basis-fmllr-diag-gmm.cc
17 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
// transform/basis-fmllr-diag-gmm.cc
// Copyright 2012 Carnegie Mellon University (author: Yajie Miao)
// 2014 Johns Hopkins University (author: Daniel Povey)
// 2014 IMSL, PKU-HKUST (Author: Wei Shi)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <utility>
#include <vector>
using std::vector;
#include <string>
using std::string;
#include "transform/fmllr-diag-gmm.h"
#include "gmm/am-diag-gmm.h"
#include "gmm/mle-diag-gmm.h"
#include "gmm/mle-am-diag-gmm.h"
#include "transform/basis-fmllr-diag-gmm.h"
namespace kaldi {
/// This function takes the step direction (delta) of fMLLR matrix as argument,
/// and optimize step size using Newton's method. This is an iterative method,
/// where each iteration should not decrease the auxiliary function. Note that
/// the resulting step size \k should be close to 1. If \k <<1 or >>1, there
/// maybe problems with preconditioning or the speaker stats.
static BaseFloat CalBasisFmllrStepSize(
const AffineXformStats &spk_stats,
const Matrix<BaseFloat> &spk_stats_tmp_K,
const std::vector<SpMatrix<BaseFloat> > &spk_stats_tmp_G,
const Matrix<BaseFloat> &delta,
const Matrix<BaseFloat> &A,
const Matrix<BaseFloat> &S,
int32 max_iters);
void BasisFmllrAccus::Write(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<BASISFMLLRACCUS>");
WriteToken(os, binary, "<BETA>");
WriteBasicType(os, binary, beta_);
if (!binary) os << '\n';
if (grad_scatter_.NumCols() != 0) {
WriteToken(os, binary, "<GRADSCATTER>");
grad_scatter_.Write(os, binary);
}
WriteToken(os, binary, "</BASISFMLLRACCUS>");
}
void BasisFmllrAccus::Read(std::istream &is, bool binary,
bool add) {
ExpectToken(is, binary, "<BASISFMLLRACCUS>");
ExpectToken(is, binary, "<BETA>");
double tmp_beta = 0;
ReadBasicType(is, binary, &tmp_beta);
if (add) {
beta_ += tmp_beta;
} else {
beta_ = tmp_beta;
}
ExpectToken(is, binary, "<GRADSCATTER>");
grad_scatter_.Read(is, binary, add);
ExpectToken(is, binary, "</BASISFMLLRACCUS>");
}
void BasisFmllrAccus::ResizeAccus(int32 dim) {
if (dim <= 0) {
KALDI_ERR << "Invalid feature dimension " << dim; // dim=0 is not allowed
} else {
// 'kSetZero' may not be necessary, but makes computation safe
grad_scatter_.Resize((dim + 1) * dim, kSetZero);
}
}
void BasisFmllrAccus::AccuGradientScatter(
const AffineXformStats &spk_stats) {
// Gradient of auxf w.r.t. xform_spk
// Eq. (33)
Matrix<double> grad_mat(dim_, dim_ + 1);
grad_mat.SetUnit();
grad_mat.Scale(spk_stats.beta_);
grad_mat.AddMat(1.0, spk_stats.K_);
for (int d = 0; d < dim_; ++d) {
Matrix<double> G_d_mat(spk_stats.G_[d]);
grad_mat.Row(d).AddVec(-1.0, G_d_mat.Row(d));
}
// Row stack of gradient matrix
Vector<BaseFloat> grad_vec((dim_+1) * dim_);
grad_vec.CopyRowsFromMat(grad_mat);
// The amount of data beta_ is likely to be ZERO, especially
// when silence-weight is set to be 0 and we are using the
// per-utt mode.
if (spk_stats.beta_ > 0) {
beta_ += spk_stats.beta_;
grad_scatter_.AddVec2(BaseFloat(1.0 / spk_stats.beta_), grad_vec);
}
}
void BasisFmllrEstimate::Write(std::ostream &os, bool binary) const {
uint32 tmp_uint32;
WriteToken(os, binary, "<BASISFMLLRPARAM>");
WriteToken(os, binary, "<NUMBASIS>");
tmp_uint32 = static_cast<uint32>(basis_size_);
WriteBasicType(os, binary, tmp_uint32);
if (fmllr_basis_.size() != 0) {
WriteToken(os, binary, "<BASIS>");
for (int32 n = 0; n < basis_size_; ++n) {
fmllr_basis_[n].Write(os, binary);
}
}
WriteToken(os, binary, "</BASISFMLLRPARAM>");
}
void BasisFmllrEstimate::Read(std::istream &is, bool binary) {
uint32 tmp_uint32;
string token;
ExpectToken(is, binary, "<BASISFMLLRPARAM>");
ExpectToken(is, binary, "<NUMBASIS>");
ReadBasicType(is, binary, &tmp_uint32);
basis_size_ = static_cast<int32>(tmp_uint32);
KALDI_ASSERT(basis_size_ > 0);
ExpectToken(is, binary, "<BASIS>");
fmllr_basis_.resize(basis_size_);
for (int32 n = 0; n < basis_size_; ++n) {
fmllr_basis_[n].Read(is, binary);
if (n == 0)
dim_ = fmllr_basis_[n].NumRows();
else {
KALDI_ASSERT(dim_ == fmllr_basis_[n].NumRows());
}
}
ExpectToken(is, binary, "</BASISFMLLRPARAM>");
}
void BasisFmllrEstimate::ComputeAmDiagPrecond(const AmDiagGmm &am_gmm,
SpMatrix<double> *pre_cond) {
KALDI_ASSERT(am_gmm.Dim() == dim_);
if (pre_cond->NumRows() != (dim_ + 1) * dim_)
pre_cond->Resize((dim_ + 1) * dim_, kSetZero);
int32 num_pdf = am_gmm.NumPdfs();
Matrix<double> H_mat((dim_ + 1) * dim_, (dim_ + 1) * dim_);
// expected values of fMLLR G statistics
vector< SpMatrix<double> > G_hat(dim_);
for (int32 d = 0; d < dim_; ++d)
G_hat[d].Resize(dim_ + 1, kSetZero);
// extend mean vectors with 1 [mule_jm 1]
Vector<double> extend_mean(dim_ + 1);
// extend covariance matrix with a row and column of 0
Vector<double> extend_var(dim_ + 1);
for (int32 j = 0; j < num_pdf; ++j) {
const DiagGmm &diag_gmm = am_gmm.GetPdf(j);
int32 num_comp = diag_gmm.NumGauss();
// means, covariance and mixture weights for this diagonal GMM
Matrix<double> means(num_comp, dim_);
Matrix<double> vars(num_comp, dim_);
diag_gmm.GetMeans(&means); diag_gmm.GetVars(&vars);
Vector<BaseFloat> weights(diag_gmm.weights());
for (int32 m = 0; m < num_comp; ++m) {
extend_mean.Range(0, dim_).CopyFromVec(means.Row(m));
extend_mean(dim_) = 1.0;
extend_var.Range(0, dim_).CopyFromVec(vars.Row(m));
extend_var(dim_) = 0;
// loop over feature dimension
// Eq. (28): G_hat {d} = \sum_{j, m} P_{j}{m} Inv_Sigma{j, m, d}
// (mule_extend mule_extend^T + Sigma_extend)
// where P_{j}{m} = P_{j} c_{j}{m}
for (int32 d = 0; d < dim_; ++d) {
double alpha = (1.0 / num_pdf) * weights(m) * (1.0 / vars.Row(m)(d));
G_hat[d].AddVec2(alpha, extend_mean);
// add vector to the diagonal elements of the matrix
// not work for full covariance matrices
G_hat[d].AddDiagVec(alpha, extend_var);
} // loop over dimension
} // loop over Gaussians
} // loop over states
// fill H_ with G_hat[i]; build the block diagonal structure
// Eq. (31)
for (int32 d = 0; d < dim_; d++) {
H_mat.Range(d * (dim_ + 1), (dim_ + 1), d * (dim_ + 1), (dim_ + 1))
.CopyFromSp(G_hat[d]);
}
// add the extra H(1) elements
// Eq. (30) and Footnote 1 (0-based index)
for (int32 i = 0; i < dim_; ++i)
for (int32 j = 0; j < dim_; ++j)
H_mat(i * (dim_ + 1) + j, j * (dim_ + 1) + i) += 1;
// the final H should be symmetric
if (!H_mat.IsSymmetric())
KALDI_ERR << "Preconditioner matrix H = H(1) + H(2) is not symmetric";
pre_cond->CopyFromMat(H_mat, kTakeLower);
}
void BasisFmllrEstimate::EstimateFmllrBasis(
const AmDiagGmm &am_gmm,
const BasisFmllrAccus &basis_accus) {
// Compute the preconditioner
SpMatrix<double> precond_mat((dim_ + 1) * dim_);
ComputeAmDiagPrecond(am_gmm, &precond_mat);
// H = C C^T
TpMatrix<double> C((dim_+1) * dim_);
C.Cholesky(precond_mat);
TpMatrix<double> C_inv(C);
C_inv.InvertDouble();
// From TpMatrix to Matrix
Matrix<double> C_inv_full((dim_ + 1) * dim_, (dim_ + 1) * dim_);
C_inv_full.CopyFromTp(C_inv);
// Convert to the preconditioned coordinates
// Eq. (35) M_hat = C^{-1} grad_scatter C^{-T}
SpMatrix<double> M_hat((dim_ + 1) * dim_);
{
SpMatrix<double> grad_scatter_d(basis_accus.grad_scatter_);
M_hat.AddMat2Sp(1.0, C_inv_full, kNoTrans, grad_scatter_d, 0.0);
}
Vector<double> Lvec((dim_ + 1) * dim_);
Matrix<double> U((dim_ + 1) * dim_, (dim_ + 1) * dim_);
// SVD of M_hat; sort eigenvalues from greatest to smallest
M_hat.SymPosSemiDefEig(&Lvec, &U);
SortSvd(&Lvec, &U);
// After transpose, each row is one base
U.Transpose();
fmllr_basis_.resize(basis_size_);
for (int32 n = 0; n < basis_size_; ++n) {
fmllr_basis_[n].Resize(dim_, dim_ + 1, kSetZero);
Vector<double> basis_vec((dim_ + 1) * dim_);
// Convert eigenvectors back to unnormalized space
basis_vec.AddMatVec(1.0, C_inv_full, kTrans, U.Row(n), 0.0);
// Convert stacked vectors to matrix
fmllr_basis_[n].CopyRowsFromVec(basis_vec);
}
// Output the eigenvalues of the gradient scatter matrix
// The eigenvalues are divided by twice the number of frames
// in the training data, to get the per-frame values.
Vector<double> Lvec_scaled(Lvec);
Lvec_scaled.Scale(1.0 / (2 * basis_accus.beta_));
KALDI_LOG << "The [per-frame] eigenvalues sorted from largest to smallest: " << Lvec_scaled;
/// The sum of the [per-frame] eigenvalues is roughly equal to
/// the improvement of log-likelihood of the training data.
KALDI_LOG << "Sum of the [per-frame] eigenvalues, that is"
" the log-likelihood improvement, is " << Lvec_scaled.Sum();
}
double BasisFmllrEstimate::ComputeTransform(
const AffineXformStats &spk_stats,
Matrix<BaseFloat> *out_xform,
Vector<BaseFloat> *coefficient,
BasisFmllrOptions options) const {
if (coefficient == NULL) {
Vector<BaseFloat> tmp;
return ComputeTransform(spk_stats, out_xform, &tmp, options);
}
KALDI_ASSERT(dim_ == spk_stats.dim_);
if (spk_stats.beta_ < options.min_count) {
KALDI_WARN << "Not updating fMLLR since count is below min-count: "
<< spk_stats.beta_;
coefficient->Resize(0);
return 0.0;
} else {
if (out_xform->NumRows() != dim_ || out_xform->NumCols() != (dim_ +1)) {
out_xform->Resize(dim_, dim_ + 1, kSetZero);
}
// Initialized either as [I;0] or as the current transform
Matrix<BaseFloat> W_mat(dim_, dim_ + 1);
if (out_xform->IsZero()) {
W_mat.SetUnit();
} else {
W_mat.CopyFromMat(*out_xform);
}
// Create temporary K and G quantities. Add for efficiency,
// avoid repetitions of converting the stats from double
// precision to single precision
Matrix<BaseFloat> stats_tmp_K(spk_stats.K_);
std::vector<SpMatrix<BaseFloat> > stats_tmp_G(dim_);
for (int32 d = 0; d < dim_; d++)
stats_tmp_G[d] = SpMatrix<BaseFloat>(spk_stats.G_[d]);
// Number of bases for this speaker, according to the available
// adaptation data
int32 basis_size = int32 (std::min( double(basis_size_),
options.size_scale * spk_stats.beta_));
coefficient->Resize(basis_size, kSetZero);
BaseFloat impr_spk = 0;
for (int32 iter = 1; iter <= options.num_iters; ++iter) {
// Auxf computation based on FmllrAuxFuncDiagGmm from fmllr-diag-gmm.cc
BaseFloat start_obj = FmllrAuxFuncDiagGmm(W_mat, spk_stats);
// Contribution of quadratic terms to derivative
// Eq. (37) s_{d} = G_{d} w_{d}
Matrix<BaseFloat> S(dim_, dim_ + 1);
for (int32 d = 0; d < dim_; ++d)
S.Row(d).AddSpVec(1.0, stats_tmp_G[d], W_mat.Row(d), 0.0);
// W_mat = [A; b]
Matrix<BaseFloat> A(dim_, dim_);
A.CopyFromMat(W_mat.Range(0, dim_, 0, dim_));
Matrix<BaseFloat> A_inv(A);
A_inv.InvertDouble();
Matrix<BaseFloat> A_inv_trans(A_inv);
A_inv_trans.Transpose();
// Compute gradient of auxf w.r.t. W_mat
// Eq. (38) P = beta [A^{-T}; 0] + K - S
Matrix<BaseFloat> P(dim_, dim_ + 1);
P.SetZero();
P.Range(0, dim_, 0, dim_).CopyFromMat(A_inv_trans);
P.Scale(spk_stats.beta_);
P.AddMat(1.0, stats_tmp_K);
P.AddMat(-1.0, S);
// Compute directional gradient restricted by bases. Here we only use
// the simple gradient method, rather than conjugate gradient. Finding
// the optimal transformation W_mat is equivalent to optimizing weights
// d_{1,2,...,N}.
// Eq. (39) delta(W) = \sum_n tr(\fmllr_basis_{n}^T \P) \fmllr_basis_{n}
// delta(d_{n}) = tr(\fmllr_basis_{n}^T \P)
Matrix<BaseFloat> delta_W(dim_, dim_ + 1);
Vector<BaseFloat> delta_d(basis_size);
for (int32 n = 0; n < basis_size; ++n) {
delta_d(n) = TraceMatMat(fmllr_basis_[n], P, kTrans);
delta_W.AddMat(delta_d(n), fmllr_basis_[n]);
}
BaseFloat step_size = CalBasisFmllrStepSize(spk_stats, stats_tmp_K,
stats_tmp_G, delta_W, A, S, options.step_size_iters);
W_mat.AddMat(step_size, delta_W, kNoTrans);
coefficient->AddVec(step_size, delta_d);
// Check auxiliary function
BaseFloat end_obj = FmllrAuxFuncDiagGmm(W_mat, spk_stats);
KALDI_VLOG(4) << "Objective function (iter=" << iter << "): "
<< start_obj / spk_stats.beta_ << " -> "
<< (end_obj / spk_stats.beta_) << " over "
<< spk_stats.beta_ << " frames";
impr_spk += (end_obj - start_obj);
} // loop over iters
out_xform->CopyFromMat(W_mat, kNoTrans);
return impr_spk;
}
}
// static
BaseFloat CalBasisFmllrStepSize(const AffineXformStats &spk_stats,
const Matrix<BaseFloat> &spk_stats_tmp_K,
const std::vector<SpMatrix<BaseFloat> > &spk_stats_tmp_G,
const Matrix<BaseFloat> &delta,
const Matrix<BaseFloat> &A,
const Matrix<BaseFloat> &S,
int32 max_iters) {
int32 dim = spk_stats.dim_;
KALDI_ASSERT(dim == delta.NumRows() && dim == S.NumRows());
// The first D columns of delta_W
SubMatrix<BaseFloat> delta_Dim(delta, 0, dim, 0, dim);
// Eq. (46): b = tr(delta K^T) - tr(delta S^T)
BaseFloat b = TraceMatMat(delta, spk_stats_tmp_K, kTrans)
- TraceMatMat(delta, S, kTrans);
// Eq. (47): c = sum_d tr(delta_{d} G_{d} delta_{d})
BaseFloat c = 0;
Vector<BaseFloat> G_row_delta(dim + 1);
for (int32 d = 0; d < dim; ++d) {
G_row_delta.AddSpVec(1.0, spk_stats_tmp_G[d], delta.Row(d), 0.0);
c += VecVec(G_row_delta, delta.Row(d));
}
// Sometimes, the change of step size, d1/d2, may get tiny
// Due to numerical precision, we compute everything in double
BaseFloat step_size = 0.0;
BaseFloat obj_old, obj_new = 0.0;
Matrix<BaseFloat> N(dim, dim);
for (int32 iter_step = 1; iter_step <= max_iters; ++iter_step) {
if (iter_step == 1) {
// k = 0, auxf = beta logdet(A)
obj_old = spk_stats.beta_ * A.LogDet();
} else {
obj_old = obj_new;
}
// Eq. (49): N = (A + k * delta_Dim)^{-1} delta_Dim
// In case of bad condition, careful preconditioning should be done. Maybe safer
// to use SolveQuadraticMatrixProblem. Future work for Yajie.
Matrix<BaseFloat> tmp_A(A);
tmp_A.AddMat(step_size, delta_Dim, kNoTrans);
tmp_A.InvertDouble();
N.AddMatMat(1.0, tmp_A, kNoTrans, delta_Dim, kNoTrans, 0.0);
// first-order derivative w.r.t. k
// Eq. (50): d1 = beta * trace(N) + b - k * c
BaseFloat d1 = spk_stats.beta_ * TraceMat(N) + b - step_size * c;
// second-order derivative w.r.t. k
// Eq. (51): d2 = -beta * tr(N N) - c
BaseFloat d2 = -c - spk_stats.beta_ * TraceMatMat(N, N, kNoTrans);
d2 = std::min((double)d2, -c / 10.0);
// convergence judgment from fmllr-sgmm.cc
// it seems to work well, though not sure whether 1e-06 is appropriate
// note from Dan: commenting this out after someone complained it was
// causing a test to behave weirdly. This doesn't dominate computation
// anyway, I don't think.
// if (std::fabs(d1 / d2) < 0.000001) { break; }
// Eq. (52): update step_size
BaseFloat step_size_change = -(d1 / d2);
step_size += step_size_change;
// Repeatedly check auxiliary function; halve step size change if auxf decreases.
// According to the paper, we should limit the number of repetitions. The
// following implementation seems to work well. But the termination condition/judgment
// should be optimized later.
do {
// Eq. (48): auxf = beta * logdet(A + k * delta_Dim) + kb - 0.5 * k * k * c
tmp_A.CopyFromMat(A);
tmp_A.AddMat(step_size, delta_Dim, kNoTrans);
obj_new = spk_stats.beta_ * tmp_A.LogDet() + step_size * b -
0.5 * step_size * step_size * c;
if (obj_new - obj_old < -1.0e-04 * spk_stats.beta_) { // deal with numerical issues
KALDI_WARN << "Objective function decreased (" << obj_old << "->"
<< obj_new << "). Halving step size change ( step size "
<< step_size << " -> " << (step_size - (step_size_change/2))
<< ")";
step_size_change /= 2;
step_size -= step_size_change;
}
} while (obj_new - obj_old < -1.0e-04 * spk_stats.beta_ && step_size_change > 1e-05);
}
return step_size;
}
} // namespace kaldi