), d1.end(), d2.begin(), d2.end(), d->begin());
  MergePairVectorSumming(d);
  if (GetVerboseLevel() >= 2) {
    CheckDistribution(*d);
  }

}


void Sampler::SampleWords(
    int32 num_words_to_sample,
    BaseFloat unigram_weight,
    const std::vector<std::pair<int32, BaseFloat> > &higher_order_probs,
    const std::vector<int32> &words_we_must_sample,
    std::vector<std::pair<int32, BaseFloat> > *sample) const {
  CheckDistribution(higher_order_probs);  // TODO: delete this.
  int32 vocab_size = unigram_cdf_.size();
  KALDI_ASSERT(IsSortedAndUniq(words_we_must_sample) &&
               num_words_to_sample > 0 && num_words_to_sample < vocab_size);

  int32 num_words_we_must_sample = words_we_must_sample.size();
  if (num_words_we_must_sample > 0) {
    KALDI_ASSERT(num_words_we_must_sample < vocab_size &&
                 num_words_we_must_sample < num_words_to_sample);
    KALDI_ASSERT(words_we_must_sample.front() >= 0 &&
                 words_we_must_sample.back() < vocab_size);
  }

  BaseFloat total_existing_weight = unigram_weight +
      TotalOfDistribution(higher_order_probs);
  // To ensure that all the words we must sample actually get sampled,
  // we need to make sure that they are sampled with probability 1.0.
  // i.e. that after computing alpha, alpha p(i) for all of those words
  // is >= 1.0.  See comment for one of the versions of SampleWords()
  // in the header for more explanation.
  //
  // We can ensure this by making sure that after adding these words
  // each with probability p, each of these words has at least
  // weight T / num_words_to_sample, where 'T' is the new total
  // of the distribution.  I.e., we require that
  //   p > T / num_words_to_sample
  // Since T = total_existing_weight + p * num_words_we_must_sample, we have:
  //   p * num_words_to_sample > total_existing_weight + p * num_words_we_must_sample.
  // i.e.
  //  p > total_existing_weight / (num_words_to_sample - num_words_we_must_sample).
  // To minimize roundoff problems we make p just a little bigger than
  // that, bigger by a factor of 0.1.  So we'll set
  // p = 1.1 * total_existing_weight / (num_words_to_sample - num_words_we_must_sample).

  BaseFloat p = 1.1 * total_existing_weight /
      (num_words_to_sample - num_words_we_must_sample);

  std::vector<std::pair<int32, BaseFloat> > words_we_must_sample_distribution(
      num_words_we_must_sample);
  for (int32 i = 0 ; i < num_words_we_must_sample; i++) {
    words_we_must_sample_distribution[i].first = words_we_must_sample[i];
    words_we_must_sample_distribution[i].second = p;
  }

  std::vector<std::pair<int32, BaseFloat> > merged_distribution;
  MergeDistributions(higher_order_probs,
                     words_we_must_sample_distribution,
                     &merged_distribution);

  SampleWords(num_words_to_sample, unigram_weight,
              merged_distribution,
              sample);
  if (GetVerboseLevel() >= 2) {
    std::vector<int32> merged_list(words_we_must_sample);
    for (size_t i = 0; i < sample->size(); i++)
      merged_list.push_back((*sample)[i].first);
    SortAndUniq(&merged_list);
    // if the following assert fails, it means that one of the words
    // that we were required to sample, was not in fact sampled.
    // This implies there was a bug somewhere, or a flaw in
    // our reasoning.
    KALDI_ASSERT(merged_list.size() == sample->size());
  }
}

Sampler::Sampler(const std::vector<BaseFloat> &unigram_probs) {
  KALDI_ASSERT(!unigram_probs.empty());
  double total = std::accumulate(unigram_probs.begin(),
                                 unigram_probs.end(),
                                 0.0);
  KALDI_ASSERT(std::abs(total - 1.0) < 1.0e-02);
  double inv_total = 1.0 / total;

  double sum = 0.0;
  size_t n = unigram_probs.size();
  unigram_cdf_.resize(n + 1);
  unigram_cdf_[0] = 0.0;
  for (size_t i = 0; i < n; i++) {
    sum += unigram_probs[i];
    unigram_cdf_[i + 1] = sum * inv_total;
  }
}



void Sampler::SampleWords(
    int32 num_words_to_sample,
    BaseFloat unigram_weight,
    const std::vector<std::pair<int32, BaseFloat> > &higher_order_probs,
    std::vector<std::pair<int32, BaseFloat> > *sample) const {
  int32 vocab_size = unigram_cdf_.size() - 1;
  KALDI_ASSERT(num_words_to_sample > 0 &&
               num_words_to_sample + 1 < unigram_cdf_.size() &&
               unigram_weight > 0.0);
  if (!higher_order_probs.empty()) {
    KALDI_ASSERT(higher_order_probs.front().first >= 0 &&
                 higher_order_probs.back().first < vocab_size);
  }
  if (GetVerboseLevel() >= 2) {
    CheckDistribution(higher_order_probs);
  }

  std::vector<Interval> intervals;
  double total_p = GetInitialIntervals(unigram_weight, higher_order_probs,
                                       &intervals);
  // you can interpret total_p as sum_i p(i), with reference to the
  // math in the header next to the declaration of SampleWords().
  if (GetVerboseLevel() >= 2) {
    AssertEqual(total_p,
                unigram_weight + TotalOfDistribution(higher_order_probs));
  }
  NormalizeIntervals(num_words_to_sample, total_p, &intervals);
  SampleFromIntervals(intervals, sample);
}



// This hacked version of std::priority_queue allows us to extract all elements
// of the priority queue to a supplied vector, in an efficient way.  It relies
// on the fact that std::priority<queue> stores the underlying container as a
// protected member 'c'.  The only way to do this using the supplied interface
// of std::priority_queue is to repeatedly pop() the element from the queue, but
// that is too slow, and it actually had an impact on the speed of the
// application.
template <typename T>
class hacked_priority_queue: public std::priority_queue<T> {
 public:
  void append_all_elements(std::vector<T> *output) const {
    output->insert(output->end(), this->c.begin(), this->c.end());
  }
  // we have to redeclare the constructor.
  template <typename InputIter> hacked_priority_queue(
      InputIter begin, const InputIter end): std::priority_queue<T>(begin, end) { }
};


// static
void Sampler::NormalizeIntervals(int32 num_words_to_sample,
                                 double total_p,
                                 std::vector<Interval> *intervals) {
  // as mentioned in the header, if the input probabilities of the words
  // (here represented as Intervals)/ are p(i), we define
  //  q(i) = min(alpha p(i), 1.0)
  // where alpha is chosen so that sum_i q(i) == num_words_to_sample.
  // 'current_alpha' is initialized to the alpha that we would
  // have if none of the quantities alpha p(i) were greater than 1.
  // This function computes q(i).
  double current_alpha = num_words_to_sample / total_p;

  // 'num_ones' is the number of times the expression min(alpha p(i), 1.0)
  // is >= 1.0.
  int32 num_ones = 0;
  // 'total_remaining_p' is total_p [which equals the sum of p(i)] minus the
  // total of the p(i) for which we already know that alpha p(i) >= 1.
  double total_remaining_p = total_p;

  // In general, we will have:
  //  current_alpha = (num_words_to_sample - num_ones) / total_remaining_p.
  // As we update 'num_ones' and 'total_remaining_p', we will continue
  // to update current_alpha, and it will keep getting larger.
  hacked_priority_queue<Interval> queue(intervals->begin(), intervals->end());

  // clear 'intervals'; we'll use the space to store the intervals that will
  // have a prob of exactly 1.0, and eventually we'll add the rest.
  intervals->clear();
  while (!queue.empty()) {  // note: we normally won't reach the condition where
                          // queue.empty() here; we'll normally break.
    Interval top = queue.top();
    if (current_alpha * top.prob < 1.0) {
      break;  // we're done.
    } else {
      queue.pop();
      size_t interval_size = top.end - top.start;
      if (interval_size > 1) {
        // it's a range containing more than one thing -> we can split the
        // range.
        size_t half_size = interval_size / 2;
        double start_cdf = top.start[0],
            mid_cdf = top.start[half_size],
            end_cdf = top.end[0],
            total_unigram_prob = end_cdf - start_cdf,
            first_half_unigram_prob = mid_cdf - start_cdf,
            second_half_unigram_prob = (total_unigram_prob -
                                        first_half_unigram_prob),
            top_prob = top.prob;
        KALDI_ASSERT(total_unigram_prob > 0.0 && top_prob > 0.0);
        if (first_half_unigram_prob > 0.0) {
          queue.push(Interval(top_prob * first_half_unigram_prob /
                              total_unigram_prob,
                              top.start,
                              top.start + half_size));
        }
        if (second_half_unigram_prob > 0.0) {
          queue.push(Interval(top_prob * second_half_unigram_prob /
                              total_unigram_prob,
                              top.start + half_size, top.end));
        }
      } else {
        // It's an interval of one thing, we can't split it.
        // It's one of those things that takes the "1.0" in the expression
        // min(alpha p(i), 1.0).
        total_remaining_p -= top.prob;
        num_ones++;
        double new_alpha = (num_words_to_sample - num_ones) / total_remaining_p;
        top.prob = 1.0;
        intervals->push_back(top);
        KALDI_ASSERT(queue.empty() ||
                     (total_remaining_p > 0 && new_alpha > current_alpha));
        current_alpha = new_alpha;
      }
    }
  }
#if 0
  // The following code is a bit slow but has the advantage of not assuming
  // anything about the internals of class std::priority_queue.
  while (!queue.empty()) {
    Interval top = queue.top();
    top.prob *= current_alpha;
    queue.pop();
    intervals->push_back(top);
  }
#else
  { // This code is faster but relies on the fact that priority_queue
    // has a protected member 'c' which is the underlying container.
    size_t cur_size = intervals->size();
    queue.append_all_elements(intervals);
    // the next loop scales the 'prob' members of the elements we just
    // added to 'intervals', by current_alpha.
    std::vector<Interval>::iterator iter = intervals->begin() + cur_size,
        end = intervals->end();
    for (; iter != end; ++iter) iter->prob *= current_alpha;
  }
#endif

  if (GetVerboseLevel() >= 2) {
    double tot_prob = 0.0;
    for (size_t i = 0; i < intervals->size(); i++) {
      double p = (*intervals)[i].prob;
      KALDI_ASSERT(p > 0.0 && p <= 1.0);
      tot_prob += p;
    }
    KALDI_ASSERT(tot_prob - num_words_to_sample < 1.0e-04);
  }
}

void Sampler::SampleFromIntervals(const std::vector<Interval> &intervals,
                                  std::vector<std::pair<int32, BaseFloat> > *samples)  const {
  size_t num_intervals = intervals.size();
  std::vector<double> probs(num_intervals);
  for (size_t i = 0; i < num_intervals; i++)
    probs[i] = intervals[i].prob;
  // 'raw_samples' will contain indexes into the 'intervals' vector,
  // which we need to convert into actual words.
  std::vector<int32> raw_samples;
  SampleWithoutReplacement(probs, &raw_samples);
  size_t num_samples = raw_samples.size();
  samples->resize(num_samples);
  const double *cdf_start = &(unigram_cdf_[0]);
  for (size_t i = 0; i < num_samples; i++) {
    int32 j = raw_samples[i];  // j is interval index.
    const Interval &interval = intervals[j];
    if (interval.end == interval.start + 1) {
      // handle this simple case simply, even though
      // the general case on the other side of the if-statement
      // would give the correct expression.
      int32 word = interval.start - cdf_start;
      (*samples)[i].first = word;
      (*samples)[i].second = interval.prob;
    } else {
      const double *word_ptr = SampleFromCdf(interval.start,
                                             interval.end);
      int32 word = word_ptr - cdf_start;
      // the probability with which this word was sampled is: the probability of
      // sampling from this interval of the unigram, times the probability of
      // this word given the unigram distribution (which equals word[1] -
      // word[0]), divided by the probability of this whole unigram interval.
      // Actually we could more simply compute this, as unigram_weight * alpha *
      // (word_ptr[1] - word_ptr[0]), but alpha and unigram_weight not passed
      // into this function and I'd rather not make linkages between different
      // parts of the code.
      BaseFloat prob = interval.prob *
          (word_ptr[1] - word_ptr[0]) / (*interval.end - *interval.start);
      (*samples)[i].first = word;
      (*samples)[i].second = prob;
    }
  }
}


double Sampler::GetInitialIntervals(
    BaseFloat unigram_weight,
    const std::vector<std::pair<int32, BaseFloat> > &higher_order_probs,
    std::vector<Interval> *intervals) const {
  double ans = 0.0;
  intervals->clear();
  intervals->reserve(higher_order_probs.size() * 2 + 1);

  std::vector<std::pair<int32, BaseFloat> >::const_iterator
      h_iter = higher_order_probs.begin(),
      h_end = higher_order_probs.end();

  size_t vocab_size = unigram_cdf_.size() - 1;
  size_t cur_start = 0;
  const double *cdf = &(unigram_cdf_[0]);

  for (; h_iter != h_end; ++h_iter) {
    int32 w = h_iter->first;
    // include the unigram part of the probability in 'p': we add the unigram,
    // we don't back off to it.
    double p = h_iter->second +
        unigram_weight * (cdf[w + 1] - cdf[w]);
    KALDI_ASSERT(p > 0);
    if (w > cur_start && cdf[w] > cdf[cur_start]) {
      // Before we can add an Interval for (w, p), we have some lower-numbered
      // words to deal with.
      double range_p = unigram_weight * (cdf[w] - cdf[cur_start]);
      intervals->push_back(Interval(range_p,
                                    cdf + cur_start,
                                    cdf + w));
      ans += range_p;
    }
    intervals->push_back(Interval(p, cdf + w, cdf + w + 1));
    ans += p;
    cur_start = w + 1;
  }
  KALDI_ASSERT(cur_start <= vocab_size);
  double range_p = unigram_weight * (cdf[vocab_size] - cdf[cur_start]);
  if (range_p > 0) {
    intervals->push_back(Interval(range_p, cdf + cur_start, cdf + vocab_size));
    ans += range_p;
  }
  return ans;
}



}  // namespace rnnlm
}  // namespace kaldi