sampling-lm-estimate.cc 31 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
// sampling-lm-estimate.cc

// Copyright 2017  Johns Hopkins University (author: Daniel Povey)

// See ../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABILITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include <iomanip>
#include <numeric>
#include "rnnlm/sampling-lm-estimate.h"

namespace kaldi {
namespace rnnlm {


void SamplingLmEstimatorOptions::Check() const {
  KALDI_ASSERT(vocab_size > 2);
  KALDI_ASSERT(bos_symbol > 0 && bos_symbol < vocab_size);
  KALDI_ASSERT(eos_symbol > 0 && eos_symbol < vocab_size);
  KALDI_ASSERT(eos_symbol != bos_symbol);
  KALDI_ASSERT(ngram_order >= 1 &&
               discounting_constant > 0 && discounting_constant <= 1.0 &&
               unigram_factor > 0.0 && backoff_factor > 0.0 &&
               unigram_factor > backoff_factor &&
               bos_factor > 0.0 && bos_factor <= unigram_factor);
  KALDI_ASSERT(unigram_power > 0.2 && unigram_power <= 1.0);
}

SamplingLmEstimator::SamplingLmEstimator(
    const SamplingLmEstimatorOptions &config):
    config_(config) {
  config_.Check();
  history_states_.resize(config.ngram_order);
}


void SamplingLmEstimator::ProcessLine(BaseFloat corpus_weight,
                                       const std::vector<int32> &sentence) {
  KALDI_ASSERT(corpus_weight >= 0.0);
  int32 ngram_order = config_.ngram_order,
      sentence_length = sentence.size(),
      vocab_size = config_.vocab_size;
  std::vector<int32> history;
  history.push_back(config_.bos_symbol);
  int32 i;
  for (i = 0; i < sentence_length && i + 1 < ngram_order; i++) {
    int32 this_word = sentence[i];
    // note: 0 is reserved for <eps>.
    KALDI_ASSERT(this_word > 0 && this_word < vocab_size);
    AddCount(history, this_word, corpus_weight);
    history.push_back(this_word);
  }
  for (; i < sentence_length; i++) {
    history.erase(history.begin());
    int32 this_word = sentence[i];
    AddCount(history, this_word, corpus_weight);
    history.push_back(this_word);
  }
  if (history.size() >= static_cast<size_t>(ngram_order))
    history.erase(history.begin());
  AddCount(history, config_.eos_symbol, corpus_weight);

  // TODO: remove the following.
  KALDI_ASSERT(history.size() == std::min(ngram_order - 1,
                                          sentence_length + 1));
}


void SamplingLmEstimator::Process(std::istream &is) {
  int32 num_lines = 0;
  std::vector<int32> words;
  std::string line;
  while (getline(is, line)) {
    num_lines++;
    std::istringstream line_is(line);
    BaseFloat weight;
    line_is >> weight;
    words.clear();
    int32 word;
    while (line_is >> word) {
      words.push_back(word);
    }
    if (!line_is.eof()) {
      KALDI_ERR << "Could not interpret input: " << line;
    }
    this->ProcessLine(weight, words);
  }
  KALDI_LOG << "Processed " << num_lines << " lines of input.";
}


void SamplingLmEstimator::HistoryState::AddCount(int32 word,
                                                  BaseFloat corpus_weight) {
  new_counts.push_back(std::pair<int32, BaseFloat>(word, corpus_weight));
  if (new_counts.size() == new_counts.capacity() &&
      new_counts.size() >= counts.size()) {
    bool release_memory = false;
    ProcessNewCounts(release_memory);
  }
}

void SamplingLmEstimator::HistoryState::ComputeTotalCount() {
  double tmp_total_count = 0.0;
  std::vector<Count>::const_iterator iter = counts.begin(),
      end = counts.end();
  for (; iter != end; ++iter)
    tmp_total_count += iter->count;
  total_count = tmp_total_count;
}

// static
void SamplingLmEstimator::SortAndUniqCounts(std::vector<Count> *counts) {
  // sort the vector<Count> in counts; they get sorted on 'word'
  // so that Counts with the same word are next to each other.
  std::sort(counts->begin(), counts->end());

  {
    // This block merges counts in '*counts' that have the same word.
    // It is adapted from MergePairVectorSumming().  This code is quite
    // optimized and not easy to read but MergePairVectorSumming() is well
    // tested and the changes in the code are small.
    std::vector<Count>::iterator out_iter = counts->begin(),
        in_iter = counts->begin(), end_iter = counts->end();
    // special case: while there is nothing to be changed, skip over
    // initial input (avoids unnecessary copying).
    while (in_iter + 1 < end_iter && in_iter[0].word != in_iter[1].word) {
      in_iter++;
      out_iter++;
    }
    while (in_iter < end_iter) {
      // We reach this point only at the first element of
      // each stretch of identical words
      *out_iter = *in_iter;
      ++in_iter;
      while (in_iter < end_iter && in_iter->word == out_iter->word) {
        if (in_iter->highest_count > out_iter->highest_count)
          out_iter->highest_count = in_iter->highest_count;
        out_iter->count += in_iter->count;
        ++in_iter;
      }
      out_iter++;
    }
    counts->erase(out_iter, end_iter);
  }
}


// see header for what this does.
void SamplingLmEstimator::HistoryState::ProcessNewCounts(bool release_memory) {
  if (!new_counts.empty()) {
    // Merge all counts in 'new_counts' into 'counts'.
    // We could do what we're doing with 'merged_counts' below, with 'counts'
    // directly, but that might increase the memory held in this HistoryState so
    // we use a temporary vector in some cases.
    std::vector<Count> tmp;
    size_t orig_counts_size = counts.size(),
        merge_size = orig_counts_size + new_counts.size();
    // 'merge_location' is the vector we use to merge and sort the Counts, it
    // either points to 'tmp' or to 'this->counts'.
    std::vector<Count> *merge_location;
    if (merge_size > counts.capacity()) {
      merge_location = &tmp;
      tmp.reserve(merge_size);
      tmp.insert(tmp.end(), counts.begin(), counts.end());
    } else {
      merge_location = &counts;
    }

    { // this block converts each member of 'new_counts' into a single Count,
      // appending it to the vector pointed to by 'merge_location'.
      merge_location->resize(merge_size);
      std::vector<std::pair<int32, BaseFloat> >::const_iterator
          in_iter = new_counts.begin();
      std::vector<Count>::iterator out_iter =
          merge_location->begin() + orig_counts_size,
          out_end = merge_location->end();
      for (; out_iter != out_end; ++in_iter, ++out_iter) {
        int32 word = in_iter->first;
        BaseFloat count = in_iter->second;
        out_iter->word = word;
        out_iter->highest_count = count;
        out_iter->count = count;
      }
    }
    SortAndUniqCounts(merge_location);
    if (merge_location != &counts) // copy to 'counts' if we were using a temporary.
      counts = *merge_location;
  }

  if (release_memory) {
    // shallow swapping with a new temporary is a trick to release memory from a
    // std::vector.
    std::vector<std::pair<int32, BaseFloat> > new_counts_temp;
    new_counts.swap(new_counts_temp);
  } else {
    new_counts.clear();
  }
}

void SamplingLmEstimator::ComputeRawCountsForOrder(int32 o) {
  KALDI_ASSERT(o >= 1 && o < config_.ngram_order);

  // We first make a map from the backed-off history to a list of the
  // history-states that back off to it.  This will help us to do the backoff in
  // a relatively memory-efficient way.
  unordered_map<std::vector<int32>,
      std::vector<const HistoryState*>, VectorHasher<int32> > lower_to_higher_order;


  // Normally we'd iterate over history_states_[o-1] to access counts of order
  // o, but we are iterating over history-states for the order one higher than
  // o.
  unordered_map<std::vector<int32>,
      HistoryState*, VectorHasher<int32> >::iterator
    iter = history_states_[o].begin(),
    end = history_states_[o].end();
  for (; iter != end; ++iter) {
    const std::vector<int32> &history = iter->first;
    // remove the left-most (most distant) word from the history to back off.
    std::vector<int32> backed_off_history(history.begin() + 1,
                                          history.end());
    const HistoryState *higher_order_state = iter->second;
    lower_to_higher_order[backed_off_history].push_back(higher_order_state);
  }

  unordered_map<std::vector<int32>, std::vector<const HistoryState*>,
      VectorHasher<int32> >::const_iterator
      state_list_iter = lower_to_higher_order.begin(),
      state_list_end= lower_to_higher_order.end();
  for (; state_list_iter != state_list_end; ++state_list_iter) {
    const std::vector<int32> &history = state_list_iter->first;
    const std::vector<const HistoryState*> &higher_order_states =
        state_list_iter->second;
    HistoryState *this_state = GetHistoryState(history, true);
    std::vector<Count> merged_counts;
    size_t merged_counts_size = 0;
    for (size_t i = 0; i < higher_order_states.size(); i++)
      merged_counts_size += higher_order_states[i]->counts.size();
    merged_counts.reserve(merged_counts_size);
    for (size_t i = 0; i < higher_order_states.size(); i++)
      merged_counts.insert(merged_counts.end(),
                           higher_order_states[i]->counts.begin(),
                           higher_order_states[i]->counts.end());
    SortAndUniqCounts(&merged_counts);
    this_state->counts = merged_counts;
  }
}


SamplingLmEstimator::HistoryState*
SamplingLmEstimator::GetHistoryState(const std::vector<int32> &history,
                                      bool add_if_absent) {
  KALDI_ASSERT(static_cast<int32>(history.size()) < config_.ngram_order);
  // 'values' is a reference to a pointer to a HistoryState.
  // If 'history' did not previously exist as a key in the map, this will
  // be NULL.  This is a feature of the stl that's valid at least as of C++11,
  // whereby POD types that are the values in maps will be set to zero
  // if newly created.
  /// https://stackoverflow.com/questions/8943261/stdunordered-map-initialization
  // or search for unordered_map value-initialized
  HistoryState *&value = history_states_[history.size()][history];
  if (value == NULL) {
    if (add_if_absent) {
      value = new HistoryState();
    } else {
      KALDI_ERR << "Expected history-state to exist (code error).";
    }
  }
  return value;
}

void SamplingLmEstimator::FinalizeRawCountsForOrder(int32 o) {
  KALDI_ASSERT(o >= 1 && o <= config_.ngram_order &&
               static_cast<int32>(history_states_.size()) ==
               config_.ngram_order);
  unordered_map<std::vector<int32>,
      HistoryState*, VectorHasher<int32> >::iterator
    iter = history_states_[o - 1].begin(),
    end = history_states_[o - 1].end();
  for (; iter != end; ++iter) {
    if (o == config_.ngram_order) {
      bool release_memory = true;
      iter->second->ProcessNewCounts(release_memory);
    }
    iter->second->ComputeTotalCount();
  }
}

void SamplingLmEstimator::Estimate(bool will_write_arpa) {
  for (int32 o = config_.ngram_order; o >= 1; o--) {
    if (o < config_.ngram_order)
      ComputeRawCountsForOrder(o);
    FinalizeRawCountsForOrder(o);
  }
  // Now we have the raw counts of orders but we have not yet done backoff or
  // pruning.
  ComputeUnigramDistribution();

  for (int32 o = 2; o <= config_.ngram_order; o++) {
    SmoothDistributionForOrder(o);
    PruneNgramsForOrder(o);
  }
  for (int32 o = config_.ngram_order; o >= 2; o--)
    PruneStatesForOrder(o, will_write_arpa);

  TakeUnigramCountsToPower(config_.unigram_power);
}

void SamplingLmEstimator::SmoothDistributionForOrder(int32 o) {
  KALDI_ASSERT(o >= 2 && o <= config_.ngram_order);
  unordered_map<std::vector<int32>, HistoryState*,
      VectorHasher<int32> >::iterator
    iter = history_states_[o-1].begin(), end = history_states_[o-1].end();
  BaseFloat D = config_.discounting_constant;  // 0 < D < 1.
  for (; iter != end; ++iter) {
    HistoryState *state = iter->second;
    KALDI_ASSERT(state->total_count > 0.0 && state->backoff_count == 0.0);
    std::vector<Count>::iterator counts_iter = state->counts.begin(),
        counts_end = state->counts.end();
    double backoff_count_tot = 0.0;
    for (; counts_iter != counts_end; ++counts_iter) {
      // note: in the case without data weightings, 'highest_count' will always be
      // 1 and so removed_count will equal D.
      BaseFloat removed_count = D * counts_iter->highest_count;
      counts_iter->count -= removed_count;
      backoff_count_tot += removed_count;
    }
    state->backoff_count = backoff_count_tot;
  }
}


void SamplingLmEstimator::PruneNgramsForOrder(int32 o) {
  KALDI_ASSERT(o >= 2 && o <= config_.ngram_order);
  unordered_map<std::vector<int32>, HistoryState*,
      VectorHasher<int32> >::iterator
    iter = history_states_[o-1].begin(), end = history_states_[o-1].end();
  size_t orig_num_ngrams = 0, cur_num_ngrams = 0;

  for (; iter != end; ++iter) {
    HistoryState *state = iter->second;
    orig_num_ngrams += state->counts.size();
    const std::vector<int32> &history = iter->first;
    KALDI_ASSERT(history.size() == o - 1);
    if (o > 2) {
      std::vector<int32> backoff_history(history);
      std::vector<const HistoryState*> backoff_states;
      while (backoff_history.size() > 1) {
        backoff_history.erase(backoff_history.begin());
        const HistoryState *backoff_state = GetHistoryState(backoff_history,
                                                            false);
        backoff_states.push_back(backoff_state);
      }
      PruneHistoryStateAboveBigram(history, backoff_states, state);
    } else { // o == 2
      PruneHistoryStateBigram(history, state);
    }
    cur_num_ngrams += state->counts.size();
  }
  KALDI_LOG << "For n-gram order " << o << ", pruned from "
            << orig_num_ngrams << " to " << cur_num_ngrams << " ngrams.";
}


void SamplingLmEstimator::PruneStatesForOrder(int32 o, bool will_write_arpa) {
  KALDI_ASSERT(o >= 2 && o <= config_.ngram_order);
  unordered_map<std::vector<int32>, HistoryState*,
      VectorHasher<int32> >::iterator
    iter = history_states_[o-1].begin(), end = history_states_[o-1].end();
  size_t orig_num_states = history_states_[o-1].size(),
      num_restored_ngrams = 0;

  // 'states_to_delete' will contain histories whose states we want to delete
  // from history_states_ because all their words have been pruned away (and they
  // are not protected.
  std::unordered_set<std::vector<int32>, VectorHasher<int32> > states_to_delete;
  for (; iter != end; ++iter) {
    const std::vector<int32> &history = iter->first;
    HistoryState *state = iter->second;

    if (state->counts.empty() && !state->is_protected) {
      // we'll delete this history state.
      states_to_delete.insert(history);
    } else {
      // we'll keep this history state; mark any state that it backs off
      // to as protected from being deleted, or we'll have problems later on.
      if (history.size() > 1) {
        std::vector<int32> backoff_history(history.begin() + 1, history.end());
        // mark the state this state backs off to, as protected.
        GetHistoryState(backoff_history, false)->is_protected = true;

        if (will_write_arpa) {
          // Make sure that the n-gram corresponding to this history state
          // was not deleted; if it was, we have to put it back into the
          // model because it's required to exist in the ARPA model.
          std::vector<int32> prev_history(history.begin(), history.end() - 1);
          int32 last_word = history.back();
          // we're checking that the n-gram 'prev_history -> last_word' exists.
          HistoryState *prev_state = GetHistoryState(prev_history, false);
          Count c;
          c.word = last_word;
          std::vector<Count>::iterator
              iter = std::lower_bound(prev_state->counts.begin(),
                                      prev_state->counts.end(),
                                      c);
          if (iter == prev_state->counts.end() || iter->word != last_word) {
            // The n-gram leading to this state had been pruned away, which will
            // give us problems when writing the ARPA model (there would be
            // nowhere to write the backoff probability for this state).  We
            // insert it back.
            //
            // To compute how much of the total count would have been backed off
            // in the deleted ngram, We guess at the highest_count, assuming
            // it's probably close to 1.0.  This will make almost no difference
            // to anything, these ngrams will be quite rare.
            BaseFloat backoff_count =
                std::min<BaseFloat>(config_.discounting_constant,
                                    0.5 * state->total_count);
            // because of how we store the stats, the count for that (now-lost)
            // ngram would have been equal to state->total_count before pruning.
            // Assuming we pruned 'backoff_count' from it, its value after
            // pruning would have been roughly as follows:
            c.count = state->total_count - backoff_count;
            c.highest_count = -123.4;  // convenient for future debugging.
            prev_state->backoff_count -= c.count;  // claw it back.
            KALDI_ASSERT(prev_state->backoff_count > 0.0);
            prev_state->counts.insert(iter, c);
            num_restored_ngrams++;
          }
        }
      }
    }
  }

  { // remove from the map history states that we marked for deletion.
    std::unordered_set<std::vector<int32>, VectorHasher<int32> >::const_iterator
        iter = states_to_delete.begin(), end = states_to_delete.end();
    for (; iter != end; ++iter) {
      const std::vector<int32> &history = *iter;
      delete history_states_[o-1][history];
      history_states_[o-1].erase(history);
    }
  }
  size_t cur_num_states = history_states_[o-1].size();
  std::ostringstream message;
  message << "For n-gram order " << o << ", pruned from "
          << orig_num_states << " to " << cur_num_states << " states";
  if (num_restored_ngrams > 0) {
    message << ", and restored "  << num_restored_ngrams << " required n-grams.";
  }
  KALDI_LOG << message.str();
}


// Prunes a history-state; this version is for the bigram state
// whose left-context is the BOS symbol.
void SamplingLmEstimator::PruneHistoryStateBigram(
    const std::vector<int32> &history, HistoryState *state) {
  KALDI_ASSERT(history.size() == 1);
  BaseFloat total_count = state->total_count;
  bool is_bos_state = (history[0] == config_.bos_symbol);
  // e.g. factor = is_bos ? 5.0 : 50.0 by default, meaning we keep
  // more n-grams for the BOS state than for a typical bigram state;
  // this is because the BOS state tends to be seen non-independently
  // within the minibatch.
  BaseFloat factor = is_bos_state ? config_.bos_factor : config_.unigram_factor;
  KALDI_ASSERT(factor > 0.0);
  // 'factor' is the factor by which the probability given this
  // history state must be greater than the probability given the
  // unigram state.

  std::vector<Count>::iterator iter = state->counts.begin(),
      end = state->counts.end();
  double backoff_count = state->backoff_count;  // accumulate in double
  for (; iter != end; ++iter) {
    Count &count = *iter;
    BaseFloat unigram_prob = unigram_probs_[count.word],
        bigram_prob_no_backoff = count.count / total_count;
    // note: when computing bigram_prob_no_backoff when deciding which thing to
    // prune, we ignore the backoff term 'state->backoff_count * unigram_prob /
    // total_count'.  This prevents the need for iteration and keeps things
    // simple.
    if (bigram_prob_no_backoff <= unigram_prob * factor) {
      // Completely prune this count away.
      backoff_count += count.count;
      count.count = 0.0;
    }
  }
  state->backoff_count = backoff_count;
  RemoveZeroCounts(&(state->counts));
}


void SamplingLmEstimator::PruneHistoryStateAboveBigram(
      const std::vector<int32> &history,
      const std::vector<const HistoryState*> &backoff_states,
      HistoryState *state) {
  BaseFloat unigram_factor = config_.unigram_factor,
      backoff_factor = config_.backoff_factor;
  BaseFloat total_count = state->total_count;
  KALDI_ASSERT(unigram_factor > 0.0 && backoff_factor >  0.0 &&
               unigram_factor > backoff_factor);
  std::vector<Count>::iterator iter = state->counts.begin(),
      end = state->counts.end();
  double backoff_count = state->backoff_count;  // accumulate in double
  for (; iter != end; ++iter) {
    Count &count = *iter;
    BaseFloat current_prob_no_backoff = count.count / total_count,
        prob_given_backoff_state = GetProbForWord(count.word,
                                                  backoff_states),
        unigram_prob = unigram_probs_[count.word];
    if (!(current_prob_no_backoff > unigram_factor * unigram_prob &&
          current_prob_no_backoff > backoff_factor * prob_given_backoff_state)) {
      // Remove this word.  It's not probable enough to keep according to our
      // rules.
      backoff_count += count.count;
      count.count = 0.0;
    }
  }
  state->backoff_count = backoff_count;
  RemoveZeroCounts(&(state->counts));
}


BaseFloat SamplingLmEstimator::GetProbForWord(
    int32 word, const std::vector<const HistoryState*> &states) const {
  // compute the probability from lowest to highest order.
  KALDI_ASSERT(word > 0 && word < static_cast<int32>(unigram_probs_.size()));
  BaseFloat ans = unigram_probs_[word];
  for (size_t i = 0; i < states.size(); i++) {
    const HistoryState *state = states[i];
    ans *= state->backoff_count / state->total_count;
    Count c;
    c.word = word;
    // look up word in the state's counts.
    std::vector<Count>::const_iterator
        iter = std::lower_bound(state->counts.begin(),
                                state->counts.end(),
                                c);
    if (iter != state->counts.end() && iter->word == word) {
      // we found the word
      ans += iter->count / state->total_count;
    }
  }
  return ans;
}

bool SamplingLmEstimator::IsProtected(const std::vector<int32> &history,
                                       int32 word) const {
  // n-grams of the highest order can't be protected because there
  // would be no higher-order state.
  if (static_cast<int32>(history.size()) + 1 == config_.ngram_order)
    return false;
  std::vector<int32> new_history;
  new_history.reserve(history.size() + 1);
  new_history.insert(new_history.end(), history.begin(), history.end());
  new_history.push_back(word);
  return (history_states_[new_history.size()].count(new_history) != 0);
}

BaseFloat SamplingLmEstimator::BackoffProb(
    const std::vector<int32> &history, int32 word) const {
  // n-grams of the highest order won't have their own history state.
  if (static_cast<int32>(history.size()) + 1 == config_.ngram_order)
    return 0.0;
  std::vector<int32> new_history;
  new_history.reserve(history.size() + 1);
  new_history.insert(new_history.end(), history.begin(), history.end());
  new_history.push_back(word);

  unordered_map<std::vector<int32>, HistoryState*,
      VectorHasher<int32>>::const_iterator iter =
      history_states_[new_history.size()].find(new_history);
  if (iter != history_states_[new_history.size()].end()) {
    HistoryState *state = iter->second;
    return state->backoff_count / state->total_count;
  } else {
    return 0.0;
  }
}


// static
void SamplingLmEstimator::RemoveZeroCounts(
    std::vector<SamplingLmEstimator::Count> *counts) {
  std::vector<Count>::const_iterator input_iter = counts->begin(),
      end = counts->end();
  std::vector<Count>::iterator output_iter = counts->begin();
  // this while loop is an optimization to avoid copying where
  // source and destination are the same; it could be removed.
  while (input_iter != end && input_iter->count != 0.0) {
    ++input_iter;
    ++output_iter;
  }
  for (; input_iter != end; ++input_iter) {
    if (input_iter->count != 0.0) {
      *output_iter = *input_iter;
      ++output_iter;
    }
  }
  counts->resize(output_iter - counts->begin());
}


void SamplingLmEstimator::ComputeUnigramDistribution() {
  int32 vocab_size = config_.vocab_size;
  if (history_states_[0].size() != 1) {
    KALDI_ERR << "There are no counts (no data processed?)";
  }
  HistoryState *unigram_state = history_states_[0].begin()->second;
  KALDI_ASSERT(unigram_state->backoff_count == 0.0);

  double discounted_count = 0.0;
  { // this block works out 'unigram_state->backoff_count' which is the same as
    // 'discounted_count', and discounts the counts in 'unigram_state->counts'.
    BaseFloat D = config_.discounting_constant;
    std::vector<Count>::iterator iter = unigram_state->counts.begin(),
        end = unigram_state->counts.end();
    for(; iter != end; ++iter) {
      BaseFloat count_to_discount = D * iter->highest_count;
      iter->count -= count_to_discount;
      discounted_count += count_to_discount;
    }
    unigram_state->backoff_count = discounted_count;
  }

  BaseFloat total_count = unigram_state->total_count;
  // 'uniform_prob' is the probability that we add to each word in the vocabulary
  // even if it was not seen.  We divide discounted_count equally among all
  // words; the - 2 is to exclude <eps> and <s>, which are never predicted.
  BaseFloat uniform_prob = (discounted_count / total_count) / (vocab_size - 2);
  KALDI_ASSERT(total_count > 0.0 && uniform_prob > 0.0);
  unigram_probs_.clear();
  unigram_probs_.resize(vocab_size, uniform_prob);
  unigram_probs_[0] = 0.0;
  unigram_probs_[config_.bos_symbol] = 0.0;

  std::vector<Count>::iterator iter = unigram_state->counts.begin(),
      end = unigram_state->counts.end();
  for(; iter != end; ++iter) {
    BaseFloat this_prob = iter->count / total_count;
    // 'this_prob' is the non-smoothed part of the unigram probability.
    unigram_probs_[iter->word] += this_prob;
  }

  double sum = std::accumulate(unigram_probs_.begin(),
                               unigram_probs_.end(), 0.0);
  KALDI_ASSERT(fabs(sum - 1.0) < 0.01);
}

SamplingLmEstimator::~SamplingLmEstimator() {
  for (size_t i = 0; i < history_states_.size(); i++) {
    for (auto iter = history_states_[i].begin(), end = history_states_[i].end();
         iter != end; ++iter)
      delete iter->second;
  }
}


void SamplingLmEstimator::TakeUnigramCountsToPower(BaseFloat power) {
  if (power == 1.0) return;
  double sum = 0.0;
  for (std::vector<BaseFloat>::iterator iter = unigram_probs_.begin(),
           end = unigram_probs_.end(); iter != end; ++iter) {
    *iter = std::pow(*iter, power);
    sum += *iter;
  }
  BaseFloat scale = 1.0 / sum;
  for (std::vector<BaseFloat>::iterator iter = unigram_probs_.begin(),
           end = unigram_probs_.end(); iter != end; ++iter)
    *iter = *iter * scale;
}


int32 SamplingLmEstimator::NumNgrams(int32 o) const {
  KALDI_ASSERT(o >= 1 && o <= config_.ngram_order);
  if (o == 1) {
    // - 1 is for <eps>.  <s> does get printed in the ARPA file, with a
    // probability of -99.
    return config_.vocab_size - 1;
  } else {
    int32 ans = 0;
    unordered_map<std::vector<int32>, HistoryState*,
        VectorHasher<int32> >::const_iterator
        iter = history_states_[o-1].begin(),
        end =  history_states_[o-1].end();
    for (; iter != end; ++iter) {
      HistoryState *state = iter->second;
      ans += static_cast<int32>(state->counts.size());
    }
    return ans;
  }
}

void SamplingLmEstimator::PrintNgramsUnigram(
    std::ostream &os, const fst::SymbolTable &symbols) const {
  int32 vocab_size = config_.vocab_size,
      bos_symbol = config_.bos_symbol;
  std::vector<int32> unigram_history;
  for (int32 word = 1; word < vocab_size; word++) {
    std::string printed_word = symbols.Find(word);
    KALDI_ASSERT(!printed_word.empty() && "Mismatching symbol-table?");
    BaseFloat word_logprob = (word == bos_symbol ? -99.0 :
                              log10(unigram_probs_[word]));
    BaseFloat backoff_prob = BackoffProb(unigram_history, word);
    os << word_logprob << '\t' << printed_word;
    if (backoff_prob != 0.0)  os << '\t' << log10(backoff_prob) << '\n';
    else os << '\n';
  }
}


void SamplingLmEstimator::PrintNgramsAboveUnigram(
    std::ostream &os, int32 o, const fst::SymbolTable &symbols) {
  unordered_map<std::vector<int32>, HistoryState*,
      VectorHasher<int32> >::const_iterator
      hist_iter = history_states_[o-1].begin(),
      hist_end =  history_states_[o-1].end();
  for (; hist_iter != hist_end; ++hist_iter) {
    const std::vector<int32> &history = hist_iter->first;
    const HistoryState *state = hist_iter->second;

    // 'backoff_states' will list states that 'state' backs off to down to and
    // including bigram.  it's used when computing probabilities.  It will be
    // empty if o == 2.
    std::vector<const HistoryState*> backoff_states;
    { // this block sets up 'states'
      std::vector<int32> backoff_history(history);
      while (backoff_history.size() > 1) {
        backoff_history.erase(backoff_history.begin());
        const HistoryState *backoff_state = GetHistoryState(backoff_history,
                                                            false);
        backoff_states.push_back(backoff_state);
      }
    }

    std::string history_str;
    { // This block will set history_str to the sequence of history words for
      // this history state, separated by space; e.g. "on Tuesdays".
      std::ostringstream history_os;
      for (size_t i = 0; i < history.size(); i++) {
        std::string printed_word = symbols.Find(history[i]);
        KALDI_ASSERT(printed_word != "" && "mismatched symbol table?");
        history_os << printed_word;
        if (i + 1 < history.size()) history_os << ' ';
      }
      history_str = history_os.str();
    }
    std::vector<Count>::const_iterator count_iter = state->counts.begin(),
        count_end = state->counts.end();
    BaseFloat total_count = state->total_count,
        backoff_count = state->backoff_count;
    for (; count_iter != count_end; ++count_iter) {
      const Count &count = *count_iter;
      std::string printed_word = symbols.Find(count.word);
      KALDI_ASSERT(printed_word != "" && "mismatched symbol table?");
      BaseFloat word_prob =
          (count.count + backoff_count * GetProbForWord(count.word,
                                                        backoff_states)) /
          total_count,
          backoff_prob = BackoffProb(history, count.word);
      os << log10(word_prob) << '\t' << history_str << ' ' << printed_word;
      if (backoff_prob != 0.0)  os << '\t' << log10(backoff_prob) << '\n';
      else os << '\n';
    }
  }
}


void SamplingLmEstimator::PrintAsArpa(std::ostream &os,
                                      const fst::SymbolTable &symbols) {
  os << std::fixed << std::setprecision(3);  // print log-probs as -a.bcd
  os << "\\data\\\n";
  for (int32 o = 1; o <= config_.ngram_order; o++)
    os << "ngram " << o << "=" << NumNgrams(o) << "\n";

  for (int32 o = 1; o <= config_.ngram_order; o++) {
    os << '\n' << '\\' << o << "-grams:\n";
    if (o == 1) PrintNgramsUnigram(os, symbols);
    else PrintNgramsAboveUnigram(os, o, symbols);
  }
  os << "\n\\end\\\n";
}


}  // namespace rnnlm
}  // namespace kaldi