basis-fmllr-diag-gmm.cc 17 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
// transform/basis-fmllr-diag-gmm.cc

// Copyright 2012  Carnegie Mellon University (author: Yajie Miao)
//           2014  Johns Hopkins University (author: Daniel Povey)
//           2014  IMSL, PKU-HKUST (Author: Wei Shi)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <utility>
#include <vector>
using std::vector;
#include <string>
using std::string;

#include "transform/fmllr-diag-gmm.h"
#include "gmm/am-diag-gmm.h"
#include "gmm/mle-diag-gmm.h"
#include "gmm/mle-am-diag-gmm.h"
#include "transform/basis-fmllr-diag-gmm.h"

namespace kaldi {


/// This function takes the step direction (delta) of fMLLR matrix as argument,
/// and optimize step size using Newton's method. This is an iterative method,
/// where each iteration should not decrease the auxiliary function. Note that
/// the resulting step size \k should be close to 1. If \k <<1 or >>1, there
/// maybe problems with preconditioning or the speaker stats.
static BaseFloat CalBasisFmllrStepSize(
    const AffineXformStats &spk_stats,
    const Matrix<BaseFloat> &spk_stats_tmp_K,
    const std::vector<SpMatrix<BaseFloat> > &spk_stats_tmp_G,
    const Matrix<BaseFloat> &delta,
    const Matrix<BaseFloat> &A,
    const Matrix<BaseFloat> &S,
    int32 max_iters);


void BasisFmllrAccus::Write(std::ostream &os, bool binary) const {

  WriteToken(os, binary, "<BASISFMLLRACCUS>");
  WriteToken(os, binary, "<BETA>");
  WriteBasicType(os, binary, beta_);
  if (!binary) os << '\n';
  if (grad_scatter_.NumCols() != 0) {
    WriteToken(os, binary, "<GRADSCATTER>");
    grad_scatter_.Write(os, binary);
  }
  WriteToken(os, binary, "</BASISFMLLRACCUS>");
}

void BasisFmllrAccus::Read(std::istream &is, bool binary,
                           bool add) {
  ExpectToken(is, binary, "<BASISFMLLRACCUS>");
  ExpectToken(is, binary, "<BETA>");
  double tmp_beta = 0;
  ReadBasicType(is, binary, &tmp_beta);
  if (add) {
    beta_ += tmp_beta;
  } else {
    beta_ = tmp_beta;
  }
  ExpectToken(is, binary, "<GRADSCATTER>");
  grad_scatter_.Read(is, binary, add);
  ExpectToken(is, binary, "</BASISFMLLRACCUS>");
}

void BasisFmllrAccus::ResizeAccus(int32 dim) {
  if (dim <= 0) {
    KALDI_ERR << "Invalid feature dimension " << dim; // dim=0 is not allowed
  } else {
    // 'kSetZero' may not be necessary, but makes computation safe
    grad_scatter_.Resize((dim + 1) * dim, kSetZero);
  }
}

void BasisFmllrAccus::AccuGradientScatter(
                      const AffineXformStats &spk_stats) {

  // Gradient of auxf w.r.t. xform_spk
  // Eq. (33)
  Matrix<double> grad_mat(dim_, dim_ + 1);
  grad_mat.SetUnit();
  grad_mat.Scale(spk_stats.beta_);
  grad_mat.AddMat(1.0, spk_stats.K_);
  for (int d = 0; d < dim_; ++d) {
      Matrix<double> G_d_mat(spk_stats.G_[d]);
       grad_mat.Row(d).AddVec(-1.0, G_d_mat.Row(d));
  }
  // Row stack of gradient matrix
  Vector<BaseFloat> grad_vec((dim_+1) * dim_);
  grad_vec.CopyRowsFromMat(grad_mat);
  // The amount of data beta_ is likely to be ZERO, especially
  // when silence-weight is set to be 0 and we are using the
  // per-utt mode.
  if (spk_stats.beta_ > 0) {
    beta_ += spk_stats.beta_;
    grad_scatter_.AddVec2(BaseFloat(1.0 / spk_stats.beta_), grad_vec);
  }
}

void BasisFmllrEstimate::Write(std::ostream &os, bool binary) const {
  uint32 tmp_uint32;

  WriteToken(os, binary, "<BASISFMLLRPARAM>");

  WriteToken(os, binary, "<NUMBASIS>");
  tmp_uint32 = static_cast<uint32>(basis_size_);
  WriteBasicType(os, binary, tmp_uint32);
  if (fmllr_basis_.size() != 0) {
    WriteToken(os, binary, "<BASIS>");
    for (int32 n = 0; n < basis_size_; ++n) {
      fmllr_basis_[n].Write(os, binary);
    }
  }
  WriteToken(os, binary, "</BASISFMLLRPARAM>");
}

void BasisFmllrEstimate::Read(std::istream &is, bool binary) {
  uint32 tmp_uint32;
  string token;

  ExpectToken(is, binary, "<BASISFMLLRPARAM>");

  ExpectToken(is, binary, "<NUMBASIS>");
  ReadBasicType(is, binary, &tmp_uint32);
  basis_size_ = static_cast<int32>(tmp_uint32);
  KALDI_ASSERT(basis_size_ > 0);
  ExpectToken(is, binary, "<BASIS>");
  fmllr_basis_.resize(basis_size_);
  for (int32 n = 0; n < basis_size_; ++n) {
    fmllr_basis_[n].Read(is, binary);
    if (n == 0)
      dim_ = fmllr_basis_[n].NumRows();
    else {
      KALDI_ASSERT(dim_ == fmllr_basis_[n].NumRows());
    }
  }
  ExpectToken(is, binary, "</BASISFMLLRPARAM>");
}

void BasisFmllrEstimate::ComputeAmDiagPrecond(const AmDiagGmm &am_gmm,
                                              SpMatrix<double> *pre_cond) {
  KALDI_ASSERT(am_gmm.Dim() == dim_);
  if (pre_cond->NumRows() != (dim_ + 1) * dim_)
    pre_cond->Resize((dim_ + 1) * dim_, kSetZero);

  int32 num_pdf = am_gmm.NumPdfs();
  Matrix<double> H_mat((dim_ + 1) * dim_, (dim_ + 1) * dim_);
  // expected values of fMLLR G statistics
  vector< SpMatrix<double> > G_hat(dim_);
  for (int32 d = 0; d < dim_; ++d)
       G_hat[d].Resize(dim_ + 1, kSetZero);

  // extend mean vectors with 1  [mule_jm 1]
  Vector<double> extend_mean(dim_ + 1);
  // extend covariance matrix with a row and column of 0
  Vector<double> extend_var(dim_ + 1);
  for (int32 j = 0; j < num_pdf; ++j) {
    const DiagGmm &diag_gmm = am_gmm.GetPdf(j);
    int32 num_comp = diag_gmm.NumGauss();
    // means, covariance and mixture weights for this diagonal GMM
    Matrix<double> means(num_comp, dim_);
    Matrix<double> vars(num_comp, dim_);
    diag_gmm.GetMeans(&means); diag_gmm.GetVars(&vars);
    Vector<BaseFloat> weights(diag_gmm.weights());

    for (int32 m = 0; m < num_comp; ++m) {
      extend_mean.Range(0, dim_).CopyFromVec(means.Row(m));
      extend_mean(dim_) = 1.0;
      extend_var.Range(0, dim_).CopyFromVec(vars.Row(m));
      extend_var(dim_) = 0;
      // loop over feature dimension
      // Eq. (28): G_hat {d} = \sum_{j, m} P_{j}{m} Inv_Sigma{j, m, d}
      // (mule_extend mule_extend^T + Sigma_extend)
      // where P_{j}{m} = P_{j} c_{j}{m}
      for (int32 d = 0; d < dim_; ++d) {
        double alpha = (1.0 / num_pdf) * weights(m) * (1.0 / vars.Row(m)(d));
        G_hat[d].AddVec2(alpha, extend_mean);
        // add vector to the diagonal elements of the matrix
        // not work for full covariance matrices
        G_hat[d].AddDiagVec(alpha, extend_var);
      } // loop over dimension
    } //  loop over Gaussians
  }  // loop over states

  // fill H_ with G_hat[i]; build the block diagonal structure
  // Eq. (31)
  for (int32 d = 0; d < dim_; d++) {
    H_mat.Range(d * (dim_ + 1), (dim_ + 1), d * (dim_ + 1), (dim_ + 1))
              .CopyFromSp(G_hat[d]);
  }

  // add the extra H(1) elements
  // Eq. (30) and Footnote 1 (0-based index)
  for (int32 i = 0; i < dim_; ++i)
    for (int32 j = 0; j < dim_; ++j)
      H_mat(i * (dim_ + 1) + j, j * (dim_ + 1) + i) += 1;
  // the final H should be symmetric
  if (!H_mat.IsSymmetric())
    KALDI_ERR << "Preconditioner matrix H = H(1) + H(2) is not symmetric";
  pre_cond->CopyFromMat(H_mat, kTakeLower);
}

void BasisFmllrEstimate::EstimateFmllrBasis(
                              const AmDiagGmm &am_gmm,
                              const BasisFmllrAccus &basis_accus) {
  // Compute the preconditioner
  SpMatrix<double> precond_mat((dim_ + 1) * dim_);
  ComputeAmDiagPrecond(am_gmm, &precond_mat);
  // H = C C^T
  TpMatrix<double> C((dim_+1) * dim_);
  C.Cholesky(precond_mat);
  TpMatrix<double> C_inv(C);
  C_inv.InvertDouble();
  // From TpMatrix to Matrix
  Matrix<double> C_inv_full((dim_ + 1) * dim_, (dim_ + 1) * dim_);
  C_inv_full.CopyFromTp(C_inv);

  // Convert to the preconditioned coordinates
  // Eq. (35)  M_hat = C^{-1} grad_scatter C^{-T}
  SpMatrix<double> M_hat((dim_ + 1) * dim_);
  {
    SpMatrix<double> grad_scatter_d(basis_accus.grad_scatter_);
    M_hat.AddMat2Sp(1.0, C_inv_full, kNoTrans, grad_scatter_d, 0.0);
  }
  Vector<double> Lvec((dim_ + 1) * dim_);
  Matrix<double> U((dim_ + 1) * dim_, (dim_ + 1) * dim_);
  // SVD of M_hat; sort eigenvalues from greatest to smallest
  M_hat.SymPosSemiDefEig(&Lvec, &U);
  SortSvd(&Lvec, &U);
  // After transpose, each row is one base
  U.Transpose();

  fmllr_basis_.resize(basis_size_);
  for (int32 n = 0; n < basis_size_; ++n) {
    fmllr_basis_[n].Resize(dim_, dim_ + 1, kSetZero);
    Vector<double> basis_vec((dim_ + 1) * dim_);
    // Convert eigenvectors back to unnormalized space
    basis_vec.AddMatVec(1.0, C_inv_full, kTrans, U.Row(n), 0.0);
    // Convert stacked vectors to matrix
    fmllr_basis_[n].CopyRowsFromVec(basis_vec);
  }
  // Output the eigenvalues of the gradient scatter matrix
  // The eigenvalues are divided by twice the number of frames
  // in the training data, to get the per-frame values.
  Vector<double> Lvec_scaled(Lvec);
  Lvec_scaled.Scale(1.0 / (2 * basis_accus.beta_));
  KALDI_LOG << "The [per-frame] eigenvalues sorted from largest to smallest: " << Lvec_scaled;
  /// The sum of the [per-frame] eigenvalues is roughly equal to
  /// the improvement of log-likelihood of the training data.
  KALDI_LOG << "Sum of the [per-frame] eigenvalues, that is"
          " the log-likelihood improvement, is " << Lvec_scaled.Sum();
}

double BasisFmllrEstimate::ComputeTransform(
    const AffineXformStats &spk_stats,
    Matrix<BaseFloat> *out_xform,
    Vector<BaseFloat> *coefficient,
    BasisFmllrOptions options) const {
  if (coefficient == NULL) {
    Vector<BaseFloat> tmp;
    return ComputeTransform(spk_stats, out_xform, &tmp, options);
  }
  KALDI_ASSERT(dim_ == spk_stats.dim_);
  if (spk_stats.beta_ < options.min_count) {
    KALDI_WARN << "Not updating fMLLR since count is below min-count: "
               << spk_stats.beta_;
    coefficient->Resize(0);
    return 0.0;
  } else {
    if (out_xform->NumRows() != dim_ || out_xform->NumCols() != (dim_ +1)) {
      out_xform->Resize(dim_, dim_ + 1, kSetZero);
    }
    // Initialized either as [I;0] or as the current transform
    Matrix<BaseFloat> W_mat(dim_, dim_ + 1);
    if (out_xform->IsZero()) {
      W_mat.SetUnit();
    } else {
      W_mat.CopyFromMat(*out_xform);
    }

    // Create temporary K and G quantities. Add for efficiency,
    // avoid repetitions of converting the stats from double
    // precision to single precision
    Matrix<BaseFloat> stats_tmp_K(spk_stats.K_);
    std::vector<SpMatrix<BaseFloat> > stats_tmp_G(dim_);
    for (int32 d = 0; d < dim_; d++)
      stats_tmp_G[d] = SpMatrix<BaseFloat>(spk_stats.G_[d]);

    // Number of bases for this speaker, according to the available
    // adaptation data
    int32 basis_size = int32 (std::min( double(basis_size_),
                               options.size_scale * spk_stats.beta_));

    coefficient->Resize(basis_size, kSetZero);

    BaseFloat impr_spk = 0;
    for (int32 iter = 1; iter <= options.num_iters; ++iter) {
      // Auxf computation based on FmllrAuxFuncDiagGmm from fmllr-diag-gmm.cc
      BaseFloat start_obj = FmllrAuxFuncDiagGmm(W_mat, spk_stats);

      // Contribution of quadratic terms to derivative
      // Eq. (37)  s_{d} = G_{d} w_{d}
      Matrix<BaseFloat> S(dim_, dim_ + 1);
      for (int32 d = 0; d < dim_; ++d)
        S.Row(d).AddSpVec(1.0, stats_tmp_G[d], W_mat.Row(d), 0.0);


      // W_mat = [A; b]
      Matrix<BaseFloat> A(dim_, dim_);
      A.CopyFromMat(W_mat.Range(0, dim_, 0, dim_));
      Matrix<BaseFloat> A_inv(A);
      A_inv.InvertDouble();
      Matrix<BaseFloat> A_inv_trans(A_inv);
      A_inv_trans.Transpose();
      // Compute gradient of auxf w.r.t. W_mat
      // Eq. (38)  P = beta [A^{-T}; 0] + K - S
      Matrix<BaseFloat> P(dim_, dim_ + 1);
      P.SetZero();
      P.Range(0, dim_, 0, dim_).CopyFromMat(A_inv_trans);
      P.Scale(spk_stats.beta_);
      P.AddMat(1.0, stats_tmp_K);
      P.AddMat(-1.0, S);

      // Compute directional gradient restricted by bases. Here we only use
      // the simple gradient method, rather than conjugate gradient. Finding
      // the optimal transformation W_mat is equivalent to optimizing weights
      // d_{1,2,...,N}.
      // Eq. (39)  delta(W) = \sum_n tr(\fmllr_basis_{n}^T \P) \fmllr_basis_{n}
      // delta(d_{n}) = tr(\fmllr_basis_{n}^T \P)
      Matrix<BaseFloat> delta_W(dim_, dim_ + 1);
      Vector<BaseFloat> delta_d(basis_size);
      for (int32 n = 0; n < basis_size; ++n) {
        delta_d(n) = TraceMatMat(fmllr_basis_[n], P, kTrans);
        delta_W.AddMat(delta_d(n), fmllr_basis_[n]);
      }

      BaseFloat step_size = CalBasisFmllrStepSize(spk_stats, stats_tmp_K,
        stats_tmp_G, delta_W, A, S, options.step_size_iters);
      W_mat.AddMat(step_size, delta_W, kNoTrans);
      coefficient->AddVec(step_size, delta_d);
      // Check auxiliary function
      BaseFloat end_obj = FmllrAuxFuncDiagGmm(W_mat, spk_stats);

      KALDI_VLOG(4) << "Objective function (iter=" << iter << "): "
                    << start_obj / spk_stats.beta_  << " -> "
                    << (end_obj / spk_stats.beta_) << " over "
                    << spk_stats.beta_ << " frames";

      impr_spk += (end_obj - start_obj);
    }  // loop over iters

    out_xform->CopyFromMat(W_mat, kNoTrans);
    return impr_spk;
  }
}

// static
BaseFloat CalBasisFmllrStepSize(const AffineXformStats &spk_stats,
  const Matrix<BaseFloat> &spk_stats_tmp_K,
  const std::vector<SpMatrix<BaseFloat> > &spk_stats_tmp_G,
  const Matrix<BaseFloat> &delta,
  const Matrix<BaseFloat> &A,
  const Matrix<BaseFloat> &S,
  int32 max_iters) {

  int32 dim = spk_stats.dim_;
  KALDI_ASSERT(dim == delta.NumRows() && dim == S.NumRows());
  // The first D columns of delta_W
  SubMatrix<BaseFloat> delta_Dim(delta, 0, dim, 0, dim);
  // Eq. (46): b = tr(delta K^T) - tr(delta S^T)
  BaseFloat b = TraceMatMat(delta, spk_stats_tmp_K, kTrans)
                 - TraceMatMat(delta, S, kTrans);
  // Eq. (47): c = sum_d tr(delta_{d} G_{d} delta_{d})
  BaseFloat c = 0;
  Vector<BaseFloat> G_row_delta(dim + 1);
  for (int32 d = 0; d < dim; ++d) {
    G_row_delta.AddSpVec(1.0, spk_stats_tmp_G[d], delta.Row(d), 0.0);
    c += VecVec(G_row_delta, delta.Row(d));
  }

  // Sometimes, the change of step size, d1/d2, may get tiny
  // Due to numerical precision, we compute everything in double
  BaseFloat step_size = 0.0;
  BaseFloat obj_old, obj_new = 0.0;
  Matrix<BaseFloat> N(dim, dim);
  for (int32 iter_step = 1; iter_step <= max_iters; ++iter_step) {
    if (iter_step == 1) {
      // k = 0, auxf = beta logdet(A)
      obj_old = spk_stats.beta_ * A.LogDet();
    } else {
      obj_old = obj_new;
    }

    // Eq. (49): N = (A + k * delta_Dim)^{-1} delta_Dim
    // In case of bad condition, careful preconditioning should be done. Maybe safer
    // to use SolveQuadraticMatrixProblem. Future work for Yajie.
    Matrix<BaseFloat> tmp_A(A);
    tmp_A.AddMat(step_size, delta_Dim, kNoTrans);
    tmp_A.InvertDouble();
    N.AddMatMat(1.0, tmp_A, kNoTrans, delta_Dim, kNoTrans, 0.0);
    // first-order derivative w.r.t. k
    // Eq. (50): d1 = beta * trace(N) + b - k * c
    BaseFloat d1 = spk_stats.beta_ * TraceMat(N) + b - step_size * c;
    // second-order derivative w.r.t. k
    // Eq. (51): d2 = -beta * tr(N N) - c
    BaseFloat d2 = -c - spk_stats.beta_ * TraceMatMat(N, N, kNoTrans);
    d2 = std::min((double)d2, -c / 10.0);
    // convergence judgment from fmllr-sgmm.cc
    // it seems to work well, though not sure whether 1e-06 is appropriate
    // note from Dan: commenting this out after someone complained it was
    // causing a test to behave weirdly.  This doesn't dominate computation
    // anyway, I don't think.
    // if (std::fabs(d1 / d2) < 0.000001) { break; }

    // Eq. (52): update step_size
    BaseFloat step_size_change = -(d1 / d2);
    step_size += step_size_change;

    // Repeatedly check auxiliary function; halve step size change if auxf decreases.
    // According to the paper, we should limit the number of repetitions. The
    // following implementation seems to work well. But the termination condition/judgment
    // should be optimized later.
    do {
      // Eq. (48): auxf = beta * logdet(A + k * delta_Dim) + kb - 0.5 * k * k * c
      tmp_A.CopyFromMat(A);
      tmp_A.AddMat(step_size, delta_Dim, kNoTrans);
      obj_new = spk_stats.beta_ * tmp_A.LogDet() + step_size * b -
          0.5 * step_size * step_size * c;

      if (obj_new - obj_old < -1.0e-04 * spk_stats.beta_) {  // deal with numerical issues
        KALDI_WARN << "Objective function decreased (" << obj_old << "->"
                   << obj_new << "). Halving step size change ( step size "
                   << step_size << " -> " << (step_size - (step_size_change/2))
                   << ")";
        step_size_change /= 2;
        step_size -= step_size_change;
      }
    } while (obj_new - obj_old < -1.0e-04 * spk_stats.beta_ && step_size_change > 1e-05);
  }
  return step_size;
}

} // namespace kaldi