test_device_seg_reduce.cu 93.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/******************************************************************************
 * An implementation of segmented reduction using a load-balanced parallelization
 * strategy based on the MergePath decision path.
 ******************************************************************************/

// Ensure printing of CUDA runtime errors to console
#define CUB_STDERR

#include <iterator>
#include <vector>
#include <string>
#include <algorithm>
#include <stdio.h>

#include <cub/cub.cuh>

#include "test_util.h"

using namespace cub;
using namespace std;


/******************************************************************************
 * Globals, constants, and typedefs
 ******************************************************************************/

bool                    g_verbose           = false;
int                     g_timing_iterations = 1;
CachingDeviceAllocator  g_allocator(true);


/******************************************************************************
 * Utility routines
 ******************************************************************************/


/**
 * An pair of index offsets
 */
template <typename OffsetT>
struct IndexPair
{
    OffsetT a_idx;
    OffsetT b_idx;
};


/**
 * Computes the begin offsets into A and B for the specified
 * location (diagonal) along the merge decision path
 */
template <
    int                 BLOCK_THREADS,
    typename            IteratorA,
    typename            IteratorB,
    typename            OffsetT>
__device__ __forceinline__ void ParallelMergePathSearch(
    OffsetT             diagonal,
    IteratorA           a,
    IteratorB           b,
    IndexPair<OffsetT>  begin,          // Begin offsets into a and b
    IndexPair<OffsetT>  end,            // End offsets into a and b
    IndexPair<OffsetT>  &intersection)  // [out] Intersection offsets into a and b
{
    OffsetT a_split_min = CUB_MAX(diagonal - end.b_idx, begin.a_idx);
    OffsetT a_split_max = CUB_MIN(diagonal, end.a_idx);

    while (a_split_min < a_split_max)
    {
        OffsetT a_distance       = a_split_max - a_split_min;
        OffsetT a_slice          = (a_distance + BLOCK_THREADS - 1) >> Log2<BLOCK_THREADS>::VALUE;
        OffsetT a_split_pivot    = CUB_MIN(a_split_min + (threadIdx.x * a_slice), end.a_idx - 1);

        int move_up = (a[a_split_pivot] <= b[diagonal - a_split_pivot - 1]);
        int num_up = __syncthreads_count(move_up);
/*
        _CubLog("a_split_min(%d), a_split_max(%d) a_distance(%d), a_slice(%d), a_split_pivot(%d), move_up(%d), num_up(%d), a_begin(%d), a_end(%d)\n",
            a_split_min, a_split_max, a_distance, a_slice, a_split_pivot, move_up, num_up, a_begin, a_end);
*/
        a_split_max = CUB_MIN(num_up * a_slice, end.a_idx);
        a_split_min = CUB_MAX(a_split_max - a_slice, begin.a_idx) + 1;
    }

    intersection.a_idx = CUB_MIN(a_split_min, end.a_idx);
    intersection.b_idx = CUB_MIN(diagonal - a_split_min, end.b_idx);
}

/**
 * Computes the begin offsets into A and B for the specified
 * location (diagonal) along the merge decision path
 */
template <
    typename            IteratorA,
    typename            IteratorB,
    typename            OffsetT>
__device__ __forceinline__ void MergePathSearch(
    OffsetT             diagonal,
    IteratorA           a,
    IteratorB           b,
    IndexPair<OffsetT>  begin,          // Begin offsets into a and b
    IndexPair<OffsetT>  end,            // End offsets into a and b
    IndexPair<OffsetT>  &intersection)  // [out] Intersection offsets into a and b
{
    OffsetT split_min = CUB_MAX(diagonal - end.b_idx, begin.a_idx);
    OffsetT split_max = CUB_MIN(diagonal, end.a_idx);

    while (split_min < split_max)
    {
        OffsetT split_pivot = (split_min + split_max) >> 1;
        if (a[split_pivot] <= b[diagonal - split_pivot - 1])
        {
            // Move candidate split range up A, down B
            split_min = split_pivot + 1;
        }
        else
        {
            // Move candidate split range up B, down A
            split_max = split_pivot;
        }
    }

    intersection.a_idx = CUB_MIN(split_min, end.a_idx);
    intersection.b_idx = CUB_MIN(diagonal - split_min, end.b_idx);
}


/******************************************************************************
 * Tuning policy types
 ******************************************************************************/

/**
 * Parameterizable tuning policy type for BlockSegReduceRegion
 */
template <
    int                     _BLOCK_THREADS,             ///< Threads per thread block
    int                     _ITEMS_PER_THREAD,          ///< Items per thread (per tile of input)
    bool                    _USE_SMEM_SEGMENT_CACHE,    ///< Whether or not to cache incoming segment offsets in shared memory before reducing each tile
    bool                    _USE_SMEM_VALUE_CACHE,      ///< Whether or not to cache incoming values in shared memory before reducing each tile
    CacheLoadModifier       _LOAD_MODIFIER_SEGMENTS,    ///< Cache load modifier for reading segment offsets
    CacheLoadModifier       _LOAD_MODIFIER_VALUES,      ///< Cache load modifier for reading values
    BlockReduceAlgorithm    _REDUCE_ALGORITHM,          ///< The BlockReduce algorithm to use
    BlockScanAlgorithm      _SCAN_ALGORITHM>            ///< The BlockScan algorithm to use
struct BlockSegReduceRegionPolicy
{
    enum
    {
        BLOCK_THREADS           = _BLOCK_THREADS,               ///< Threads per thread block
        ITEMS_PER_THREAD        = _ITEMS_PER_THREAD,            ///< Items per thread (per tile of input)
        USE_SMEM_SEGMENT_CACHE  = _USE_SMEM_SEGMENT_CACHE,      ///< Whether or not to cache incoming segment offsets in shared memory before reducing each tile
        USE_SMEM_VALUE_CACHE    = _USE_SMEM_VALUE_CACHE,        ///< Whether or not to cache incoming upcoming values in shared memory before reducing each tile
    };

    static const CacheLoadModifier      LOAD_MODIFIER_SEGMENTS  = _LOAD_MODIFIER_SEGMENTS;  ///< Cache load modifier for reading segment offsets
    static const CacheLoadModifier      LOAD_MODIFIER_VALUES    = _LOAD_MODIFIER_VALUES;    ///< Cache load modifier for reading values
    static const BlockReduceAlgorithm   REDUCE_ALGORITHM        = _REDUCE_ALGORITHM;        ///< The BlockReduce algorithm to use
    static const BlockScanAlgorithm     SCAN_ALGORITHM          = _SCAN_ALGORITHM;          ///< The BlockScan algorithm to use
};


/******************************************************************************
 * Persistent thread block types
 ******************************************************************************/

/**
 * \brief BlockSegReduceTiles implements a stateful abstraction of CUDA thread blocks for participating in device-wide segmented reduction.
 */
template <
    typename BlockSegReduceRegionPolicy,    ///< Parameterized BlockSegReduceRegionPolicy tuning policy
    typename SegmentOffsetIterator,         ///< Random-access input iterator type for reading segment end-offsets
    typename ValueIterator,                 ///< Random-access input iterator type for reading values
    typename OutputIteratorT,               ///< Random-access output iterator type for writing segment reductions
    typename ReductionOp,                   ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
    typename OffsetT>                       ///< Signed integer type for global offsets
struct BlockSegReduceRegion
{
    //---------------------------------------------------------------------
    // Types and constants
    //---------------------------------------------------------------------

    // Constants
    enum
    {
        BLOCK_THREADS       = BlockSegReduceRegionPolicy::BLOCK_THREADS,
        ITEMS_PER_THREAD    = BlockSegReduceRegionPolicy::ITEMS_PER_THREAD,
        TILE_ITEMS          = BLOCK_THREADS * ITEMS_PER_THREAD,                     /// Number of work items to be processed per tile

        USE_SMEM_SEGMENT_CACHE  = BlockSegReduceRegionPolicy::USE_SMEM_SEGMENT_CACHE,      ///< Whether or not to cache incoming segment offsets in shared memory before reducing each tile
        USE_SMEM_VALUE_CACHE    = BlockSegReduceRegionPolicy::USE_SMEM_VALUE_CACHE,        ///< Whether or not to cache incoming upcoming values in shared memory before reducing each tile

        SMEM_SEGMENT_CACHE_ITEMS    = USE_SMEM_SEGMENT_CACHE ? TILE_ITEMS : 1,
        SMEM_VALUE_CACHE_ITEMS      = USE_SMEM_VALUE_CACHE ? TILE_ITEMS : 1,
    };

    // Segment offset type
    typedef typename std::iterator_traits<SegmentOffsetIterator>::value_type SegmentOffset;

    // Value type
    typedef typename std::iterator_traits<ValueIterator>::value_type Value;

    // Counting iterator type
    typedef CountingInputIterator<SegmentOffsetT, OffsetT> CountingIterator;

    // Segment offsets iterator wrapper type
    typedef typename If<(IsPointer<SegmentOffsetIterator>::VALUE),
            CacheModifiedInputIterator<BlockSegReduceRegionPolicy::LOAD_MODIFIER_SEGMENTS, SegmentOffsetT, OffsetT>,  // Wrap the native input pointer with CacheModifiedInputIterator
            SegmentOffsetIterator>::Type                                                                            // Directly use the supplied input iterator type
        WrappedSegmentOffsetIterator;

    // Values iterator wrapper type
    typedef typename If<(IsPointer<ValueIterator>::VALUE),
            CacheModifiedInputIterator<BlockSegReduceRegionPolicy::LOAD_MODIFIER_VALUES, Value, OffsetT>,        // Wrap the native input pointer with CacheModifiedInputIterator
            ValueIterator>::Type                                                                                // Directly use the supplied input iterator type
        WrappedValueIterator;

    // Tail flag type for marking segment discontinuities
    typedef int TailFlag;

    // Reduce-by-key data type tuple (segment-ID, value)
    typedef KeyValuePair<OffsetT, Value> KeyValuePair;

    // Index pair data type
    typedef IndexPair<OffsetT> IndexPair;

    // BlockScan scan operator for reduction-by-segment
    typedef ReduceByKeyOp<ReductionOp> ReduceByKeyOp;

    // Stateful BlockScan prefix callback type for managing a running total while scanning consecutive tiles
    typedef RunningBlockPrefixCallbackOp<
            KeyValuePair,
            ReduceByKeyOp>
        RunningPrefixCallbackOp;

    // Parameterized BlockShift type for exchanging index pairs
    typedef BlockShift<
            IndexPair,
            BLOCK_THREADS>
        BlockShift;

    // Parameterized BlockReduce type for block-wide reduction
    typedef BlockReduce<
            Value,
            BLOCK_THREADS,
            BlockSegReduceRegionPolicy::REDUCE_ALGORITHM>
        BlockReduce;

    // Parameterized BlockScan type for block-wide reduce-value-by-key
    typedef BlockScan<
            KeyValuePair,
            BLOCK_THREADS,
            BlockSegReduceRegionPolicy::SCAN_ALGORITHM>
        BlockScan;

    // Shared memory type for this thread block
    struct _TempStorage
    {
        union
        {
            // Smem needed for BlockScan
            typename BlockScan::TempStorage scan;

            // Smem needed for BlockReduce
            typename BlockReduce::TempStorage reduce;

            struct
            {
                // Smem needed for communicating start/end indices between threads for a given work tile
                typename BlockShift::TempStorage shift;

                // Smem needed for caching segment end-offsets
                SegmentOffset cached_segment_end_offsets[SMEM_SEGMENT_CACHE_ITEMS + 1];
            };

            // Smem needed for caching values
            Value cached_values[SMEM_VALUE_CACHE_ITEMS];
        };

        IndexPair block_region_idx[2];      // The starting [0] and ending [1] pairs of segment and value indices for the thread block's region

        // The first partial reduction tuple scattered by this thread block
        KeyValuePair first_tuple;
    };


    // Alias wrapper allowing storage to be unioned
    struct TempStorage : Uninitialized<_TempStorage> {};


    //---------------------------------------------------------------------
    // Thread fields
    //---------------------------------------------------------------------

    _TempStorage                    &temp_storage;          ///< Reference to shared storage
    WrappedSegmentOffsetIterator    d_segment_end_offsets;  ///< A sequence of \p num_segments segment end-offsets
    WrappedValueIterator            d_values;               ///< A sequence of \p num_values data to reduce
    OutputIteratorT                  d_output;               ///< A sequence of \p num_segments segment totals
    CountingIterator                d_value_offsets;        ///< A sequence of \p num_values value-offsets
    IndexPair                       *d_block_idx;
    OffsetT                         num_values;             ///< Total number of values to reduce
    OffsetT                         num_segments;           ///< Number of segments being reduced
    Value                           identity;               ///< Identity value (for zero-length segments)
    ReductionOp                     reduction_op;           ///< Reduction operator
    ReduceByKeyOp                   scan_op;                ///< Reduce-by-key scan operator
    RunningPrefixCallbackOp         prefix_op;              ///< Stateful running total for block-wide prefix scan of partial reduction tuples


    //---------------------------------------------------------------------
    // Operations
    //---------------------------------------------------------------------

    /**
     * Constructor
     */
    __device__ __forceinline__
    BlockSegReduceRegion(
        TempStorage             &temp_storage,          ///< Reference to shared storage
        SegmentOffsetIterator   d_segment_end_offsets,  ///< A sequence of \p num_segments segment end-offsets
        ValueIterator           d_values,               ///< A sequence of \p num_values values
        OutputIteratorT          d_output,               ///< A sequence of \p num_segments segment totals
        IndexPair               *d_block_idx,
        OffsetT                 num_values,             ///< Number of values to reduce
        OffsetT                 num_segments,           ///< Number of segments being reduced
        Value                   identity,               ///< Identity value (for zero-length segments)
        ReductionOp             reduction_op)           ///< Reduction operator
    :
        temp_storage(temp_storage.Alias()),
        d_segment_end_offsets(d_segment_end_offsets),
        d_values(d_values),
        d_value_offsets(0),
        d_output(d_output),
        d_block_idx(d_block_idx),
        num_values(num_values),
        num_segments(num_segments),
        identity(identity),
        reduction_op(reduction_op),
        scan_op(reduction_op),
        prefix_op(scan_op)
    {}


    /**
     * Fast-path single-segment tile reduction.  Perform a
     * simple block-wide reduction and accumulate the result into
     * the running total.
     */
    __device__ __forceinline__ void SingleSegmentTile(
        IndexPair next_tile_idx,
        IndexPair block_idx)
    {
        OffsetT tile_values = next_tile_idx.b_idx - block_idx.b_idx;

        // Load a tile's worth of values (using identity for out-of-bounds items)
        Value values[ITEMS_PER_THREAD];
        LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_values + block_idx.b_idx, values, tile_values, identity);

        // Barrier for smem reuse
        __syncthreads();

        // Reduce the tile of values and update the running total in thread-0
        KeyValuePair tile_aggregate;
        tile_aggregate.key      = block_idx.a_idx;
        tile_aggregate.value    = BlockReduce(temp_storage.reduce).Reduce(values, reduction_op);

        if (threadIdx.x == 0)
        {
            prefix_op.running_total = scan_op(prefix_op.running_total, tile_aggregate);
        }
    }

    /**
     * Fast-path empty-segment tile reduction.  Write out a tile of identity
     * values to output.
     */
    __device__ __forceinline__ void EmptySegmentsTile(
        IndexPair next_tile_idx,
        IndexPair block_idx)
    {
        Value segment_reductions[ITEMS_PER_THREAD];

        if (threadIdx.x == 0)
        {
            // The first segment gets the running segment total
            segment_reductions[0] = prefix_op.running_total.value;

            // Update the running prefix
            prefix_op.running_total.value = identity;
            prefix_op.running_total.key = next_tile_idx.a_idx;
        }
        else
        {
            // Remainder of segments in this tile get identity
            segment_reductions[0] = identity;
        }

        // Remainder of segments in this tile get identity
        #pragma unroll
        for (int ITEM = 1; ITEM < ITEMS_PER_THREAD; ++ITEM)
            segment_reductions[ITEM] = identity;

        // Store reductions
        OffsetT tile_segments = next_tile_idx.a_idx - block_idx.a_idx;
        StoreDirectStriped<BLOCK_THREADS>(threadIdx.x, d_output + block_idx.a_idx, segment_reductions, tile_segments);
    }


    /**
     * Multi-segment tile reduction.
     */
    template <bool FULL_TILE>
    __device__ __forceinline__ void MultiSegmentTile(
        IndexPair block_idx,
        IndexPair thread_idx,
        IndexPair next_thread_idx,
        IndexPair next_tile_idx)
    {
        IndexPair local_thread_idx;
        local_thread_idx.a_idx = thread_idx.a_idx - block_idx.a_idx;
        local_thread_idx.b_idx = thread_idx.b_idx - block_idx.b_idx;

        // Check if first segment end-offset is in range
        bool valid_segment = FULL_TILE || (thread_idx.a_idx < next_thread_idx.a_idx);

        // Check if first value offset is in range
        bool valid_value = FULL_TILE || (thread_idx.b_idx < next_thread_idx.b_idx);

        // Load first segment end-offset
        OffsetT segment_end_offset = (valid_segment) ?
            (USE_SMEM_SEGMENT_CACHE)?
                temp_storage.cached_segment_end_offsets[local_thread_idx.a_idx] :
                d_segment_end_offsets[thread_idx.a_idx] :
            -1;

        OffsetT segment_ids[ITEMS_PER_THREAD];
        OffsetT value_offsets[ITEMS_PER_THREAD];

        KeyValuePair first_partial;
        first_partial.key    = thread_idx.a_idx;
        first_partial.value  = identity;

        // Get segment IDs and gather-offsets for values
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            segment_ids[ITEM]   = -1;
            value_offsets[ITEM] = -1;

            // Whether or not we slide (a) right along the segment path or (b) down the value path
            if (valid_segment && (!valid_value || (segment_end_offset <= thread_idx.b_idx)))
            {
                // Consume this segment index
                segment_ids[ITEM] = thread_idx.a_idx;
                thread_idx.a_idx++;
                local_thread_idx.a_idx++;

                valid_segment = FULL_TILE || (thread_idx.a_idx < next_thread_idx.a_idx);

                // Read next segment end-offset (if valid)
                if (valid_segment)
                {
                    if (USE_SMEM_SEGMENT_CACHE)
                        segment_end_offset = temp_storage.cached_segment_end_offsets[local_thread_idx.a_idx];
                    else
                        segment_end_offset = d_segment_end_offsets[thread_idx.a_idx];
                }
            }
            else if (valid_value)
            {
                // Consume this value index
                value_offsets[ITEM] = thread_idx.b_idx;
                thread_idx.b_idx++;
                local_thread_idx.b_idx++;

                valid_value = FULL_TILE || (thread_idx.b_idx < next_thread_idx.b_idx);
            }
        }

        // Load values
        Value values[ITEMS_PER_THREAD];

        if (USE_SMEM_VALUE_CACHE)
        {
            // Barrier for smem reuse
            __syncthreads();

            OffsetT tile_values = next_tile_idx.b_idx - block_idx.b_idx;

            // Load a tile's worth of values (using identity for out-of-bounds items)
            LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_values + block_idx.b_idx, values, tile_values, identity);

            // Store to shared
            StoreDirectStriped<BLOCK_THREADS>(threadIdx.x, temp_storage.cached_values, values, tile_values);

            // Barrier for smem reuse
            __syncthreads();

            #pragma unroll
            for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
            {
                values[ITEM] = (value_offsets[ITEM] == -1) ?
                    identity :
                    temp_storage.cached_values[value_offsets[ITEM] - block_idx.b_idx];
            }
        }
        else
        {
            #pragma unroll
            for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
            {
                values[ITEM] = (value_offsets[ITEM] == -1) ?
                    identity :
                    d_values[value_offsets[ITEM]];
            }
        }

        // Reduce within thread segments
        KeyValuePair running_total = first_partial;

        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            if (segment_ids[ITEM] != -1)
            {
                // Consume this segment index
                d_output[segment_ids[ITEM]] = running_total.value;

//                _CubLog("Updating segment %d with value %lld\n", segment_ids[ITEM], running_total.value)

                if (first_partial.key == segment_ids[ITEM])
                    first_partial.value = running_total.value;

                running_total.key    = segment_ids[ITEM];
                running_total.value  = identity;
            }

            running_total.value = reduction_op(running_total.value, values[ITEM]);
        }
/*

        // Barrier for smem reuse
        __syncthreads();

        // Use prefix scan to reduce values by segment-id.  The segment-reductions end up in items flagged as segment-tails.
        KeyValuePair block_aggregate;
        BlockScan(temp_storage.scan).InclusiveScan(
            pairs,                          // Scan input
            pairs,                          // Scan output
            scan_op,                        // Scan operator
            block_aggregate,                // Block-wide total (unused)
            prefix_op);                     // Prefix operator for seeding the block-wide scan with the running total
*/

/*
        // Check if first segment end-offset is in range
        bool valid_segment = (thread_idx.a_idx < next_thread_idx.a_idx);

        // Check if first value offset is in range
        bool valid_value = (thread_idx.b_idx < next_thread_idx.b_idx);

        // Load first segment end-offset
        OffsetT segment_end_offset = (valid_segment) ?
            d_segment_end_offsets[thread_idx.a_idx] :
            num_values;                                                     // Out of range (the last segment end-offset is one-past the last value offset)

        // Load first value offset
        OffsetT value_offset = (valid_value) ?
            d_value_offsets[thread_idx.b_idx] :
            num_values;                                                     // Out of range (one-past the last value offset)

        // Assemble segment-demarcating tail flags and partial reduction tuples
        TailFlag        tail_flags[ITEMS_PER_THREAD];
        KeyValuePair    partial_reductions[ITEMS_PER_THREAD];

        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            // Default tuple and flag values
            partial_reductions[ITEM].key    = thread_idx.a_idx;
            partial_reductions[ITEM].value  = identity;
            tail_flags[ITEM]                = 0;

            // Whether or not we slide (a) right along the segment path or (b) down the value path
            if (valid_segment && (!valid_value || (segment_end_offset <= value_offset)))
            {
                // Consume this segment index

                // Set tail flag noting the end of the segment
                tail_flags[ITEM] = 1;

                // Increment segment index
                thread_idx.a_idx++;

                // Read next segment end-offset (if valid)
                if ((valid_segment = (thread_idx.a_idx < next_thread_idx.a_idx)))
                    segment_end_offset = d_segment_end_offsets[thread_idx.a_idx];
            }
            else if (valid_value)
            {
                // Consume this value index

                // Update the tuple's value with the value at this index.
                partial_reductions[ITEM].value = d_values[value_offset];

                // Increment value index
                thread_idx.b_idx++;

                // Read next value offset (if valid)
                if ((valid_value = (thread_idx.b_idx < next_thread_idx.b_idx)))
                    value_offset = d_value_offsets[thread_idx.b_idx];
            }
        }

        // Use prefix scan to reduce values by segment-id.  The segment-reductions end up in items flagged as segment-tails.
        KeyValuePair block_aggregate;
        BlockScan(temp_storage.scan).InclusiveScan(
            partial_reductions,             // Scan input
            partial_reductions,             // Scan output
            scan_op,                        // Scan operator
            block_aggregate,                // Block-wide total (unused)
            prefix_op);                     // Prefix operator for seeding the block-wide scan with the running total

        // The first segment index for this region (hoist?)
        OffsetT first_segment_idx = temp_storage.block_idx.a_idx[0];

        // Scatter an accumulated reduction if it is the head of a valid segment
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
        {
            if (tail_flags[ITEM])
            {
                OffsetT segment_idx = partial_reductions[ITEM].key;
                Value   value       = partial_reductions[ITEM].value;

                // Write value reduction to corresponding segment id
                d_output[segment_idx] = value;

                // Save off the first value product that this thread block will scatter
                if (segment_idx == first_segment_idx)
                {
                    temp_storage.first_tuple.value = value;
                }
            }
        }
*/
    }



    /**
     * Have the thread block process the specified region of the MergePath decision path
     */
    __device__ __forceinline__ void ProcessRegion(
        OffsetT         block_diagonal,
        OffsetT         next_block_diagonal,
        KeyValuePair    &first_tuple,       // [Out] Valid in thread-0
        KeyValuePair    &last_tuple)        // [Out] Valid in thread-0
    {
        // Thread block initialization
        if (threadIdx.x < 2)
        {
            // Retrieve block starting and ending indices
            IndexPair block_idx = {0, 0};
            if (gridDim.x > 1)
            {
                block_idx = d_block_idx[blockIdx.x + threadIdx.x];
            }
            else if (threadIdx.x > 0)
            {
                block_idx.a_idx = num_segments;
                block_idx.b_idx = num_values;
            }

            // Share block starting and ending indices
            temp_storage.block_region_idx[threadIdx.x] = block_idx;

            // Initialize the block's running prefix
            if (threadIdx.x == 0)
            {
                prefix_op.running_total.key    = block_idx.a_idx;
                prefix_op.running_total.value  = identity;

                // Initialize the "first scattered partial reduction tuple" to the prefix tuple (in case we don't actually scatter one)
                temp_storage.first_tuple = prefix_op.running_total;
            }
        }

        // Ensure coherence of region indices
        __syncthreads();

        // Read block's starting indices
        IndexPair block_idx = temp_storage.block_region_idx[0];

        // Have the thread block iterate over the region
        #pragma unroll 1
        while (block_diagonal < next_block_diagonal)
        {
            // Read block's ending indices (hoist?)
            IndexPair next_block_idx = temp_storage.block_region_idx[1];

            // Clamp the per-thread search range to within one work-tile of block's current indices
            IndexPair next_tile_idx;
            next_tile_idx.a_idx = CUB_MIN(next_block_idx.a_idx, block_idx.a_idx + TILE_ITEMS);
            next_tile_idx.b_idx = CUB_MIN(next_block_idx.b_idx, block_idx.b_idx + TILE_ITEMS);

            // Have each thread search for the end-indices of its subranges within the segment and value inputs
            IndexPair next_thread_idx;
            if (USE_SMEM_SEGMENT_CACHE)
            {
                // Search in smem cache
                OffsetT num_segments = next_tile_idx.a_idx - block_idx.a_idx;

                // Load global
                SegmentOffset segment_offsets[ITEMS_PER_THREAD];
                LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_segment_end_offsets + block_idx.a_idx, segment_offsets, num_segments, num_values);

                // Store to shared
                StoreDirectStriped<BLOCK_THREADS>(threadIdx.x, temp_storage.cached_segment_end_offsets, segment_offsets);

                __syncthreads();

                OffsetT next_thread_diagonal = block_diagonal + ((threadIdx.x + 1) * ITEMS_PER_THREAD);

                MergePathSearch(
                    next_thread_diagonal,                       // Next thread diagonal
                    temp_storage.cached_segment_end_offsets - block_idx.a_idx,                      // A (segment end-offsets)
                    d_value_offsets,                            // B (value offsets)
                    block_idx,                                  // Start indices into A and B
                    next_tile_idx,                              // End indices into A and B
                    next_thread_idx);                           // [out] diagonal intersection indices into A and B
            }
            else
            {
                // Search in global

                OffsetT next_thread_diagonal = block_diagonal + ((threadIdx.x + 1) * ITEMS_PER_THREAD);

                MergePathSearch(
                    next_thread_diagonal,                       // Next thread diagonal
                    d_segment_end_offsets,                      // A (segment end-offsets)
                    d_value_offsets,                            // B (value offsets)
                    block_idx,                                  // Start indices into A and B
                    next_tile_idx,                              // End indices into A and B
                    next_thread_idx);                           // [out] diagonal intersection indices into A and B
            }

            // Share thread end-indices to get thread begin-indices and tile end-indices
            IndexPair thread_idx;

            BlockShift(temp_storage.shift).Up(
                next_thread_idx,    // Input item
                thread_idx,         // [out] Output item
                block_idx,          // Prefix item to be provided to <em>thread</em><sub>0</sub>
                next_tile_idx);     // [out] Suffix item shifted out by the <em>thread</em><sub><tt>BLOCK_THREADS-1</tt></sub> to be provided to all threads

//            if (block_idx.a_idx == next_tile_idx.a_idx)
//            {
//                // There are no segment end-offsets in this tile.  Perform a
//                // simple block-wide reduction and accumulate the result into
//                // the running total.
//                SingleSegmentTile(next_tile_idx, block_idx);
//            }
//          else if (block_idx.b_idx == next_tile_idx.b_idx)
//            {
//                // There are no values in this tile (only empty segments).
//                EmptySegmentsTile(next_tile_idx.a_idx, block_idx.a_idx);
//            }
//            else
            if ((next_tile_idx.a_idx < num_segments) && (next_tile_idx.b_idx < num_values))
            {
                // Merge the tile's segment and value indices (full tile)
                MultiSegmentTile<true>(block_idx, thread_idx, next_thread_idx, next_tile_idx);
            }
            else
            {
                // Merge the tile's segment and value indices (partially full tile)
                MultiSegmentTile<false>(block_idx, thread_idx, next_thread_idx, next_tile_idx);
            }

            // Advance the block's indices in preparation for the next tile
            block_idx = next_tile_idx;

            // Advance to the next region in the decision path
            block_diagonal += TILE_ITEMS;

            // Barrier for smem reuse
            __syncthreads();
        }

        // Get first and last tuples for the region
        if (threadIdx.x == 0)
        {
            first_tuple = temp_storage.first_tuple;
            last_tuple = prefix_op.running_total;
        }

    }


};








/******************************************************************************
 * Tuning policy types
 ******************************************************************************/

/**
 * Parameterizable tuning policy type for BlockSegReduceRegionByKey
 */
template <
    int                     _BLOCK_THREADS,             ///< Threads per thread block
    int                     _ITEMS_PER_THREAD,          ///< Items per thread (per tile of input)
    BlockLoadAlgorithm      _LOAD_ALGORITHM,            ///< The BlockLoad algorithm to use
    bool                    _LOAD_WARP_TIME_SLICING,    ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any load-related data transpositions (versus each warp having its own storage)
    CacheLoadModifier       _LOAD_MODIFIER,             ///< Cache load modifier for reading input elements
    BlockScanAlgorithm      _SCAN_ALGORITHM>            ///< The BlockScan algorithm to use
struct BlockSegReduceRegionByKeyPolicy
{
    enum
    {
        BLOCK_THREADS           = _BLOCK_THREADS,               ///< Threads per thread block
        ITEMS_PER_THREAD        = _ITEMS_PER_THREAD,            ///< Items per thread (per tile of input)
        LOAD_WARP_TIME_SLICING  = _LOAD_WARP_TIME_SLICING,      ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any load-related data transpositions (versus each warp having its own storage)    };
    };

    static const BlockLoadAlgorithm     LOAD_ALGORITHM          = _LOAD_ALGORITHM;      ///< The BlockLoad algorithm to use
    static const CacheLoadModifier      LOAD_MODIFIER           = _LOAD_MODIFIER;       ///< Cache load modifier for reading input elements
    static const BlockScanAlgorithm     SCAN_ALGORITHM          = _SCAN_ALGORITHM;      ///< The BlockScan algorithm to use
};


/******************************************************************************
 * Persistent thread block types
 ******************************************************************************/

/**
 * \brief BlockSegReduceRegionByKey implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduce-value-by-key.
 */
template <
    typename    BlockSegReduceRegionByKeyPolicy,        ///< Parameterized BlockSegReduceRegionByKeyPolicy tuning policy
    typename    InputIteratorT,                         ///< Random-access iterator referencing key-value input tuples
    typename    OutputIteratorT,                        ///< Random-access iterator referencing segment output totals
    typename    ReductionOp>                            ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
struct BlockSegReduceRegionByKey
{
    //---------------------------------------------------------------------
    // Types and constants
    //---------------------------------------------------------------------

    // Constants
    enum
    {
        BLOCK_THREADS       = BlockSegReduceRegionByKeyPolicy::BLOCK_THREADS,
        ITEMS_PER_THREAD    = BlockSegReduceRegionByKeyPolicy::ITEMS_PER_THREAD,
        TILE_ITEMS          = BLOCK_THREADS * ITEMS_PER_THREAD,
    };

    // KeyValuePair input type
    typedef typename std::iterator_traits<InputIteratorT>::value_type KeyValuePair;

    // Signed integer type for global offsets
    typedef typename KeyValuePair::Key OffsetT;

    // Value type
    typedef typename KeyValuePair::Value Value;

    // Head flag type
    typedef int HeadFlag;

    // Input iterator wrapper type for loading KeyValuePair elements through cache
    typedef CacheModifiedInputIterator<
            BlockSegReduceRegionByKeyPolicy::LOAD_MODIFIER,
            KeyValuePair,
            OffsetT>
        WrappedInputIteratorT;

    // Parameterized BlockLoad type
    typedef BlockLoad<
            WrappedInputIteratorT,
            BLOCK_THREADS,
            ITEMS_PER_THREAD,
            BlockSegReduceRegionByKeyPolicy::LOAD_ALGORITHM,
            BlockSegReduceRegionByKeyPolicy::LOAD_WARP_TIME_SLICING>
        BlockLoad;

    // BlockScan scan operator for reduction-by-segment
    typedef ReduceByKeyOp<ReductionOp> ReduceByKeyOp;

    // Stateful BlockScan prefix callback type for managing a running total while scanning consecutive tiles
    typedef RunningBlockPrefixCallbackOp<
            KeyValuePair,
            ReduceByKeyOp>
        RunningPrefixCallbackOp;

    // Parameterized BlockScan type for block-wide reduce-value-by-key
    typedef BlockScan<
            KeyValuePair,
            BLOCK_THREADS,
            BlockSegReduceRegionByKeyPolicy::SCAN_ALGORITHM>
        BlockScan;

    // Parameterized BlockDiscontinuity type for identifying key discontinuities
    typedef BlockDiscontinuity<
            OffsetT,
            BLOCK_THREADS>
        BlockDiscontinuity;

    // Operator for detecting discontinuities in a list of segment identifiers.
    struct NewSegmentOp
    {
        /// Returns true if row_b is the start of a new row
        __device__ __forceinline__ bool operator()(const OffsetT& b, const OffsetT& a)
        {
            return (a != b);
        }
    };

    // Shared memory type for this thread block
    struct _TempStorage
    {
        union
        {
            typename BlockLoad::TempStorage                 load;           // Smem needed for tile loading
            struct {
                typename BlockScan::TempStorage             scan;           // Smem needed for reduce-value-by-segment scan
                typename BlockDiscontinuity::TempStorage    discontinuity;  // Smem needed for head-flagging
            };
        };
    };

    // Alias wrapper allowing storage to be unioned
    struct TempStorage : Uninitialized<_TempStorage> {};


    //---------------------------------------------------------------------
    // Thread fields
    //---------------------------------------------------------------------

    _TempStorage                &temp_storage;          ///< Reference to shared storage
    WrappedInputIteratorT       d_tuple_partials;       ///< A sequence of partial reduction tuples to scan
    OutputIteratorT              d_output;               ///< A sequence of segment totals
    Value                       identity;               ///< Identity value (for zero-length segments)
    ReduceByKeyOp               scan_op;                ///< Reduce-by-key scan operator
    RunningPrefixCallbackOp     prefix_op;              ///< Stateful running total for block-wide prefix scan of partial reduction tuples


    //---------------------------------------------------------------------
    // Operations
    //---------------------------------------------------------------------

    /**
     * Constructor
     */
    __device__ __forceinline__
    BlockSegReduceRegionByKey(
        TempStorage             &temp_storage,          ///< Reference to shared storage
        InputIteratorT          d_tuple_partials,       ///< A sequence of partial reduction tuples to scan
        OutputIteratorT          d_output,               ///< A sequence of segment totals
        Value                   identity,               ///< Identity value (for zero-length segments)
        ReductionOp             reduction_op)           ///< Reduction operator
    :
        temp_storage(temp_storage.Alias()),
        d_tuple_partials(d_tuple_partials),
        d_output(d_output),
        identity(identity),
        scan_op(reduction_op),
        prefix_op(scan_op)
    {}



    /**
     * Processes a reduce-value-by-key input tile, outputting reductions for each segment
     */
    template <bool FULL_TILE>
    __device__ __forceinline__
    void ProcessTile(
        OffsetT block_offset,
        OffsetT first_segment_idx,
        OffsetT last_segment_idx,
        int guarded_items = TILE_ITEMS)
    {
        KeyValuePair    partial_reductions[ITEMS_PER_THREAD];
        OffsetT         segment_ids[ITEMS_PER_THREAD];
        HeadFlag        head_flags[ITEMS_PER_THREAD];

        // Load a tile of block partials from previous kernel
        if (FULL_TILE)
        {
            // Full tile
            BlockLoad(temp_storage.load).Load(d_tuple_partials + block_offset, partial_reductions);
        }
        else
        {
            KeyValuePair oob_default;
            oob_default.key    = last_segment_idx;       // The last segment ID to be reduced
            oob_default.value  = identity;

            // Partially-full tile
            BlockLoad(temp_storage.load).Load(d_tuple_partials + block_offset, partial_reductions, guarded_items, oob_default);
        }

        // Barrier for shared memory reuse
        __syncthreads();

        // Copy the segment IDs for head-flagging
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
        {
            segment_ids[ITEM] = partial_reductions[ITEM].key;
        }

        // FlagT segment heads by looking for discontinuities
        BlockDiscontinuity(temp_storage.discontinuity).FlagHeads(
            head_flags,                         // [out] Head flags
            segment_ids,                        // Segment ids
            NewSegmentOp(),                     // Functor for detecting start of new rows
            prefix_op.running_total.key);       // Last segment ID from previous tile to compare with first segment ID in this tile

        // Reduce-value-by-segment across partial_reductions using exclusive prefix scan
        KeyValuePair block_aggregate;
        BlockScan(temp_storage.scan).ExclusiveScan(
            partial_reductions,                   // Scan input
            partial_reductions,                   // Scan output
            scan_op,                        // Scan operator
            block_aggregate,                // Block-wide total (unused)
            prefix_op);                     // Prefix operator for seeding the block-wide scan with the running total

        // Scatter an accumulated reduction if it is the head of a valid segment
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
        {
            if (head_flags[ITEM])
            {
                d_output[partial_reductions[ITEM].key] = partial_reductions[ITEM].value;
            }
        }
    }


    /**
     * Iterate over input tiles belonging to this thread block
     */
    __device__ __forceinline__
    void ProcessRegion(
        OffsetT block_offset,
        OffsetT block_end,
        OffsetT first_segment_idx,
        OffsetT last_segment_idx)
    {
        if (threadIdx.x == 0)
        {
            // Initialize running prefix to the first segment index paired with identity
            prefix_op.running_total.key    = first_segment_idx;
            prefix_op.running_total.value  = identity;
        }

        // Process full tiles
        while (block_offset + TILE_ITEMS <= block_end)
        {
            ProcessTile<true>(block_offset, first_segment_idx, last_segment_idx);
            __syncthreads();

            block_offset += TILE_ITEMS;
        }

        // Process final value tile (if present)
        int guarded_items = block_end - block_offset;
        if (guarded_items)
        {
            ProcessTile<false>(block_offset, first_segment_idx, last_segment_idx, guarded_items);
        }
    }
};



/******************************************************************************
 * Kernel entrypoints
 ******************************************************************************/

/**
 * Segmented reduce region kernel entry point (multi-block).
 */

template <
    typename SegmentOffsetIterator,             ///< Random-access input iterator type for reading segment end-offsets
    typename OffsetT>                           ///< Signed integer type for global offsets
__global__ void SegReducePartitionKernel(
    SegmentOffsetIterator       d_segment_end_offsets,  ///< [in] A sequence of \p num_segments segment end-offsets
    IndexPair<OffsetT>          *d_block_idx,
    int                         num_partition_samples,
    OffsetT                     num_values,             ///< [in] Number of values to reduce
    OffsetT                     num_segments,           ///< [in] Number of segments being reduced
    GridEvenShare<OffsetT>      even_share)             ///< [in] Even-share descriptor for mapping an equal number of tiles onto each thread block
{
    // Segment offset type
    typedef typename std::iterator_traits<SegmentOffsetIterator>::value_type SegmentOffset;

    // Counting iterator type
    typedef CountingInputIterator<SegmentOffsetT, OffsetT> CountingIterator;

    // Cache-modified iterator for segment end-offsets
    CacheModifiedInputIterator<LOAD_LDG, SegmentOffsetT, OffsetT> d_wrapped_segment_end_offsets(d_segment_end_offsets);

    // Counting iterator for value offsets
    CountingIterator d_value_offsets(0);

    // Initialize even-share to tell us where to start and stop our tile-processing
    int partition_id = (blockDim.x * blockIdx.x) + threadIdx.x;
    even_share.Init(partition_id);

    // Search for block starting and ending indices
    IndexPair<OffsetT> start_idx = {0, 0};
    IndexPair<OffsetT> end_idx   = {num_segments, num_values};
    IndexPair<OffsetT> block_idx;

    MergePathSearch(
        even_share.block_offset,            // Next thread diagonal
        d_wrapped_segment_end_offsets,      // A (segment end-offsets)
        d_value_offsets,                    // B (value offsets)
        start_idx,                          // Start indices into A and B
        end_idx,                            // End indices into A and B
        block_idx);                         // [out] diagonal intersection indices into A and B

    // Write output
    if (partition_id < num_partition_samples)
    {
        d_block_idx[partition_id] = block_idx;
    }
}


/**
 * Segmented reduce region kernel entry point (multi-block).
 */
template <
    typename BlockSegReduceRegionPolicy,        ///< Parameterized BlockSegReduceRegionPolicy tuning policy
    typename SegmentOffsetIterator,             ///< Random-access input iterator type for reading segment end-offsets
    typename ValueIterator,                     ///< Random-access input iterator type for reading values
    typename OutputIteratorT,                   ///< Random-access output iterator type for writing segment reductions
    typename ReductionOp,                       ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
    typename OffsetT,                           ///< Signed integer type for global offsets
    typename Value>                             ///< Value type
__launch_bounds__ (BlockSegReduceRegionPolicy::BLOCK_THREADS)
__global__ void SegReduceRegionKernel(
    SegmentOffsetIterator       d_segment_end_offsets,  ///< [in] A sequence of \p num_segments segment end-offsets
    ValueIterator               d_values,               ///< [in] A sequence of \p num_values values
    OutputIteratorT              d_output,               ///< [out] A sequence of \p num_segments segment totals
    KeyValuePair<OffsetT, Value> *d_tuple_partials,      ///< [out] A sequence of (gridDim.x * 2) partial reduction tuples
    IndexPair<OffsetT>          *d_block_idx,
    OffsetT                     num_values,             ///< [in] Number of values to reduce
    OffsetT                     num_segments,           ///< [in] Number of segments being reduced
    Value                       identity,               ///< [in] Identity value (for zero-length segments)
    ReductionOp                 reduction_op,           ///< [in] Reduction operator
    GridEvenShare<OffsetT>      even_share)             ///< [in] Even-share descriptor for mapping an equal number of tiles onto each thread block
{
    typedef KeyValuePair<OffsetT, Value> KeyValuePair;

    // Specialize thread block abstraction type for reducing a range of segmented values
    typedef BlockSegReduceRegion<
            BlockSegReduceRegionPolicy,
            SegmentOffsetIterator,
            ValueIterator,
            OutputIteratorT,
            ReductionOp,
            OffsetT>
        BlockSegReduceRegion;

    // Shared memory allocation
    __shared__ typename BlockSegReduceRegion::TempStorage temp_storage;

    // Initialize thread block even-share to tell us where to start and stop our tile-processing
    even_share.BlockInit();

    // Construct persistent thread block
    BlockSegReduceRegion thread_block(
        temp_storage,
        d_segment_end_offsets,
        d_values,
        d_output,
        d_block_idx,
        num_values,
        num_segments,
        identity,
        reduction_op);

    // First and last partial reduction tuples within the range (valid in thread-0)
    KeyValuePair first_tuple, last_tuple;

    // Consume block's region of work
    thread_block.ProcessRegion(
        even_share.block_offset,
        even_share.block_end,
        first_tuple,
        last_tuple);

    if (threadIdx.x == 0)
    {
        if (gridDim.x > 1)
        {
            // Special case where the first segment written and the carry-out are for the same segment
            if (first_tuple.key == last_tuple.key)
            {
                first_tuple.value = identity;
            }

            // Write the first and last partial products from this thread block so
            // that they can be subsequently "fixed up" in the next kernel.
            d_tuple_partials[blockIdx.x * 2]          = first_tuple;
            d_tuple_partials[(blockIdx.x * 2) + 1]    = last_tuple;
        }
    }

}


/**
 * Segmented reduce region kernel entry point (single-block).
 */
template <
    typename    BlockSegReduceRegionByKeyPolicy,        ///< Parameterized BlockSegReduceRegionByKeyPolicy tuning policy
    typename    InputIteratorT,                         ///< Random-access iterator referencing key-value input tuples
    typename    OutputIteratorT,                        ///< Random-access iterator referencing segment output totals
    typename    ReductionOp,                            ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
    typename    OffsetT,                                ///< Signed integer type for global offsets
    typename    Value>                                  ///< Value type
__launch_bounds__ (BlockSegReduceRegionByKeyPolicy::BLOCK_THREADS, 1)
__global__ void SegReduceRegionByKeyKernel(
    InputIteratorT          d_tuple_partials,           ///< [in] A sequence of partial reduction tuples
    OutputIteratorT          d_output,                   ///< [out] A sequence of \p num_segments segment totals
    OffsetT                 num_segments,               ///< [in] Number of segments in the \p d_output sequence
    int                     num_tuple_partials,         ///< [in] Number of partial reduction tuples being reduced
    Value                   identity,                   ///< [in] Identity value (for zero-length segments)
    ReductionOp             reduction_op)               ///< [in] Reduction operator
{
    // Specialize thread block abstraction type for reducing a range of values by key
    typedef BlockSegReduceRegionByKey<
            BlockSegReduceRegionByKeyPolicy,
            InputIteratorT,
            OutputIteratorT,
            ReductionOp>
        BlockSegReduceRegionByKey;

    // Shared memory allocation
    __shared__ typename BlockSegReduceRegionByKey::TempStorage temp_storage;

    // Construct persistent thread block
    BlockSegReduceRegionByKey thread_block(
        temp_storage,
        d_tuple_partials,
        d_output,
        identity,
        reduction_op);

    // Process input tiles
    thread_block.ProcessRegion(
        0,                          // Region start
        num_tuple_partials,         // Region end
        0,                          // First segment ID
        num_segments);              // Last segment ID (one-past)
}




/******************************************************************************
 * Dispatch
 ******************************************************************************/

/**
 * Utility class for dispatching the appropriately-tuned kernels for DeviceReduce
 */
template <
    typename ValueIterator,                     ///< Random-access input iterator type for reading values
    typename SegmentOffsetIterator,             ///< Random-access input iterator type for reading segment end-offsets
    typename OutputIteratorT,                   ///< Random-access output iterator type for writing segment reductions
    typename ReductionOp,                       ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
    typename OffsetT>                           ///< Signed integer type for global offsets
struct DeviceSegReduceDispatch
{
    // Value type
    typedef typename std::iterator_traits<ValueIterator>::value_type Value;

    // Reduce-by-key data type tuple (segment-ID, value)
    typedef KeyValuePair<OffsetT, Value> KeyValuePair;

    // Index pair data type
    typedef IndexPair<OffsetT>IndexPair;


    /******************************************************************************
     * Tuning policies
     ******************************************************************************/

    /// SM35
    struct Policy350
    {
        // ReduceRegionPolicy
        typedef BlockSegReduceRegionPolicy<
                128,                            ///< Threads per thread block
                6,                              ///< Items per thread (per tile of input)
                true,                           ///< Whether or not to cache incoming segment offsets in shared memory before reducing each tile
                false,                          ///< Whether or not to cache incoming values in shared memory before reducing each tile
                LOAD_DEFAULT,                   ///< Cache load modifier for reading segment offsets
                LOAD_LDG,                       ///< Cache load modifier for reading values
                BLOCK_REDUCE_RAKING,            ///< The BlockReduce algorithm to use
                BLOCK_SCAN_WARP_SCANS>          ///< The BlockScan algorithm to use
            SegReduceRegionPolicy;

        // ReduceRegionByKeyPolicy
        typedef BlockSegReduceRegionByKeyPolicy<
                256,                            ///< Threads per thread block
                9,                             ///< Items per thread (per tile of input)
                BLOCK_LOAD_DIRECT,              ///< The BlockLoad algorithm to use
                false,                          ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any load-related data transpositions (versus each warp having its own storage)
                LOAD_LDG,                       ///< Cache load modifier for reading input elements
                BLOCK_SCAN_WARP_SCANS>          ///< The BlockScan algorithm to use
            SegReduceRegionByKeyPolicy;
    };


    /// SM10
    struct Policy100
    {
        // ReduceRegionPolicy
        typedef BlockSegReduceRegionPolicy<
                128,                            ///< Threads per thread block
                3,                              ///< Items per thread (per tile of input)
                false,                          ///< Whether or not to cache incoming segment offsets in shared memory before reducing each tile
                false,                          ///< Whether or not to cache incoming values in shared memory before reducing each tile
                LOAD_DEFAULT,                   ///< Cache load modifier for reading segment offsets
                LOAD_DEFAULT,                   ///< Cache load modifier for reading values
                BLOCK_REDUCE_RAKING,            ///< The BlockReduce algorithm to use
                BLOCK_SCAN_RAKING>              ///< The BlockScan algorithm to use
            SegReduceRegionPolicy;

        // ReduceRegionByKeyPolicy
        typedef BlockSegReduceRegionByKeyPolicy<
                128,                            ///< Threads per thread block
                3,                              ///< Items per thread (per tile of input)
                BLOCK_LOAD_WARP_TRANSPOSE,      ///< The BlockLoad algorithm to use
                false,                          ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any load-related data transpositions (versus each warp having its own storage)
                LOAD_DEFAULT,                   ///< Cache load modifier for reading input elements
                BLOCK_SCAN_WARP_SCANS>          ///< The BlockScan algorithm to use
            SegReduceRegionByKeyPolicy;
    };


    /******************************************************************************
     * Tuning policies of current PTX compiler pass
     ******************************************************************************/

#if (CUB_PTX_ARCH >= 350)
    typedef Policy350 PtxPolicy;
/*
#elif (CUB_PTX_ARCH >= 300)
    typedef Policy300 PtxPolicy;

#elif (CUB_PTX_ARCH >= 200)
    typedef Policy200 PtxPolicy;

#elif (CUB_PTX_ARCH >= 130)
    typedef Policy130 PtxPolicy;
*/
#else
    typedef Policy100 PtxPolicy;

#endif

    // "Opaque" policies (whose parameterizations aren't reflected in the type signature)
    struct PtxSegReduceRegionPolicy           : PtxPolicy::SegReduceRegionPolicy {};
    struct PtxSegReduceRegionByKeyPolicy      : PtxPolicy::SegReduceRegionByKeyPolicy {};


    /******************************************************************************
     * Utilities
     ******************************************************************************/

    /**
     * Initialize kernel dispatch configurations with the policies corresponding to the PTX assembly we will use
     */
    template <
        typename SegReduceKernelConfig,
        typename SegReduceByKeyKernelConfig>
    __host__ __device__ __forceinline__
    static void InitConfigs(
        int                         ptx_version,
        SegReduceKernelConfig       &seg_reduce_region_config,
        SegReduceByKeyKernelConfig  &seg_reduce_region_by_key_config)
    {
    #if (CUB_PTX_ARCH > 0)

        // We're on the device, so initialize the kernel dispatch configurations with the current PTX policy
        seg_reduce_region_config.Init<PtxSegReduceRegionPolicy>();
        seg_reduce_region_by_key_config.Init<PtxSegReduceRegionByKeyPolicy>();

    #else

        // We're on the host, so lookup and initialize the kernel dispatch configurations with the policies that match the device's PTX version
        if (ptx_version >= 350)
        {
            seg_reduce_region_config.template          Init<typename Policy350::SegReduceRegionPolicy>();
            seg_reduce_region_by_key_config.template   Init<typename Policy350::SegReduceRegionByKeyPolicy>();
        }
/*
        else if (ptx_version >= 300)
        {
            seg_reduce_region_config.template          Init<typename Policy300::SegReduceRegionPolicy>();
            seg_reduce_region_by_key_config.template   Init<typename Policy300::SegReduceRegionByKeyPolicy>();
        }
        else if (ptx_version >= 200)
        {
            seg_reduce_region_config.template          Init<typename Policy200::SegReduceRegionPolicy>();
            seg_reduce_region_by_key_config.template   Init<typename Policy200::SegReduceRegionByKeyPolicy>();
        }
        else if (ptx_version >= 130)
        {
            seg_reduce_region_config.template          Init<typename Policy130::SegReduceRegionPolicy>();
            seg_reduce_region_by_key_config.template   Init<typename Policy130::SegReduceRegionByKeyPolicy>();
        }
*/
        else
        {
            seg_reduce_region_config.template          Init<typename Policy100::SegReduceRegionPolicy>();
            seg_reduce_region_by_key_config.template   Init<typename Policy100::SegReduceRegionByKeyPolicy>();
        }

    #endif
    }


    /**
     * SegReduceRegionKernel kernel dispatch configuration
     */
    struct SegReduceKernelConfig
    {
        int                     block_threads;
        int                     items_per_thread;
        bool                    use_smem_segment_cache;
        bool                    use_smem_value_cache;
        CacheLoadModifier       load_modifier_segments;
        CacheLoadModifier       load_modifier_values;
        BlockReduceAlgorithm    reduce_algorithm;
        BlockScanAlgorithm      scan_algorithm;

        template <typename SegReduceRegionPolicy>
        __host__ __device__ __forceinline__
        void Init()
        {
            block_threads               = SegReduceRegionPolicy::BLOCK_THREADS;
            items_per_thread            = SegReduceRegionPolicy::ITEMS_PER_THREAD;
            use_smem_segment_cache      = SegReduceRegionPolicy::USE_SMEM_SEGMENT_CACHE;
            use_smem_value_cache        = SegReduceRegionPolicy::USE_SMEM_VALUE_CACHE;
            load_modifier_segments      = SegReduceRegionPolicy::LOAD_MODIFIER_SEGMENTS;
            load_modifier_values        = SegReduceRegionPolicy::LOAD_MODIFIER_VALUES;
            reduce_algorithm            = SegReduceRegionPolicy::REDUCE_ALGORITHM;
            scan_algorithm              = SegReduceRegionPolicy::SCAN_ALGORITHM;
        }
    };

    /**
     * SegReduceRegionByKeyKernel kernel dispatch configuration
     */
    struct SegReduceByKeyKernelConfig
    {
        int                     block_threads;
        int                     items_per_thread;
        BlockLoadAlgorithm      load_algorithm;
        bool                    load_warp_time_slicing;
        CacheLoadModifier       load_modifier;
        BlockScanAlgorithm      scan_algorithm;

        template <typename SegReduceRegionByKeyPolicy>
        __host__ __device__ __forceinline__
        void Init()
        {
            block_threads               = SegReduceRegionByKeyPolicy::BLOCK_THREADS;
            items_per_thread            = SegReduceRegionByKeyPolicy::ITEMS_PER_THREAD;
            load_algorithm              = SegReduceRegionByKeyPolicy::LOAD_ALGORITHM;
            load_warp_time_slicing      = SegReduceRegionByKeyPolicy::LOAD_WARP_TIME_SLICING;
            load_modifier               = SegReduceRegionByKeyPolicy::LOAD_MODIFIER;
            scan_algorithm              = SegReduceRegionByKeyPolicy::SCAN_ALGORITHM;
        }
    };


    /******************************************************************************
     * Dispatch entrypoints
     ******************************************************************************/

    /**
     * Internal dispatch routine for computing a device-wide segmented reduction.
     */
    template <
        typename                        SegReducePartitionKernelPtr,
        typename                        SegReduceRegionKernelPtr,               ///< Function type of cub::SegReduceRegionKernel
        typename                        SegReduceRegionByKeyKernelPtr>          ///< Function type of cub::SegReduceRegionByKeyKernel
    __host__ __device__ __forceinline__
    static cudaError_t Dispatch(
        void*               d_temp_storage,                        ///< [in] %Device allocation of temporary storage.  When NULL, the required allocation size is returned in \p temp_storage_bytes and no work is done.
        size_t                          &temp_storage_bytes,                    ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation.
        ValueIterator                   d_values,                               ///< [in] A sequence of \p num_values data to reduce
        SegmentOffsetIterator           d_segment_offsets,                      ///< [in] A sequence of (\p num_segments + 1) segment offsets
        OutputIteratorT                  d_output,                               ///< [out] A sequence of \p num_segments segment totals
        OffsetT                         num_values,                             ///< [in] Total number of values to reduce
        OffsetT                         num_segments,                           ///< [in] Number of segments being reduced
        Value                           identity,                               ///< [in] Identity value (for zero-length segments)
        ReductionOp                     reduction_op,                           ///< [in] Reduction operator
        cudaStream_t                    stream,                                 ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                            debug_synchronous,                      ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
        int                             sm_version,                             ///< [in] SM version of target device to use when computing SM occupancy
        SegReducePartitionKernelPtr     seg_reduce_partition_kernel,            ///< [in] Kernel function pointer to parameterization of cub::SegReduceRegionKernel
        SegReduceRegionKernelPtr        seg_reduce_region_kernel,               ///< [in] Kernel function pointer to parameterization of cub::SegReduceRegionKernel
        SegReduceRegionByKeyKernelPtr   seg_reduce_region_by_key_kernel,        ///< [in] Kernel function pointer to parameterization of cub::SegReduceRegionByKeyKernel
        SegReduceKernelConfig           &seg_reduce_region_config,              ///< [in] Dispatch parameters that match the policy that \p seg_reduce_region_kernel was compiled for
        SegReduceByKeyKernelConfig      &seg_reduce_region_by_key_config)       ///< [in] Dispatch parameters that match the policy that \p seg_reduce_region_by_key_kernel was compiled for
    {
#ifndef CUB_RUNTIME_ENABLED

        // Kernel launch not supported from this device
        return CubDebug(cudaErrorNotSupported );

#else

        cudaError error = cudaSuccess;
        do
        {
            // Dispatch two kernels: (1) a multi-block segmented reduction
            // to reduce regions by block, and (2) a single-block reduce-by-key kernel
            // to "fix up" segments spanning more than one region.

            // Tile size of seg_reduce_region_kernel
            int tile_size = seg_reduce_region_config.block_threads * seg_reduce_region_config.items_per_thread;

            // Get device ordinal
            int device_ordinal;
            if (CubDebug(error = cudaGetDevice(&device_ordinal))) break;

            // Get SM count
            int sm_count;
            if (CubDebug(error = cudaDeviceGetAttribute (&sm_count, cudaDevAttrMultiProcessorCount, device_ordinal))) break;

            // Get SM occupancy for histogram_region_kernel
            int seg_reduce_region_sm_occupancy;
            if (CubDebug(error = MaxSmOccupancy(
                seg_reduce_region_sm_occupancy,
                sm_version,
                seg_reduce_region_kernel,
                seg_reduce_region_config.block_threads))) break;

            // Get device occupancy for histogram_region_kernel
            int seg_reduce_region_occupancy = seg_reduce_region_sm_occupancy * sm_count;

            // Even-share work distribution
            int num_diagonals = num_values + num_segments;                  // Total number of work items
            int subscription_factor = seg_reduce_region_sm_occupancy;       // Amount of CTAs to oversubscribe the device beyond actively-resident (heuristic)
            int max_grid_size = seg_reduce_region_occupancy * subscription_factor;
            GridEvenShare<OffsetT>even_share(
                num_diagonals,
                max_grid_size,
                tile_size);

            // Get grid size for seg_reduce_region_kernel
            int seg_reduce_region_grid_size = even_share.grid_size;

            // Number of "fix-up" reduce-by-key tuples (2 per thread block)
            int num_tuple_partials = seg_reduce_region_grid_size * 2;
            int num_partition_samples = seg_reduce_region_grid_size + 1;

            // Temporary storage allocation requirements
            void* allocations[2];
            size_t allocation_sizes[2] =
            {
                num_tuple_partials * sizeof(KeyValuePair),  // bytes needed for "fix-up" reduce-by-key tuples
                num_partition_samples * sizeof(IndexPair),  // bytes needed block indices
            };

            // Alias the temporary allocations from the single storage blob (or set the necessary size of the blob)
            if (CubDebug(error = AliasTemporaries(d_temp_storage, temp_storage_bytes, allocations, allocation_sizes))) break;
            if (d_temp_storage == NULL)
            {
                // Return if the caller is simply requesting the size of the storage allocation
                return cudaSuccess;
            }

            // Alias the allocations
            KeyValuePair    *d_tuple_partials   = (KeyValuePair*) allocations[0];           // "fix-up" tuples
            IndexPair       *d_block_idx        = (IndexPair *) allocations[1];             // block starting/ending indices

            // Array of segment end-offsets
            SegmentOffsetIterator d_segment_end_offsets = d_segment_offsets + 1;

            // Grid launch params for seg_reduce_partition_kernel
            int partition_block_size = 32;
            int partition_grid_size = (num_partition_samples + partition_block_size - 1) / partition_block_size;

            // Partition work among multiple thread blocks if necessary
            if (seg_reduce_region_grid_size > 1)
            {
                // Log seg_reduce_partition_kernel configuration
                if (debug_synchronous) _CubLog("Invoking seg_reduce_partition_kernel<<<%d, %d, 0, %lld>>>()\n",
                    partition_grid_size, partition_block_size, (long long) stream);

                // Invoke seg_reduce_partition_kernel
                seg_reduce_partition_kernel<<<partition_grid_size, partition_block_size, 0, stream>>>(
                    d_segment_end_offsets,  ///< [in] A sequence of \p num_segments segment end-offsets
                    d_block_idx,
                    num_partition_samples,
                    num_values,             ///< [in] Number of values to reduce
                    num_segments,           ///< [in] Number of segments being reduced
                    even_share);            ///< [in] Even-share descriptor for mapping an equal number of tiles onto each thread block

                // Sync the stream if specified
                if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
            }

            // Log seg_reduce_region_kernel configuration
            if (debug_synchronous) _CubLog("Invoking seg_reduce_region_kernel<<<%d, %d, 0, %lld>>>(), %d items per thread, %d SM occupancy\n",
                seg_reduce_region_grid_size, seg_reduce_region_config.block_threads, (long long) stream, seg_reduce_region_config.items_per_thread, seg_reduce_region_sm_occupancy);

            // Mooch
            if (CubDebug(error = cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeEightByte))) break;

            // Invoke seg_reduce_region_kernel
            seg_reduce_region_kernel<<<seg_reduce_region_grid_size, seg_reduce_region_config.block_threads, 0, stream>>>(
                d_segment_end_offsets,
                d_values,
                d_output,
                d_tuple_partials,
                d_block_idx,
                num_values,
                num_segments,
                identity,
                reduction_op,
                even_share);

            // Sync the stream if specified
            if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
/*
            // Perform "fix-up" of region partial reductions if grid size is greater than one thread block
            if (seg_reduce_region_grid_size > 1)
            {
                // Log seg_reduce_region_by_key_kernel configuration
                if (debug_synchronous) _CubLog("Invoking seg_reduce_region_by_key_kernel<<<%d, %d, 0, %lld>>>(), %d items per thread\n",
                    1, seg_reduce_region_by_key_config.block_threads, (long long) stream, seg_reduce_region_by_key_config.items_per_thread);

                // Invoke seg_reduce_region_by_key_kernel
                seg_reduce_region_by_key_kernel<<<1, seg_reduce_region_by_key_config.block_threads, 0, stream>>>(
                    d_tuple_partials,
                    d_output,
                    num_segments,
                    num_tuple_partials,
                    identity,
                    reduction_op);

                // Sync the stream if specified
                if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
            }
*/
        }

        while (0);

        return error;

#endif // CUB_RUNTIME_ENABLED
    }


    /**
     * Internal dispatch routine for computing a device-wide segmented reduction.
     */
    __host__ __device__ __forceinline__
    static cudaError_t Dispatch(
        void*               d_temp_storage,                        ///< [in] %Device allocation of temporary storage.  When NULL, the required allocation size is returned in \p temp_storage_bytes and no work is done.
        size_t                          &temp_storage_bytes,                    ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation.
        ValueIterator                   d_values,                               ///< [in] A sequence of \p num_values data to reduce
        SegmentOffsetIterator           d_segment_offsets,                      ///< [in] A sequence of (\p num_segments + 1) segment offsets
        OutputIteratorT                  d_output,                               ///< [out] A sequence of \p num_segments segment totals
        OffsetT                         num_values,                             ///< [in] Total number of values to reduce
        OffsetT                         num_segments,                           ///< [in] Number of segments being reduced
        Value                           identity,                               ///< [in] Identity value (for zero-length segments)
        ReductionOp                     reduction_op,                           ///< [in] Reduction operator
        cudaStream_t                    stream,                                 ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                            debug_synchronous)                      ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        cudaError error = cudaSuccess;
        do
        {
            // Get PTX version
            int ptx_version;
    #if (CUB_PTX_ARCH == 0)
            if (CubDebug(error = PtxVersion(ptx_version))) break;
    #else
            ptx_version = CUB_PTX_ARCH;
    #endif

            // Get kernel kernel dispatch configurations
            SegReduceKernelConfig seg_reduce_region_config;
            SegReduceByKeyKernelConfig seg_reduce_region_by_key_config;

            InitConfigs(ptx_version, seg_reduce_region_config, seg_reduce_region_by_key_config);

            // Dispatch
            if (CubDebug(error = Dispatch(
                d_temp_storage,
                temp_storage_bytes,
                d_values,
                d_segment_offsets,
                d_output,
                num_values,
                num_segments,
                identity,
                reduction_op,
                stream,
                debug_synchronous,
                ptx_version,            // Use PTX version instead of SM version because, as a statically known quantity, this improves device-side launch dramatically but at the risk of imprecise occupancy calculation for mismatches
                SegReducePartitionKernel<SegmentOffsetIterator, OffsetT>,
                SegReduceRegionKernel<PtxSegReduceRegionPolicy, SegmentOffsetIterator, ValueIterator, OutputIteratorT, ReductionOp, OffsetT, Value>,
                SegReduceRegionByKeyKernel<PtxSegReduceRegionByKeyPolicy, KeyValuePair*, OutputIteratorT, ReductionOp, OffsetT, Value>,
                seg_reduce_region_config,
                seg_reduce_region_by_key_config))) break;
        }
        while (0);

        return error;

    }
};




/******************************************************************************
 * DeviceSegReduce
 *****************************************************************************/

/**
 * \brief DeviceSegReduce provides operations for computing a device-wide, parallel segmented reduction across a sequence of data items residing within global memory.
 * \ingroup DeviceModule
 *
 * \par Overview
 * A <a href="http://en.wikipedia.org/wiki/Reduce_(higher-order_function)"><em>reduction</em></a> (or <em>fold</em>)
 * uses a binary combining operator to compute a single aggregate from a list of input elements.
 *
 * \par Usage Considerations
 * \cdp_class{DeviceReduce}
 *
 */
struct DeviceSegReduce
{
    /**
     * \brief Computes a device-wide segmented reduction using the specified binary \p reduction_op functor.
     *
     * \par
     * Does not support non-commutative reduction operators.
     *
     * \devicestorage
     *
     * \cdp
     *
     * \iterator
     *
     * \tparam ValueIterator            <b>[inferred]</b> Random-access input iterator type for reading values
     * \tparam SegmentOffsetIterator    <b>[inferred]</b> Random-access input iterator type for reading segment end-offsets
     * \tparam OutputIteratorT           <b>[inferred]</b> Random-access output iterator type for writing segment reductions
     * \tparam Value                    <b>[inferred]</b> Value type
     * \tparam ReductionOp              <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
     */
    template <
        typename                ValueIterator,
        typename                SegmentOffsetIterator,
        typename                OutputIteratorT,
        typename                Value,
        typename                ReductionOp>
    __host__ __device__ __forceinline__
    static cudaError_t Reduce(
        void*               d_temp_storage,                        ///< [in] %Device allocation of temporary storage.  When NULL, the required allocation size is returned in \p temp_storage_bytes and no work is done.
        size_t                  &temp_storage_bytes,                    ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation.
        ValueIterator           d_values,                               ///< [in] A sequence of \p num_values data to reduce
        SegmentOffsetIterator   d_segment_offsets,                      ///< [in] A sequence of (\p num_segments + 1) segment offsets
        OutputIteratorT          d_output,                               ///< [out] A sequence of \p num_segments segment totals
        int                     num_values,                             ///< [in] Total number of values to reduce
        int                     num_segments,                           ///< [in] Number of segments being reduced
        Value                   identity,                               ///< [in] Identity value (for zero-length segments)
        ReductionOp             reduction_op,                           ///< [in] Reduction operator
        cudaStream_t            stream              = 0,                ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                    debug_synchronous   = false)            ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        typedef DeviceSegReduceDispatch<
                ValueIterator,
                SegmentOffsetIterator,
                OutputIteratorT,
                ReductionOp,
                OffsetT>
            DeviceSegReduceDispatch;

        return DeviceSegReduceDispatch::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_values,
            d_segment_offsets,
            d_output,
            num_values,
            num_segments,
            identity,
            reduction_op,
            stream,
            debug_synchronous);
    }


    /**
     * \brief Computes a device-wide segmented sum using the addition ('+') operator.
     *
     * \par
     * Does not support non-commutative summation.
     *
     * \devicestorage
     *
     * \cdp
     *
     * \iterator
     *
     * \tparam ValueIterator            <b>[inferred]</b> Random-access input iterator type for reading values
     * \tparam SegmentOffsetIterator    <b>[inferred]</b> Random-access input iterator type for reading segment end-offsets
     * \tparam OutputIteratorT           <b>[inferred]</b> Random-access output iterator type for writing segment reductions
     */
    template <
        typename                ValueIterator,
        typename                SegmentOffsetIterator,
        typename                OutputIteratorT>
    __host__ __device__ __forceinline__
    static cudaError_t Sum(
        void*               d_temp_storage,                        ///< [in] %Device allocation of temporary storage.  When NULL, the required allocation size is returned in \p temp_storage_bytes and no work is done.
        size_t                  &temp_storage_bytes,                    ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation.
        ValueIterator           d_values,                               ///< [in] A sequence of \p num_values data to reduce
        SegmentOffsetIterator   d_segment_offsets,                      ///< [in] A sequence of (\p num_segments + 1) segment offsets
        OutputIteratorT          d_output,                               ///< [out] A sequence of \p num_segments segment totals
        int                     num_values,                             ///< [in] Total number of values to reduce
        int                     num_segments,                           ///< [in] Number of segments being reduced
        cudaStream_t            stream              = 0,                ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
        bool                    debug_synchronous   = false)            ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  Also causes launch configurations to be printed to the console.  Default is \p false.
    {
        // Signed integer type for global offsets
        typedef int OffsetT;

        // Value type
        typedef typename std::iterator_traits<ValueIterator>::value_type Value;

        Value identity = Value();
        cub::Sum reduction_op;

        typedef DeviceSegReduceDispatch<
                ValueIterator,
                SegmentOffsetIterator,
                OutputIteratorT,
                cub::Sum,
                OffsetT>
            DeviceSegReduceDispatch;

        return DeviceSegReduceDispatch::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            d_values,
            d_segment_offsets,
            d_output,
            num_values,
            num_segments,
            identity,
            reduction_op,
            stream,
            debug_synchronous);
    }
};




//---------------------------------------------------------------------
// Test generation
//---------------------------------------------------------------------

/**
 * Initialize problem
 */
template <typename OffsetT, typename Value>
void Initialize(
    GenMode         gen_mode,
    Value           *h_values,
    vector<OffsetT> &segment_offsets,
    int             num_values,
    int             avg_segment_size)
{
    // Initialize values
//    if (g_verbose) printf("Values: ");
    for (int i = 0; i < num_values; ++i)
    {
        InitValue(gen_mode, h_values[i], i);
//        if (g_verbose) std::cout << h_values[i] << ", ";
    }
//    if (g_verbose) printf("\n\n");

    // Initialize segment lengths
    const unsigned int  MAX_INTEGER         = -1u;
    const unsigned int  MAX_SEGMENT_LENGTH  = avg_segment_size * 2;
    const double        SCALE_FACTOR        = double(MAX_SEGMENT_LENGTH) / double(MAX_INTEGER);

    segment_offsets.push_back(0);

    OffsetT consumed = 0;
    OffsetT remaining = num_values;
    while (remaining > 0)
    {
        // Randomly sample a 32-bit unsigned int
        unsigned int segment_length;
        RandomBits(segment_length);

        // Scale to maximum segment length
        segment_length = (unsigned int) (double(segment_length) * SCALE_FACTOR);
        segment_length = CUB_MIN(segment_length, remaining);

        consumed += segment_length;
        remaining -= segment_length;

        segment_offsets.push_back(consumed);
    }
}


/**
 * Compute reference answer
 */
template <typename OffsetT, typename Value>
void ComputeReference(
    Value       *h_values,
    OffsetT     *h_segment_offsets,
    Value       *h_reference,
    int         num_segments,
    Value       identity)
{
    if (g_verbose) printf("%d segment reductions: ", num_segments);
    for (int segment = 0; segment < num_segments; ++segment)
    {
        h_reference[segment] = identity;

        for (int i = h_segment_offsets[segment]; i < h_segment_offsets[segment + 1]; ++i)
        {
            h_reference[segment] += h_values[i];
        }
        if (g_verbose) std::cout << h_reference[segment] << ", ";
    }
    if (g_verbose) printf("\n\n");
}


/**
 * Simple test of device
 */
template <
    bool            CDP,
    typename        OffsetT,
    typename        Value,
    typename        ReductionOp>
void Test(
    OffsetT         num_values,
    int             avg_segment_size,
    ReductionOp     reduction_op,
    Value           identity,
    char*           type_string)
{
    Value   *h_values = NULL;
    Value   *h_reference = NULL;
    OffsetT *h_segment_offsets = NULL;

    printf("%d\n", num_values);

    // Initialize problem on host
    h_values = new Value[num_values];
    vector<OffsetT> segment_offsets;
    Initialize(UNIFORM, h_values, segment_offsets, num_values, avg_segment_size);

    // Allocate simple offsets array and copy STL vector into it
    h_segment_offsets = new OffsetT[segment_offsets.size()];
    for (int i = 0; i < segment_offsets.size(); ++i)
        h_segment_offsets[i] = segment_offsets[i];

    OffsetT num_segments = segment_offsets.size() - 1;
    if (g_verbose)
    {
        printf("%d segment offsets: ", num_segments);
        for (int i = 0; i < num_segments; ++i)
            std::cout << h_segment_offsets[i] << "(" << h_segment_offsets[i + 1] - h_segment_offsets[i] << "), ";
        if (g_verbose) std::cout << std::endl << std::endl;
    }

    // Solve problem on host
    h_reference = new Value[num_segments];
    ComputeReference(h_values, h_segment_offsets, h_reference, num_segments, identity);

    printf("\n\n%s cub::DeviceSegReduce::%s %d items (%d-byte %s), %d segments (%d-byte offset indices)\n",
        (CDP) ? "CDP device invoked" : "Host-invoked",
        (Equals<ReductionOp, Sum>::VALUE) ? "Sum" : "Reduce",
        num_values, (int) sizeof(Value), type_string,
        num_segments, (int) sizeof(OffsetT));
    fflush(stdout);

    // Allocate and initialize problem on device
    Value   *d_values = NULL;
    OffsetT *d_segment_offsets = NULL;
    Value   *d_output = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_values, sizeof(Value) * num_values));
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_segment_offsets, sizeof(OffsetT) * (num_segments + 1)));
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_output, sizeof(Value) * num_segments));
    CubDebugExit(cudaMemcpy(d_values, h_values, sizeof(Value) * num_values, cudaMemcpyHostToDevice));
    CubDebugExit(cudaMemcpy(d_segment_offsets, h_segment_offsets, sizeof(OffsetT) * (num_segments + 1), cudaMemcpyHostToDevice));

    // Request and allocate temporary storage
    void    *d_temp_storage = NULL;
    size_t  temp_storage_bytes = 0;
    CubDebugExit(DeviceSegReduce::Sum(d_temp_storage, temp_storage_bytes, d_values, d_segment_offsets, d_output, num_values, num_segments, 0, false));
    CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));

    // Clear device output
    CubDebugExit(cudaMemset(d_output, 0, sizeof(Value) * num_segments));

    // Run warmup/correctness iteration
    CubDebugExit(DeviceSegReduce::Sum(d_temp_storage, temp_storage_bytes, d_values, d_segment_offsets, d_output, num_values, num_segments, 0, true));

    // Check for correctness (and display results, if specified)
    int compare = CompareDeviceResults(h_reference, d_output, num_segments, true, g_verbose);
    printf("\t%s", compare ? "FAIL" : "PASS");

    // Flush any stdout/stderr
    fflush(stdout);
    fflush(stderr);

    // Performance
    GpuTimer gpu_timer;
    gpu_timer.Start();
    for (int i = 0; i < g_timing_iterations; ++i)
    {
        CubDebugExit(DeviceSegReduce::Sum(d_temp_storage, temp_storage_bytes, d_values, d_segment_offsets, d_output, num_values, num_segments, 0, false));
    }
    gpu_timer.Stop();
    float elapsed_millis = gpu_timer.ElapsedMillis();

    // Display performance
    if (g_timing_iterations > 0)
    {
        float avg_millis = elapsed_millis / g_timing_iterations;
        float giga_rate = float(num_values) / avg_millis / 1000.0 / 1000.0;
        float giga_bandwidth = giga_rate *
        printf(", %.3f avg ms, %.3f billion items/s, %.3f logical GB/s", avg_millis, giga_rate, giga_bandwidth);
    }

    // Device cleanup
    if (d_values) CubDebugExit(g_allocator.DeviceFree(d_values));
    if (d_segment_offsets) CubDebugExit(g_allocator.DeviceFree(d_segment_offsets));
    if (d_output) CubDebugExit(g_allocator.DeviceFree(d_output));
    if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));

    // Host cleanup
    if (h_values)           delete[] h_values;
    if (h_segment_offsets)  delete[] h_segment_offsets;
    if (h_reference)        delete[] h_reference;
}


/**
 * Main
 */
int main(int argc, char** argv)
{
    int num_values          = 32 * 1024 * 1024;
    int avg_segment_size    = 500;

    // Initialize command line
    CommandLineArgs args(argc, argv);
    g_verbose = args.CheckCmdLineFlag("v");
    args.GetCmdLineArgument("n", num_values);
    args.GetCmdLineArgument("ss", avg_segment_size);
    args.GetCmdLineArgument("i", g_timing_iterations);

    // Print usage
    if (args.CheckCmdLineFlag("help"))
    {
        printf("%s "
            "[--device=<device-id>] "
            "[--v] "
            "[--i=<timing iterations>] "
            "[--n=<input samples>]\n"
            "[--ss=<average segment size>]\n"
            "\n", argv[0]);
        exit(0);
    }

    // Initialize device
    CubDebugExit(args.DeviceInit());

    Test<false>((int) num_values, avg_segment_size, Sum(), (long long) 0, CUB_TYPE_STRING(long long));

    return 0;
}