test_device_seg_reduce.cu
93.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/******************************************************************************
* An implementation of segmented reduction using a load-balanced parallelization
* strategy based on the MergePath decision path.
******************************************************************************/
// Ensure printing of CUDA runtime errors to console
#define CUB_STDERR
#include <iterator>
#include <vector>
#include <string>
#include <algorithm>
#include <stdio.h>
#include <cub/cub.cuh>
#include "test_util.h"
using namespace cub;
using namespace std;
/******************************************************************************
* Globals, constants, and typedefs
******************************************************************************/
bool g_verbose = false;
int g_timing_iterations = 1;
CachingDeviceAllocator g_allocator(true);
/******************************************************************************
* Utility routines
******************************************************************************/
/**
* An pair of index offsets
*/
template <typename OffsetT>
struct IndexPair
{
OffsetT a_idx;
OffsetT b_idx;
};
/**
* Computes the begin offsets into A and B for the specified
* location (diagonal) along the merge decision path
*/
template <
int BLOCK_THREADS,
typename IteratorA,
typename IteratorB,
typename OffsetT>
__device__ __forceinline__ void ParallelMergePathSearch(
OffsetT diagonal,
IteratorA a,
IteratorB b,
IndexPair<OffsetT> begin, // Begin offsets into a and b
IndexPair<OffsetT> end, // End offsets into a and b
IndexPair<OffsetT> &intersection) // [out] Intersection offsets into a and b
{
OffsetT a_split_min = CUB_MAX(diagonal - end.b_idx, begin.a_idx);
OffsetT a_split_max = CUB_MIN(diagonal, end.a_idx);
while (a_split_min < a_split_max)
{
OffsetT a_distance = a_split_max - a_split_min;
OffsetT a_slice = (a_distance + BLOCK_THREADS - 1) >> Log2<BLOCK_THREADS>::VALUE;
OffsetT a_split_pivot = CUB_MIN(a_split_min + (threadIdx.x * a_slice), end.a_idx - 1);
int move_up = (a[a_split_pivot] <= b[diagonal - a_split_pivot - 1]);
int num_up = __syncthreads_count(move_up);
/*
_CubLog("a_split_min(%d), a_split_max(%d) a_distance(%d), a_slice(%d), a_split_pivot(%d), move_up(%d), num_up(%d), a_begin(%d), a_end(%d)\n",
a_split_min, a_split_max, a_distance, a_slice, a_split_pivot, move_up, num_up, a_begin, a_end);
*/
a_split_max = CUB_MIN(num_up * a_slice, end.a_idx);
a_split_min = CUB_MAX(a_split_max - a_slice, begin.a_idx) + 1;
}
intersection.a_idx = CUB_MIN(a_split_min, end.a_idx);
intersection.b_idx = CUB_MIN(diagonal - a_split_min, end.b_idx);
}
/**
* Computes the begin offsets into A and B for the specified
* location (diagonal) along the merge decision path
*/
template <
typename IteratorA,
typename IteratorB,
typename OffsetT>
__device__ __forceinline__ void MergePathSearch(
OffsetT diagonal,
IteratorA a,
IteratorB b,
IndexPair<OffsetT> begin, // Begin offsets into a and b
IndexPair<OffsetT> end, // End offsets into a and b
IndexPair<OffsetT> &intersection) // [out] Intersection offsets into a and b
{
OffsetT split_min = CUB_MAX(diagonal - end.b_idx, begin.a_idx);
OffsetT split_max = CUB_MIN(diagonal, end.a_idx);
while (split_min < split_max)
{
OffsetT split_pivot = (split_min + split_max) >> 1;
if (a[split_pivot] <= b[diagonal - split_pivot - 1])
{
// Move candidate split range up A, down B
split_min = split_pivot + 1;
}
else
{
// Move candidate split range up B, down A
split_max = split_pivot;
}
}
intersection.a_idx = CUB_MIN(split_min, end.a_idx);
intersection.b_idx = CUB_MIN(diagonal - split_min, end.b_idx);
}
/******************************************************************************
* Tuning policy types
******************************************************************************/
/**
* Parameterizable tuning policy type for BlockSegReduceRegion
*/
template <
int _BLOCK_THREADS, ///< Threads per thread block
int _ITEMS_PER_THREAD, ///< Items per thread (per tile of input)
bool _USE_SMEM_SEGMENT_CACHE, ///< Whether or not to cache incoming segment offsets in shared memory before reducing each tile
bool _USE_SMEM_VALUE_CACHE, ///< Whether or not to cache incoming values in shared memory before reducing each tile
CacheLoadModifier _LOAD_MODIFIER_SEGMENTS, ///< Cache load modifier for reading segment offsets
CacheLoadModifier _LOAD_MODIFIER_VALUES, ///< Cache load modifier for reading values
BlockReduceAlgorithm _REDUCE_ALGORITHM, ///< The BlockReduce algorithm to use
BlockScanAlgorithm _SCAN_ALGORITHM> ///< The BlockScan algorithm to use
struct BlockSegReduceRegionPolicy
{
enum
{
BLOCK_THREADS = _BLOCK_THREADS, ///< Threads per thread block
ITEMS_PER_THREAD = _ITEMS_PER_THREAD, ///< Items per thread (per tile of input)
USE_SMEM_SEGMENT_CACHE = _USE_SMEM_SEGMENT_CACHE, ///< Whether or not to cache incoming segment offsets in shared memory before reducing each tile
USE_SMEM_VALUE_CACHE = _USE_SMEM_VALUE_CACHE, ///< Whether or not to cache incoming upcoming values in shared memory before reducing each tile
};
static const CacheLoadModifier LOAD_MODIFIER_SEGMENTS = _LOAD_MODIFIER_SEGMENTS; ///< Cache load modifier for reading segment offsets
static const CacheLoadModifier LOAD_MODIFIER_VALUES = _LOAD_MODIFIER_VALUES; ///< Cache load modifier for reading values
static const BlockReduceAlgorithm REDUCE_ALGORITHM = _REDUCE_ALGORITHM; ///< The BlockReduce algorithm to use
static const BlockScanAlgorithm SCAN_ALGORITHM = _SCAN_ALGORITHM; ///< The BlockScan algorithm to use
};
/******************************************************************************
* Persistent thread block types
******************************************************************************/
/**
* \brief BlockSegReduceTiles implements a stateful abstraction of CUDA thread blocks for participating in device-wide segmented reduction.
*/
template <
typename BlockSegReduceRegionPolicy, ///< Parameterized BlockSegReduceRegionPolicy tuning policy
typename SegmentOffsetIterator, ///< Random-access input iterator type for reading segment end-offsets
typename ValueIterator, ///< Random-access input iterator type for reading values
typename OutputIteratorT, ///< Random-access output iterator type for writing segment reductions
typename ReductionOp, ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
typename OffsetT> ///< Signed integer type for global offsets
struct BlockSegReduceRegion
{
//---------------------------------------------------------------------
// Types and constants
//---------------------------------------------------------------------
// Constants
enum
{
BLOCK_THREADS = BlockSegReduceRegionPolicy::BLOCK_THREADS,
ITEMS_PER_THREAD = BlockSegReduceRegionPolicy::ITEMS_PER_THREAD,
TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD, /// Number of work items to be processed per tile
USE_SMEM_SEGMENT_CACHE = BlockSegReduceRegionPolicy::USE_SMEM_SEGMENT_CACHE, ///< Whether or not to cache incoming segment offsets in shared memory before reducing each tile
USE_SMEM_VALUE_CACHE = BlockSegReduceRegionPolicy::USE_SMEM_VALUE_CACHE, ///< Whether or not to cache incoming upcoming values in shared memory before reducing each tile
SMEM_SEGMENT_CACHE_ITEMS = USE_SMEM_SEGMENT_CACHE ? TILE_ITEMS : 1,
SMEM_VALUE_CACHE_ITEMS = USE_SMEM_VALUE_CACHE ? TILE_ITEMS : 1,
};
// Segment offset type
typedef typename std::iterator_traits<SegmentOffsetIterator>::value_type SegmentOffset;
// Value type
typedef typename std::iterator_traits<ValueIterator>::value_type Value;
// Counting iterator type
typedef CountingInputIterator<SegmentOffsetT, OffsetT> CountingIterator;
// Segment offsets iterator wrapper type
typedef typename If<(IsPointer<SegmentOffsetIterator>::VALUE),
CacheModifiedInputIterator<BlockSegReduceRegionPolicy::LOAD_MODIFIER_SEGMENTS, SegmentOffsetT, OffsetT>, // Wrap the native input pointer with CacheModifiedInputIterator
SegmentOffsetIterator>::Type // Directly use the supplied input iterator type
WrappedSegmentOffsetIterator;
// Values iterator wrapper type
typedef typename If<(IsPointer<ValueIterator>::VALUE),
CacheModifiedInputIterator<BlockSegReduceRegionPolicy::LOAD_MODIFIER_VALUES, Value, OffsetT>, // Wrap the native input pointer with CacheModifiedInputIterator
ValueIterator>::Type // Directly use the supplied input iterator type
WrappedValueIterator;
// Tail flag type for marking segment discontinuities
typedef int TailFlag;
// Reduce-by-key data type tuple (segment-ID, value)
typedef KeyValuePair<OffsetT, Value> KeyValuePair;
// Index pair data type
typedef IndexPair<OffsetT> IndexPair;
// BlockScan scan operator for reduction-by-segment
typedef ReduceByKeyOp<ReductionOp> ReduceByKeyOp;
// Stateful BlockScan prefix callback type for managing a running total while scanning consecutive tiles
typedef RunningBlockPrefixCallbackOp<
KeyValuePair,
ReduceByKeyOp>
RunningPrefixCallbackOp;
// Parameterized BlockShift type for exchanging index pairs
typedef BlockShift<
IndexPair,
BLOCK_THREADS>
BlockShift;
// Parameterized BlockReduce type for block-wide reduction
typedef BlockReduce<
Value,
BLOCK_THREADS,
BlockSegReduceRegionPolicy::REDUCE_ALGORITHM>
BlockReduce;
// Parameterized BlockScan type for block-wide reduce-value-by-key
typedef BlockScan<
KeyValuePair,
BLOCK_THREADS,
BlockSegReduceRegionPolicy::SCAN_ALGORITHM>
BlockScan;
// Shared memory type for this thread block
struct _TempStorage
{
union
{
// Smem needed for BlockScan
typename BlockScan::TempStorage scan;
// Smem needed for BlockReduce
typename BlockReduce::TempStorage reduce;
struct
{
// Smem needed for communicating start/end indices between threads for a given work tile
typename BlockShift::TempStorage shift;
// Smem needed for caching segment end-offsets
SegmentOffset cached_segment_end_offsets[SMEM_SEGMENT_CACHE_ITEMS + 1];
};
// Smem needed for caching values
Value cached_values[SMEM_VALUE_CACHE_ITEMS];
};
IndexPair block_region_idx[2]; // The starting [0] and ending [1] pairs of segment and value indices for the thread block's region
// The first partial reduction tuple scattered by this thread block
KeyValuePair first_tuple;
};
// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
//---------------------------------------------------------------------
// Thread fields
//---------------------------------------------------------------------
_TempStorage &temp_storage; ///< Reference to shared storage
WrappedSegmentOffsetIterator d_segment_end_offsets; ///< A sequence of \p num_segments segment end-offsets
WrappedValueIterator d_values; ///< A sequence of \p num_values data to reduce
OutputIteratorT d_output; ///< A sequence of \p num_segments segment totals
CountingIterator d_value_offsets; ///< A sequence of \p num_values value-offsets
IndexPair *d_block_idx;
OffsetT num_values; ///< Total number of values to reduce
OffsetT num_segments; ///< Number of segments being reduced
Value identity; ///< Identity value (for zero-length segments)
ReductionOp reduction_op; ///< Reduction operator
ReduceByKeyOp scan_op; ///< Reduce-by-key scan operator
RunningPrefixCallbackOp prefix_op; ///< Stateful running total for block-wide prefix scan of partial reduction tuples
//---------------------------------------------------------------------
// Operations
//---------------------------------------------------------------------
/**
* Constructor
*/
__device__ __forceinline__
BlockSegReduceRegion(
TempStorage &temp_storage, ///< Reference to shared storage
SegmentOffsetIterator d_segment_end_offsets, ///< A sequence of \p num_segments segment end-offsets
ValueIterator d_values, ///< A sequence of \p num_values values
OutputIteratorT d_output, ///< A sequence of \p num_segments segment totals
IndexPair *d_block_idx,
OffsetT num_values, ///< Number of values to reduce
OffsetT num_segments, ///< Number of segments being reduced
Value identity, ///< Identity value (for zero-length segments)
ReductionOp reduction_op) ///< Reduction operator
:
temp_storage(temp_storage.Alias()),
d_segment_end_offsets(d_segment_end_offsets),
d_values(d_values),
d_value_offsets(0),
d_output(d_output),
d_block_idx(d_block_idx),
num_values(num_values),
num_segments(num_segments),
identity(identity),
reduction_op(reduction_op),
scan_op(reduction_op),
prefix_op(scan_op)
{}
/**
* Fast-path single-segment tile reduction. Perform a
* simple block-wide reduction and accumulate the result into
* the running total.
*/
__device__ __forceinline__ void SingleSegmentTile(
IndexPair next_tile_idx,
IndexPair block_idx)
{
OffsetT tile_values = next_tile_idx.b_idx - block_idx.b_idx;
// Load a tile's worth of values (using identity for out-of-bounds items)
Value values[ITEMS_PER_THREAD];
LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_values + block_idx.b_idx, values, tile_values, identity);
// Barrier for smem reuse
__syncthreads();
// Reduce the tile of values and update the running total in thread-0
KeyValuePair tile_aggregate;
tile_aggregate.key = block_idx.a_idx;
tile_aggregate.value = BlockReduce(temp_storage.reduce).Reduce(values, reduction_op);
if (threadIdx.x == 0)
{
prefix_op.running_total = scan_op(prefix_op.running_total, tile_aggregate);
}
}
/**
* Fast-path empty-segment tile reduction. Write out a tile of identity
* values to output.
*/
__device__ __forceinline__ void EmptySegmentsTile(
IndexPair next_tile_idx,
IndexPair block_idx)
{
Value segment_reductions[ITEMS_PER_THREAD];
if (threadIdx.x == 0)
{
// The first segment gets the running segment total
segment_reductions[0] = prefix_op.running_total.value;
// Update the running prefix
prefix_op.running_total.value = identity;
prefix_op.running_total.key = next_tile_idx.a_idx;
}
else
{
// Remainder of segments in this tile get identity
segment_reductions[0] = identity;
}
// Remainder of segments in this tile get identity
#pragma unroll
for (int ITEM = 1; ITEM < ITEMS_PER_THREAD; ++ITEM)
segment_reductions[ITEM] = identity;
// Store reductions
OffsetT tile_segments = next_tile_idx.a_idx - block_idx.a_idx;
StoreDirectStriped<BLOCK_THREADS>(threadIdx.x, d_output + block_idx.a_idx, segment_reductions, tile_segments);
}
/**
* Multi-segment tile reduction.
*/
template <bool FULL_TILE>
__device__ __forceinline__ void MultiSegmentTile(
IndexPair block_idx,
IndexPair thread_idx,
IndexPair next_thread_idx,
IndexPair next_tile_idx)
{
IndexPair local_thread_idx;
local_thread_idx.a_idx = thread_idx.a_idx - block_idx.a_idx;
local_thread_idx.b_idx = thread_idx.b_idx - block_idx.b_idx;
// Check if first segment end-offset is in range
bool valid_segment = FULL_TILE || (thread_idx.a_idx < next_thread_idx.a_idx);
// Check if first value offset is in range
bool valid_value = FULL_TILE || (thread_idx.b_idx < next_thread_idx.b_idx);
// Load first segment end-offset
OffsetT segment_end_offset = (valid_segment) ?
(USE_SMEM_SEGMENT_CACHE)?
temp_storage.cached_segment_end_offsets[local_thread_idx.a_idx] :
d_segment_end_offsets[thread_idx.a_idx] :
-1;
OffsetT segment_ids[ITEMS_PER_THREAD];
OffsetT value_offsets[ITEMS_PER_THREAD];
KeyValuePair first_partial;
first_partial.key = thread_idx.a_idx;
first_partial.value = identity;
// Get segment IDs and gather-offsets for values
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
segment_ids[ITEM] = -1;
value_offsets[ITEM] = -1;
// Whether or not we slide (a) right along the segment path or (b) down the value path
if (valid_segment && (!valid_value || (segment_end_offset <= thread_idx.b_idx)))
{
// Consume this segment index
segment_ids[ITEM] = thread_idx.a_idx;
thread_idx.a_idx++;
local_thread_idx.a_idx++;
valid_segment = FULL_TILE || (thread_idx.a_idx < next_thread_idx.a_idx);
// Read next segment end-offset (if valid)
if (valid_segment)
{
if (USE_SMEM_SEGMENT_CACHE)
segment_end_offset = temp_storage.cached_segment_end_offsets[local_thread_idx.a_idx];
else
segment_end_offset = d_segment_end_offsets[thread_idx.a_idx];
}
}
else if (valid_value)
{
// Consume this value index
value_offsets[ITEM] = thread_idx.b_idx;
thread_idx.b_idx++;
local_thread_idx.b_idx++;
valid_value = FULL_TILE || (thread_idx.b_idx < next_thread_idx.b_idx);
}
}
// Load values
Value values[ITEMS_PER_THREAD];
if (USE_SMEM_VALUE_CACHE)
{
// Barrier for smem reuse
__syncthreads();
OffsetT tile_values = next_tile_idx.b_idx - block_idx.b_idx;
// Load a tile's worth of values (using identity for out-of-bounds items)
LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_values + block_idx.b_idx, values, tile_values, identity);
// Store to shared
StoreDirectStriped<BLOCK_THREADS>(threadIdx.x, temp_storage.cached_values, values, tile_values);
// Barrier for smem reuse
__syncthreads();
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
values[ITEM] = (value_offsets[ITEM] == -1) ?
identity :
temp_storage.cached_values[value_offsets[ITEM] - block_idx.b_idx];
}
}
else
{
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
values[ITEM] = (value_offsets[ITEM] == -1) ?
identity :
d_values[value_offsets[ITEM]];
}
}
// Reduce within thread segments
KeyValuePair running_total = first_partial;
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
if (segment_ids[ITEM] != -1)
{
// Consume this segment index
d_output[segment_ids[ITEM]] = running_total.value;
// _CubLog("Updating segment %d with value %lld\n", segment_ids[ITEM], running_total.value)
if (first_partial.key == segment_ids[ITEM])
first_partial.value = running_total.value;
running_total.key = segment_ids[ITEM];
running_total.value = identity;
}
running_total.value = reduction_op(running_total.value, values[ITEM]);
}
/*
// Barrier for smem reuse
__syncthreads();
// Use prefix scan to reduce values by segment-id. The segment-reductions end up in items flagged as segment-tails.
KeyValuePair block_aggregate;
BlockScan(temp_storage.scan).InclusiveScan(
pairs, // Scan input
pairs, // Scan output
scan_op, // Scan operator
block_aggregate, // Block-wide total (unused)
prefix_op); // Prefix operator for seeding the block-wide scan with the running total
*/
/*
// Check if first segment end-offset is in range
bool valid_segment = (thread_idx.a_idx < next_thread_idx.a_idx);
// Check if first value offset is in range
bool valid_value = (thread_idx.b_idx < next_thread_idx.b_idx);
// Load first segment end-offset
OffsetT segment_end_offset = (valid_segment) ?
d_segment_end_offsets[thread_idx.a_idx] :
num_values; // Out of range (the last segment end-offset is one-past the last value offset)
// Load first value offset
OffsetT value_offset = (valid_value) ?
d_value_offsets[thread_idx.b_idx] :
num_values; // Out of range (one-past the last value offset)
// Assemble segment-demarcating tail flags and partial reduction tuples
TailFlag tail_flags[ITEMS_PER_THREAD];
KeyValuePair partial_reductions[ITEMS_PER_THREAD];
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
// Default tuple and flag values
partial_reductions[ITEM].key = thread_idx.a_idx;
partial_reductions[ITEM].value = identity;
tail_flags[ITEM] = 0;
// Whether or not we slide (a) right along the segment path or (b) down the value path
if (valid_segment && (!valid_value || (segment_end_offset <= value_offset)))
{
// Consume this segment index
// Set tail flag noting the end of the segment
tail_flags[ITEM] = 1;
// Increment segment index
thread_idx.a_idx++;
// Read next segment end-offset (if valid)
if ((valid_segment = (thread_idx.a_idx < next_thread_idx.a_idx)))
segment_end_offset = d_segment_end_offsets[thread_idx.a_idx];
}
else if (valid_value)
{
// Consume this value index
// Update the tuple's value with the value at this index.
partial_reductions[ITEM].value = d_values[value_offset];
// Increment value index
thread_idx.b_idx++;
// Read next value offset (if valid)
if ((valid_value = (thread_idx.b_idx < next_thread_idx.b_idx)))
value_offset = d_value_offsets[thread_idx.b_idx];
}
}
// Use prefix scan to reduce values by segment-id. The segment-reductions end up in items flagged as segment-tails.
KeyValuePair block_aggregate;
BlockScan(temp_storage.scan).InclusiveScan(
partial_reductions, // Scan input
partial_reductions, // Scan output
scan_op, // Scan operator
block_aggregate, // Block-wide total (unused)
prefix_op); // Prefix operator for seeding the block-wide scan with the running total
// The first segment index for this region (hoist?)
OffsetT first_segment_idx = temp_storage.block_idx.a_idx[0];
// Scatter an accumulated reduction if it is the head of a valid segment
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
if (tail_flags[ITEM])
{
OffsetT segment_idx = partial_reductions[ITEM].key;
Value value = partial_reductions[ITEM].value;
// Write value reduction to corresponding segment id
d_output[segment_idx] = value;
// Save off the first value product that this thread block will scatter
if (segment_idx == first_segment_idx)
{
temp_storage.first_tuple.value = value;
}
}
}
*/
}
/**
* Have the thread block process the specified region of the MergePath decision path
*/
__device__ __forceinline__ void ProcessRegion(
OffsetT block_diagonal,
OffsetT next_block_diagonal,
KeyValuePair &first_tuple, // [Out] Valid in thread-0
KeyValuePair &last_tuple) // [Out] Valid in thread-0
{
// Thread block initialization
if (threadIdx.x < 2)
{
// Retrieve block starting and ending indices
IndexPair block_idx = {0, 0};
if (gridDim.x > 1)
{
block_idx = d_block_idx[blockIdx.x + threadIdx.x];
}
else if (threadIdx.x > 0)
{
block_idx.a_idx = num_segments;
block_idx.b_idx = num_values;
}
// Share block starting and ending indices
temp_storage.block_region_idx[threadIdx.x] = block_idx;
// Initialize the block's running prefix
if (threadIdx.x == 0)
{
prefix_op.running_total.key = block_idx.a_idx;
prefix_op.running_total.value = identity;
// Initialize the "first scattered partial reduction tuple" to the prefix tuple (in case we don't actually scatter one)
temp_storage.first_tuple = prefix_op.running_total;
}
}
// Ensure coherence of region indices
__syncthreads();
// Read block's starting indices
IndexPair block_idx = temp_storage.block_region_idx[0];
// Have the thread block iterate over the region
#pragma unroll 1
while (block_diagonal < next_block_diagonal)
{
// Read block's ending indices (hoist?)
IndexPair next_block_idx = temp_storage.block_region_idx[1];
// Clamp the per-thread search range to within one work-tile of block's current indices
IndexPair next_tile_idx;
next_tile_idx.a_idx = CUB_MIN(next_block_idx.a_idx, block_idx.a_idx + TILE_ITEMS);
next_tile_idx.b_idx = CUB_MIN(next_block_idx.b_idx, block_idx.b_idx + TILE_ITEMS);
// Have each thread search for the end-indices of its subranges within the segment and value inputs
IndexPair next_thread_idx;
if (USE_SMEM_SEGMENT_CACHE)
{
// Search in smem cache
OffsetT num_segments = next_tile_idx.a_idx - block_idx.a_idx;
// Load global
SegmentOffset segment_offsets[ITEMS_PER_THREAD];
LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_segment_end_offsets + block_idx.a_idx, segment_offsets, num_segments, num_values);
// Store to shared
StoreDirectStriped<BLOCK_THREADS>(threadIdx.x, temp_storage.cached_segment_end_offsets, segment_offsets);
__syncthreads();
OffsetT next_thread_diagonal = block_diagonal + ((threadIdx.x + 1) * ITEMS_PER_THREAD);
MergePathSearch(
next_thread_diagonal, // Next thread diagonal
temp_storage.cached_segment_end_offsets - block_idx.a_idx, // A (segment end-offsets)
d_value_offsets, // B (value offsets)
block_idx, // Start indices into A and B
next_tile_idx, // End indices into A and B
next_thread_idx); // [out] diagonal intersection indices into A and B
}
else
{
// Search in global
OffsetT next_thread_diagonal = block_diagonal + ((threadIdx.x + 1) * ITEMS_PER_THREAD);
MergePathSearch(
next_thread_diagonal, // Next thread diagonal
d_segment_end_offsets, // A (segment end-offsets)
d_value_offsets, // B (value offsets)
block_idx, // Start indices into A and B
next_tile_idx, // End indices into A and B
next_thread_idx); // [out] diagonal intersection indices into A and B
}
// Share thread end-indices to get thread begin-indices and tile end-indices
IndexPair thread_idx;
BlockShift(temp_storage.shift).Up(
next_thread_idx, // Input item
thread_idx, // [out] Output item
block_idx, // Prefix item to be provided to <em>thread</em><sub>0</sub>
next_tile_idx); // [out] Suffix item shifted out by the <em>thread</em><sub><tt>BLOCK_THREADS-1</tt></sub> to be provided to all threads
// if (block_idx.a_idx == next_tile_idx.a_idx)
// {
// // There are no segment end-offsets in this tile. Perform a
// // simple block-wide reduction and accumulate the result into
// // the running total.
// SingleSegmentTile(next_tile_idx, block_idx);
// }
// else if (block_idx.b_idx == next_tile_idx.b_idx)
// {
// // There are no values in this tile (only empty segments).
// EmptySegmentsTile(next_tile_idx.a_idx, block_idx.a_idx);
// }
// else
if ((next_tile_idx.a_idx < num_segments) && (next_tile_idx.b_idx < num_values))
{
// Merge the tile's segment and value indices (full tile)
MultiSegmentTile<true>(block_idx, thread_idx, next_thread_idx, next_tile_idx);
}
else
{
// Merge the tile's segment and value indices (partially full tile)
MultiSegmentTile<false>(block_idx, thread_idx, next_thread_idx, next_tile_idx);
}
// Advance the block's indices in preparation for the next tile
block_idx = next_tile_idx;
// Advance to the next region in the decision path
block_diagonal += TILE_ITEMS;
// Barrier for smem reuse
__syncthreads();
}
// Get first and last tuples for the region
if (threadIdx.x == 0)
{
first_tuple = temp_storage.first_tuple;
last_tuple = prefix_op.running_total;
}
}
};
/******************************************************************************
* Tuning policy types
******************************************************************************/
/**
* Parameterizable tuning policy type for BlockSegReduceRegionByKey
*/
template <
int _BLOCK_THREADS, ///< Threads per thread block
int _ITEMS_PER_THREAD, ///< Items per thread (per tile of input)
BlockLoadAlgorithm _LOAD_ALGORITHM, ///< The BlockLoad algorithm to use
bool _LOAD_WARP_TIME_SLICING, ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any load-related data transpositions (versus each warp having its own storage)
CacheLoadModifier _LOAD_MODIFIER, ///< Cache load modifier for reading input elements
BlockScanAlgorithm _SCAN_ALGORITHM> ///< The BlockScan algorithm to use
struct BlockSegReduceRegionByKeyPolicy
{
enum
{
BLOCK_THREADS = _BLOCK_THREADS, ///< Threads per thread block
ITEMS_PER_THREAD = _ITEMS_PER_THREAD, ///< Items per thread (per tile of input)
LOAD_WARP_TIME_SLICING = _LOAD_WARP_TIME_SLICING, ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any load-related data transpositions (versus each warp having its own storage) };
};
static const BlockLoadAlgorithm LOAD_ALGORITHM = _LOAD_ALGORITHM; ///< The BlockLoad algorithm to use
static const CacheLoadModifier LOAD_MODIFIER = _LOAD_MODIFIER; ///< Cache load modifier for reading input elements
static const BlockScanAlgorithm SCAN_ALGORITHM = _SCAN_ALGORITHM; ///< The BlockScan algorithm to use
};
/******************************************************************************
* Persistent thread block types
******************************************************************************/
/**
* \brief BlockSegReduceRegionByKey implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduce-value-by-key.
*/
template <
typename BlockSegReduceRegionByKeyPolicy, ///< Parameterized BlockSegReduceRegionByKeyPolicy tuning policy
typename InputIteratorT, ///< Random-access iterator referencing key-value input tuples
typename OutputIteratorT, ///< Random-access iterator referencing segment output totals
typename ReductionOp> ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
struct BlockSegReduceRegionByKey
{
//---------------------------------------------------------------------
// Types and constants
//---------------------------------------------------------------------
// Constants
enum
{
BLOCK_THREADS = BlockSegReduceRegionByKeyPolicy::BLOCK_THREADS,
ITEMS_PER_THREAD = BlockSegReduceRegionByKeyPolicy::ITEMS_PER_THREAD,
TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD,
};
// KeyValuePair input type
typedef typename std::iterator_traits<InputIteratorT>::value_type KeyValuePair;
// Signed integer type for global offsets
typedef typename KeyValuePair::Key OffsetT;
// Value type
typedef typename KeyValuePair::Value Value;
// Head flag type
typedef int HeadFlag;
// Input iterator wrapper type for loading KeyValuePair elements through cache
typedef CacheModifiedInputIterator<
BlockSegReduceRegionByKeyPolicy::LOAD_MODIFIER,
KeyValuePair,
OffsetT>
WrappedInputIteratorT;
// Parameterized BlockLoad type
typedef BlockLoad<
WrappedInputIteratorT,
BLOCK_THREADS,
ITEMS_PER_THREAD,
BlockSegReduceRegionByKeyPolicy::LOAD_ALGORITHM,
BlockSegReduceRegionByKeyPolicy::LOAD_WARP_TIME_SLICING>
BlockLoad;
// BlockScan scan operator for reduction-by-segment
typedef ReduceByKeyOp<ReductionOp> ReduceByKeyOp;
// Stateful BlockScan prefix callback type for managing a running total while scanning consecutive tiles
typedef RunningBlockPrefixCallbackOp<
KeyValuePair,
ReduceByKeyOp>
RunningPrefixCallbackOp;
// Parameterized BlockScan type for block-wide reduce-value-by-key
typedef BlockScan<
KeyValuePair,
BLOCK_THREADS,
BlockSegReduceRegionByKeyPolicy::SCAN_ALGORITHM>
BlockScan;
// Parameterized BlockDiscontinuity type for identifying key discontinuities
typedef BlockDiscontinuity<
OffsetT,
BLOCK_THREADS>
BlockDiscontinuity;
// Operator for detecting discontinuities in a list of segment identifiers.
struct NewSegmentOp
{
/// Returns true if row_b is the start of a new row
__device__ __forceinline__ bool operator()(const OffsetT& b, const OffsetT& a)
{
return (a != b);
}
};
// Shared memory type for this thread block
struct _TempStorage
{
union
{
typename BlockLoad::TempStorage load; // Smem needed for tile loading
struct {
typename BlockScan::TempStorage scan; // Smem needed for reduce-value-by-segment scan
typename BlockDiscontinuity::TempStorage discontinuity; // Smem needed for head-flagging
};
};
};
// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
//---------------------------------------------------------------------
// Thread fields
//---------------------------------------------------------------------
_TempStorage &temp_storage; ///< Reference to shared storage
WrappedInputIteratorT d_tuple_partials; ///< A sequence of partial reduction tuples to scan
OutputIteratorT d_output; ///< A sequence of segment totals
Value identity; ///< Identity value (for zero-length segments)
ReduceByKeyOp scan_op; ///< Reduce-by-key scan operator
RunningPrefixCallbackOp prefix_op; ///< Stateful running total for block-wide prefix scan of partial reduction tuples
//---------------------------------------------------------------------
// Operations
//---------------------------------------------------------------------
/**
* Constructor
*/
__device__ __forceinline__
BlockSegReduceRegionByKey(
TempStorage &temp_storage, ///< Reference to shared storage
InputIteratorT d_tuple_partials, ///< A sequence of partial reduction tuples to scan
OutputIteratorT d_output, ///< A sequence of segment totals
Value identity, ///< Identity value (for zero-length segments)
ReductionOp reduction_op) ///< Reduction operator
:
temp_storage(temp_storage.Alias()),
d_tuple_partials(d_tuple_partials),
d_output(d_output),
identity(identity),
scan_op(reduction_op),
prefix_op(scan_op)
{}
/**
* Processes a reduce-value-by-key input tile, outputting reductions for each segment
*/
template <bool FULL_TILE>
__device__ __forceinline__
void ProcessTile(
OffsetT block_offset,
OffsetT first_segment_idx,
OffsetT last_segment_idx,
int guarded_items = TILE_ITEMS)
{
KeyValuePair partial_reductions[ITEMS_PER_THREAD];
OffsetT segment_ids[ITEMS_PER_THREAD];
HeadFlag head_flags[ITEMS_PER_THREAD];
// Load a tile of block partials from previous kernel
if (FULL_TILE)
{
// Full tile
BlockLoad(temp_storage.load).Load(d_tuple_partials + block_offset, partial_reductions);
}
else
{
KeyValuePair oob_default;
oob_default.key = last_segment_idx; // The last segment ID to be reduced
oob_default.value = identity;
// Partially-full tile
BlockLoad(temp_storage.load).Load(d_tuple_partials + block_offset, partial_reductions, guarded_items, oob_default);
}
// Barrier for shared memory reuse
__syncthreads();
// Copy the segment IDs for head-flagging
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
segment_ids[ITEM] = partial_reductions[ITEM].key;
}
// FlagT segment heads by looking for discontinuities
BlockDiscontinuity(temp_storage.discontinuity).FlagHeads(
head_flags, // [out] Head flags
segment_ids, // Segment ids
NewSegmentOp(), // Functor for detecting start of new rows
prefix_op.running_total.key); // Last segment ID from previous tile to compare with first segment ID in this tile
// Reduce-value-by-segment across partial_reductions using exclusive prefix scan
KeyValuePair block_aggregate;
BlockScan(temp_storage.scan).ExclusiveScan(
partial_reductions, // Scan input
partial_reductions, // Scan output
scan_op, // Scan operator
block_aggregate, // Block-wide total (unused)
prefix_op); // Prefix operator for seeding the block-wide scan with the running total
// Scatter an accumulated reduction if it is the head of a valid segment
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
if (head_flags[ITEM])
{
d_output[partial_reductions[ITEM].key] = partial_reductions[ITEM].value;
}
}
}
/**
* Iterate over input tiles belonging to this thread block
*/
__device__ __forceinline__
void ProcessRegion(
OffsetT block_offset,
OffsetT block_end,
OffsetT first_segment_idx,
OffsetT last_segment_idx)
{
if (threadIdx.x == 0)
{
// Initialize running prefix to the first segment index paired with identity
prefix_op.running_total.key = first_segment_idx;
prefix_op.running_total.value = identity;
}
// Process full tiles
while (block_offset + TILE_ITEMS <= block_end)
{
ProcessTile<true>(block_offset, first_segment_idx, last_segment_idx);
__syncthreads();
block_offset += TILE_ITEMS;
}
// Process final value tile (if present)
int guarded_items = block_end - block_offset;
if (guarded_items)
{
ProcessTile<false>(block_offset, first_segment_idx, last_segment_idx, guarded_items);
}
}
};
/******************************************************************************
* Kernel entrypoints
******************************************************************************/
/**
* Segmented reduce region kernel entry point (multi-block).
*/
template <
typename SegmentOffsetIterator, ///< Random-access input iterator type for reading segment end-offsets
typename OffsetT> ///< Signed integer type for global offsets
__global__ void SegReducePartitionKernel(
SegmentOffsetIterator d_segment_end_offsets, ///< [in] A sequence of \p num_segments segment end-offsets
IndexPair<OffsetT> *d_block_idx,
int num_partition_samples,
OffsetT num_values, ///< [in] Number of values to reduce
OffsetT num_segments, ///< [in] Number of segments being reduced
GridEvenShare<OffsetT> even_share) ///< [in] Even-share descriptor for mapping an equal number of tiles onto each thread block
{
// Segment offset type
typedef typename std::iterator_traits<SegmentOffsetIterator>::value_type SegmentOffset;
// Counting iterator type
typedef CountingInputIterator<SegmentOffsetT, OffsetT> CountingIterator;
// Cache-modified iterator for segment end-offsets
CacheModifiedInputIterator<LOAD_LDG, SegmentOffsetT, OffsetT> d_wrapped_segment_end_offsets(d_segment_end_offsets);
// Counting iterator for value offsets
CountingIterator d_value_offsets(0);
// Initialize even-share to tell us where to start and stop our tile-processing
int partition_id = (blockDim.x * blockIdx.x) + threadIdx.x;
even_share.Init(partition_id);
// Search for block starting and ending indices
IndexPair<OffsetT> start_idx = {0, 0};
IndexPair<OffsetT> end_idx = {num_segments, num_values};
IndexPair<OffsetT> block_idx;
MergePathSearch(
even_share.block_offset, // Next thread diagonal
d_wrapped_segment_end_offsets, // A (segment end-offsets)
d_value_offsets, // B (value offsets)
start_idx, // Start indices into A and B
end_idx, // End indices into A and B
block_idx); // [out] diagonal intersection indices into A and B
// Write output
if (partition_id < num_partition_samples)
{
d_block_idx[partition_id] = block_idx;
}
}
/**
* Segmented reduce region kernel entry point (multi-block).
*/
template <
typename BlockSegReduceRegionPolicy, ///< Parameterized BlockSegReduceRegionPolicy tuning policy
typename SegmentOffsetIterator, ///< Random-access input iterator type for reading segment end-offsets
typename ValueIterator, ///< Random-access input iterator type for reading values
typename OutputIteratorT, ///< Random-access output iterator type for writing segment reductions
typename ReductionOp, ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
typename OffsetT, ///< Signed integer type for global offsets
typename Value> ///< Value type
__launch_bounds__ (BlockSegReduceRegionPolicy::BLOCK_THREADS)
__global__ void SegReduceRegionKernel(
SegmentOffsetIterator d_segment_end_offsets, ///< [in] A sequence of \p num_segments segment end-offsets
ValueIterator d_values, ///< [in] A sequence of \p num_values values
OutputIteratorT d_output, ///< [out] A sequence of \p num_segments segment totals
KeyValuePair<OffsetT, Value> *d_tuple_partials, ///< [out] A sequence of (gridDim.x * 2) partial reduction tuples
IndexPair<OffsetT> *d_block_idx,
OffsetT num_values, ///< [in] Number of values to reduce
OffsetT num_segments, ///< [in] Number of segments being reduced
Value identity, ///< [in] Identity value (for zero-length segments)
ReductionOp reduction_op, ///< [in] Reduction operator
GridEvenShare<OffsetT> even_share) ///< [in] Even-share descriptor for mapping an equal number of tiles onto each thread block
{
typedef KeyValuePair<OffsetT, Value> KeyValuePair;
// Specialize thread block abstraction type for reducing a range of segmented values
typedef BlockSegReduceRegion<
BlockSegReduceRegionPolicy,
SegmentOffsetIterator,
ValueIterator,
OutputIteratorT,
ReductionOp,
OffsetT>
BlockSegReduceRegion;
// Shared memory allocation
__shared__ typename BlockSegReduceRegion::TempStorage temp_storage;
// Initialize thread block even-share to tell us where to start and stop our tile-processing
even_share.BlockInit();
// Construct persistent thread block
BlockSegReduceRegion thread_block(
temp_storage,
d_segment_end_offsets,
d_values,
d_output,
d_block_idx,
num_values,
num_segments,
identity,
reduction_op);
// First and last partial reduction tuples within the range (valid in thread-0)
KeyValuePair first_tuple, last_tuple;
// Consume block's region of work
thread_block.ProcessRegion(
even_share.block_offset,
even_share.block_end,
first_tuple,
last_tuple);
if (threadIdx.x == 0)
{
if (gridDim.x > 1)
{
// Special case where the first segment written and the carry-out are for the same segment
if (first_tuple.key == last_tuple.key)
{
first_tuple.value = identity;
}
// Write the first and last partial products from this thread block so
// that they can be subsequently "fixed up" in the next kernel.
d_tuple_partials[blockIdx.x * 2] = first_tuple;
d_tuple_partials[(blockIdx.x * 2) + 1] = last_tuple;
}
}
}
/**
* Segmented reduce region kernel entry point (single-block).
*/
template <
typename BlockSegReduceRegionByKeyPolicy, ///< Parameterized BlockSegReduceRegionByKeyPolicy tuning policy
typename InputIteratorT, ///< Random-access iterator referencing key-value input tuples
typename OutputIteratorT, ///< Random-access iterator referencing segment output totals
typename ReductionOp, ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
typename OffsetT, ///< Signed integer type for global offsets
typename Value> ///< Value type
__launch_bounds__ (BlockSegReduceRegionByKeyPolicy::BLOCK_THREADS, 1)
__global__ void SegReduceRegionByKeyKernel(
InputIteratorT d_tuple_partials, ///< [in] A sequence of partial reduction tuples
OutputIteratorT d_output, ///< [out] A sequence of \p num_segments segment totals
OffsetT num_segments, ///< [in] Number of segments in the \p d_output sequence
int num_tuple_partials, ///< [in] Number of partial reduction tuples being reduced
Value identity, ///< [in] Identity value (for zero-length segments)
ReductionOp reduction_op) ///< [in] Reduction operator
{
// Specialize thread block abstraction type for reducing a range of values by key
typedef BlockSegReduceRegionByKey<
BlockSegReduceRegionByKeyPolicy,
InputIteratorT,
OutputIteratorT,
ReductionOp>
BlockSegReduceRegionByKey;
// Shared memory allocation
__shared__ typename BlockSegReduceRegionByKey::TempStorage temp_storage;
// Construct persistent thread block
BlockSegReduceRegionByKey thread_block(
temp_storage,
d_tuple_partials,
d_output,
identity,
reduction_op);
// Process input tiles
thread_block.ProcessRegion(
0, // Region start
num_tuple_partials, // Region end
0, // First segment ID
num_segments); // Last segment ID (one-past)
}
/******************************************************************************
* Dispatch
******************************************************************************/
/**
* Utility class for dispatching the appropriately-tuned kernels for DeviceReduce
*/
template <
typename ValueIterator, ///< Random-access input iterator type for reading values
typename SegmentOffsetIterator, ///< Random-access input iterator type for reading segment end-offsets
typename OutputIteratorT, ///< Random-access output iterator type for writing segment reductions
typename ReductionOp, ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
typename OffsetT> ///< Signed integer type for global offsets
struct DeviceSegReduceDispatch
{
// Value type
typedef typename std::iterator_traits<ValueIterator>::value_type Value;
// Reduce-by-key data type tuple (segment-ID, value)
typedef KeyValuePair<OffsetT, Value> KeyValuePair;
// Index pair data type
typedef IndexPair<OffsetT>IndexPair;
/******************************************************************************
* Tuning policies
******************************************************************************/
/// SM35
struct Policy350
{
// ReduceRegionPolicy
typedef BlockSegReduceRegionPolicy<
128, ///< Threads per thread block
6, ///< Items per thread (per tile of input)
true, ///< Whether or not to cache incoming segment offsets in shared memory before reducing each tile
false, ///< Whether or not to cache incoming values in shared memory before reducing each tile
LOAD_DEFAULT, ///< Cache load modifier for reading segment offsets
LOAD_LDG, ///< Cache load modifier for reading values
BLOCK_REDUCE_RAKING, ///< The BlockReduce algorithm to use
BLOCK_SCAN_WARP_SCANS> ///< The BlockScan algorithm to use
SegReduceRegionPolicy;
// ReduceRegionByKeyPolicy
typedef BlockSegReduceRegionByKeyPolicy<
256, ///< Threads per thread block
9, ///< Items per thread (per tile of input)
BLOCK_LOAD_DIRECT, ///< The BlockLoad algorithm to use
false, ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any load-related data transpositions (versus each warp having its own storage)
LOAD_LDG, ///< Cache load modifier for reading input elements
BLOCK_SCAN_WARP_SCANS> ///< The BlockScan algorithm to use
SegReduceRegionByKeyPolicy;
};
/// SM10
struct Policy100
{
// ReduceRegionPolicy
typedef BlockSegReduceRegionPolicy<
128, ///< Threads per thread block
3, ///< Items per thread (per tile of input)
false, ///< Whether or not to cache incoming segment offsets in shared memory before reducing each tile
false, ///< Whether or not to cache incoming values in shared memory before reducing each tile
LOAD_DEFAULT, ///< Cache load modifier for reading segment offsets
LOAD_DEFAULT, ///< Cache load modifier for reading values
BLOCK_REDUCE_RAKING, ///< The BlockReduce algorithm to use
BLOCK_SCAN_RAKING> ///< The BlockScan algorithm to use
SegReduceRegionPolicy;
// ReduceRegionByKeyPolicy
typedef BlockSegReduceRegionByKeyPolicy<
128, ///< Threads per thread block
3, ///< Items per thread (per tile of input)
BLOCK_LOAD_WARP_TRANSPOSE, ///< The BlockLoad algorithm to use
false, ///< Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any load-related data transpositions (versus each warp having its own storage)
LOAD_DEFAULT, ///< Cache load modifier for reading input elements
BLOCK_SCAN_WARP_SCANS> ///< The BlockScan algorithm to use
SegReduceRegionByKeyPolicy;
};
/******************************************************************************
* Tuning policies of current PTX compiler pass
******************************************************************************/
#if (CUB_PTX_ARCH >= 350)
typedef Policy350 PtxPolicy;
/*
#elif (CUB_PTX_ARCH >= 300)
typedef Policy300 PtxPolicy;
#elif (CUB_PTX_ARCH >= 200)
typedef Policy200 PtxPolicy;
#elif (CUB_PTX_ARCH >= 130)
typedef Policy130 PtxPolicy;
*/
#else
typedef Policy100 PtxPolicy;
#endif
// "Opaque" policies (whose parameterizations aren't reflected in the type signature)
struct PtxSegReduceRegionPolicy : PtxPolicy::SegReduceRegionPolicy {};
struct PtxSegReduceRegionByKeyPolicy : PtxPolicy::SegReduceRegionByKeyPolicy {};
/******************************************************************************
* Utilities
******************************************************************************/
/**
* Initialize kernel dispatch configurations with the policies corresponding to the PTX assembly we will use
*/
template <
typename SegReduceKernelConfig,
typename SegReduceByKeyKernelConfig>
__host__ __device__ __forceinline__
static void InitConfigs(
int ptx_version,
SegReduceKernelConfig &seg_reduce_region_config,
SegReduceByKeyKernelConfig &seg_reduce_region_by_key_config)
{
#if (CUB_PTX_ARCH > 0)
// We're on the device, so initialize the kernel dispatch configurations with the current PTX policy
seg_reduce_region_config.Init<PtxSegReduceRegionPolicy>();
seg_reduce_region_by_key_config.Init<PtxSegReduceRegionByKeyPolicy>();
#else
// We're on the host, so lookup and initialize the kernel dispatch configurations with the policies that match the device's PTX version
if (ptx_version >= 350)
{
seg_reduce_region_config.template Init<typename Policy350::SegReduceRegionPolicy>();
seg_reduce_region_by_key_config.template Init<typename Policy350::SegReduceRegionByKeyPolicy>();
}
/*
else if (ptx_version >= 300)
{
seg_reduce_region_config.template Init<typename Policy300::SegReduceRegionPolicy>();
seg_reduce_region_by_key_config.template Init<typename Policy300::SegReduceRegionByKeyPolicy>();
}
else if (ptx_version >= 200)
{
seg_reduce_region_config.template Init<typename Policy200::SegReduceRegionPolicy>();
seg_reduce_region_by_key_config.template Init<typename Policy200::SegReduceRegionByKeyPolicy>();
}
else if (ptx_version >= 130)
{
seg_reduce_region_config.template Init<typename Policy130::SegReduceRegionPolicy>();
seg_reduce_region_by_key_config.template Init<typename Policy130::SegReduceRegionByKeyPolicy>();
}
*/
else
{
seg_reduce_region_config.template Init<typename Policy100::SegReduceRegionPolicy>();
seg_reduce_region_by_key_config.template Init<typename Policy100::SegReduceRegionByKeyPolicy>();
}
#endif
}
/**
* SegReduceRegionKernel kernel dispatch configuration
*/
struct SegReduceKernelConfig
{
int block_threads;
int items_per_thread;
bool use_smem_segment_cache;
bool use_smem_value_cache;
CacheLoadModifier load_modifier_segments;
CacheLoadModifier load_modifier_values;
BlockReduceAlgorithm reduce_algorithm;
BlockScanAlgorithm scan_algorithm;
template <typename SegReduceRegionPolicy>
__host__ __device__ __forceinline__
void Init()
{
block_threads = SegReduceRegionPolicy::BLOCK_THREADS;
items_per_thread = SegReduceRegionPolicy::ITEMS_PER_THREAD;
use_smem_segment_cache = SegReduceRegionPolicy::USE_SMEM_SEGMENT_CACHE;
use_smem_value_cache = SegReduceRegionPolicy::USE_SMEM_VALUE_CACHE;
load_modifier_segments = SegReduceRegionPolicy::LOAD_MODIFIER_SEGMENTS;
load_modifier_values = SegReduceRegionPolicy::LOAD_MODIFIER_VALUES;
reduce_algorithm = SegReduceRegionPolicy::REDUCE_ALGORITHM;
scan_algorithm = SegReduceRegionPolicy::SCAN_ALGORITHM;
}
};
/**
* SegReduceRegionByKeyKernel kernel dispatch configuration
*/
struct SegReduceByKeyKernelConfig
{
int block_threads;
int items_per_thread;
BlockLoadAlgorithm load_algorithm;
bool load_warp_time_slicing;
CacheLoadModifier load_modifier;
BlockScanAlgorithm scan_algorithm;
template <typename SegReduceRegionByKeyPolicy>
__host__ __device__ __forceinline__
void Init()
{
block_threads = SegReduceRegionByKeyPolicy::BLOCK_THREADS;
items_per_thread = SegReduceRegionByKeyPolicy::ITEMS_PER_THREAD;
load_algorithm = SegReduceRegionByKeyPolicy::LOAD_ALGORITHM;
load_warp_time_slicing = SegReduceRegionByKeyPolicy::LOAD_WARP_TIME_SLICING;
load_modifier = SegReduceRegionByKeyPolicy::LOAD_MODIFIER;
scan_algorithm = SegReduceRegionByKeyPolicy::SCAN_ALGORITHM;
}
};
/******************************************************************************
* Dispatch entrypoints
******************************************************************************/
/**
* Internal dispatch routine for computing a device-wide segmented reduction.
*/
template <
typename SegReducePartitionKernelPtr,
typename SegReduceRegionKernelPtr, ///< Function type of cub::SegReduceRegionKernel
typename SegReduceRegionByKeyKernelPtr> ///< Function type of cub::SegReduceRegionByKeyKernel
__host__ __device__ __forceinline__
static cudaError_t Dispatch(
void* d_temp_storage, ///< [in] %Device allocation of temporary storage. When NULL, the required allocation size is returned in \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation.
ValueIterator d_values, ///< [in] A sequence of \p num_values data to reduce
SegmentOffsetIterator d_segment_offsets, ///< [in] A sequence of (\p num_segments + 1) segment offsets
OutputIteratorT d_output, ///< [out] A sequence of \p num_segments segment totals
OffsetT num_values, ///< [in] Total number of values to reduce
OffsetT num_segments, ///< [in] Number of segments being reduced
Value identity, ///< [in] Identity value (for zero-length segments)
ReductionOp reduction_op, ///< [in] Reduction operator
cudaStream_t stream, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous, ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
int sm_version, ///< [in] SM version of target device to use when computing SM occupancy
SegReducePartitionKernelPtr seg_reduce_partition_kernel, ///< [in] Kernel function pointer to parameterization of cub::SegReduceRegionKernel
SegReduceRegionKernelPtr seg_reduce_region_kernel, ///< [in] Kernel function pointer to parameterization of cub::SegReduceRegionKernel
SegReduceRegionByKeyKernelPtr seg_reduce_region_by_key_kernel, ///< [in] Kernel function pointer to parameterization of cub::SegReduceRegionByKeyKernel
SegReduceKernelConfig &seg_reduce_region_config, ///< [in] Dispatch parameters that match the policy that \p seg_reduce_region_kernel was compiled for
SegReduceByKeyKernelConfig &seg_reduce_region_by_key_config) ///< [in] Dispatch parameters that match the policy that \p seg_reduce_region_by_key_kernel was compiled for
{
#ifndef CUB_RUNTIME_ENABLED
// Kernel launch not supported from this device
return CubDebug(cudaErrorNotSupported );
#else
cudaError error = cudaSuccess;
do
{
// Dispatch two kernels: (1) a multi-block segmented reduction
// to reduce regions by block, and (2) a single-block reduce-by-key kernel
// to "fix up" segments spanning more than one region.
// Tile size of seg_reduce_region_kernel
int tile_size = seg_reduce_region_config.block_threads * seg_reduce_region_config.items_per_thread;
// Get device ordinal
int device_ordinal;
if (CubDebug(error = cudaGetDevice(&device_ordinal))) break;
// Get SM count
int sm_count;
if (CubDebug(error = cudaDeviceGetAttribute (&sm_count, cudaDevAttrMultiProcessorCount, device_ordinal))) break;
// Get SM occupancy for histogram_region_kernel
int seg_reduce_region_sm_occupancy;
if (CubDebug(error = MaxSmOccupancy(
seg_reduce_region_sm_occupancy,
sm_version,
seg_reduce_region_kernel,
seg_reduce_region_config.block_threads))) break;
// Get device occupancy for histogram_region_kernel
int seg_reduce_region_occupancy = seg_reduce_region_sm_occupancy * sm_count;
// Even-share work distribution
int num_diagonals = num_values + num_segments; // Total number of work items
int subscription_factor = seg_reduce_region_sm_occupancy; // Amount of CTAs to oversubscribe the device beyond actively-resident (heuristic)
int max_grid_size = seg_reduce_region_occupancy * subscription_factor;
GridEvenShare<OffsetT>even_share(
num_diagonals,
max_grid_size,
tile_size);
// Get grid size for seg_reduce_region_kernel
int seg_reduce_region_grid_size = even_share.grid_size;
// Number of "fix-up" reduce-by-key tuples (2 per thread block)
int num_tuple_partials = seg_reduce_region_grid_size * 2;
int num_partition_samples = seg_reduce_region_grid_size + 1;
// Temporary storage allocation requirements
void* allocations[2];
size_t allocation_sizes[2] =
{
num_tuple_partials * sizeof(KeyValuePair), // bytes needed for "fix-up" reduce-by-key tuples
num_partition_samples * sizeof(IndexPair), // bytes needed block indices
};
// Alias the temporary allocations from the single storage blob (or set the necessary size of the blob)
if (CubDebug(error = AliasTemporaries(d_temp_storage, temp_storage_bytes, allocations, allocation_sizes))) break;
if (d_temp_storage == NULL)
{
// Return if the caller is simply requesting the size of the storage allocation
return cudaSuccess;
}
// Alias the allocations
KeyValuePair *d_tuple_partials = (KeyValuePair*) allocations[0]; // "fix-up" tuples
IndexPair *d_block_idx = (IndexPair *) allocations[1]; // block starting/ending indices
// Array of segment end-offsets
SegmentOffsetIterator d_segment_end_offsets = d_segment_offsets + 1;
// Grid launch params for seg_reduce_partition_kernel
int partition_block_size = 32;
int partition_grid_size = (num_partition_samples + partition_block_size - 1) / partition_block_size;
// Partition work among multiple thread blocks if necessary
if (seg_reduce_region_grid_size > 1)
{
// Log seg_reduce_partition_kernel configuration
if (debug_synchronous) _CubLog("Invoking seg_reduce_partition_kernel<<<%d, %d, 0, %lld>>>()\n",
partition_grid_size, partition_block_size, (long long) stream);
// Invoke seg_reduce_partition_kernel
seg_reduce_partition_kernel<<<partition_grid_size, partition_block_size, 0, stream>>>(
d_segment_end_offsets, ///< [in] A sequence of \p num_segments segment end-offsets
d_block_idx,
num_partition_samples,
num_values, ///< [in] Number of values to reduce
num_segments, ///< [in] Number of segments being reduced
even_share); ///< [in] Even-share descriptor for mapping an equal number of tiles onto each thread block
// Sync the stream if specified
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
}
// Log seg_reduce_region_kernel configuration
if (debug_synchronous) _CubLog("Invoking seg_reduce_region_kernel<<<%d, %d, 0, %lld>>>(), %d items per thread, %d SM occupancy\n",
seg_reduce_region_grid_size, seg_reduce_region_config.block_threads, (long long) stream, seg_reduce_region_config.items_per_thread, seg_reduce_region_sm_occupancy);
// Mooch
if (CubDebug(error = cudaDeviceSetSharedMemConfig(cudaSharedMemBankSizeEightByte))) break;
// Invoke seg_reduce_region_kernel
seg_reduce_region_kernel<<<seg_reduce_region_grid_size, seg_reduce_region_config.block_threads, 0, stream>>>(
d_segment_end_offsets,
d_values,
d_output,
d_tuple_partials,
d_block_idx,
num_values,
num_segments,
identity,
reduction_op,
even_share);
// Sync the stream if specified
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
/*
// Perform "fix-up" of region partial reductions if grid size is greater than one thread block
if (seg_reduce_region_grid_size > 1)
{
// Log seg_reduce_region_by_key_kernel configuration
if (debug_synchronous) _CubLog("Invoking seg_reduce_region_by_key_kernel<<<%d, %d, 0, %lld>>>(), %d items per thread\n",
1, seg_reduce_region_by_key_config.block_threads, (long long) stream, seg_reduce_region_by_key_config.items_per_thread);
// Invoke seg_reduce_region_by_key_kernel
seg_reduce_region_by_key_kernel<<<1, seg_reduce_region_by_key_config.block_threads, 0, stream>>>(
d_tuple_partials,
d_output,
num_segments,
num_tuple_partials,
identity,
reduction_op);
// Sync the stream if specified
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
}
*/
}
while (0);
return error;
#endif // CUB_RUNTIME_ENABLED
}
/**
* Internal dispatch routine for computing a device-wide segmented reduction.
*/
__host__ __device__ __forceinline__
static cudaError_t Dispatch(
void* d_temp_storage, ///< [in] %Device allocation of temporary storage. When NULL, the required allocation size is returned in \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation.
ValueIterator d_values, ///< [in] A sequence of \p num_values data to reduce
SegmentOffsetIterator d_segment_offsets, ///< [in] A sequence of (\p num_segments + 1) segment offsets
OutputIteratorT d_output, ///< [out] A sequence of \p num_segments segment totals
OffsetT num_values, ///< [in] Total number of values to reduce
OffsetT num_segments, ///< [in] Number of segments being reduced
Value identity, ///< [in] Identity value (for zero-length segments)
ReductionOp reduction_op, ///< [in] Reduction operator
cudaStream_t stream, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
{
cudaError error = cudaSuccess;
do
{
// Get PTX version
int ptx_version;
#if (CUB_PTX_ARCH == 0)
if (CubDebug(error = PtxVersion(ptx_version))) break;
#else
ptx_version = CUB_PTX_ARCH;
#endif
// Get kernel kernel dispatch configurations
SegReduceKernelConfig seg_reduce_region_config;
SegReduceByKeyKernelConfig seg_reduce_region_by_key_config;
InitConfigs(ptx_version, seg_reduce_region_config, seg_reduce_region_by_key_config);
// Dispatch
if (CubDebug(error = Dispatch(
d_temp_storage,
temp_storage_bytes,
d_values,
d_segment_offsets,
d_output,
num_values,
num_segments,
identity,
reduction_op,
stream,
debug_synchronous,
ptx_version, // Use PTX version instead of SM version because, as a statically known quantity, this improves device-side launch dramatically but at the risk of imprecise occupancy calculation for mismatches
SegReducePartitionKernel<SegmentOffsetIterator, OffsetT>,
SegReduceRegionKernel<PtxSegReduceRegionPolicy, SegmentOffsetIterator, ValueIterator, OutputIteratorT, ReductionOp, OffsetT, Value>,
SegReduceRegionByKeyKernel<PtxSegReduceRegionByKeyPolicy, KeyValuePair*, OutputIteratorT, ReductionOp, OffsetT, Value>,
seg_reduce_region_config,
seg_reduce_region_by_key_config))) break;
}
while (0);
return error;
}
};
/******************************************************************************
* DeviceSegReduce
*****************************************************************************/
/**
* \brief DeviceSegReduce provides operations for computing a device-wide, parallel segmented reduction across a sequence of data items residing within global memory.
* \ingroup DeviceModule
*
* \par Overview
* A <a href="http://en.wikipedia.org/wiki/Reduce_(higher-order_function)"><em>reduction</em></a> (or <em>fold</em>)
* uses a binary combining operator to compute a single aggregate from a list of input elements.
*
* \par Usage Considerations
* \cdp_class{DeviceReduce}
*
*/
struct DeviceSegReduce
{
/**
* \brief Computes a device-wide segmented reduction using the specified binary \p reduction_op functor.
*
* \par
* Does not support non-commutative reduction operators.
*
* \devicestorage
*
* \cdp
*
* \iterator
*
* \tparam ValueIterator <b>[inferred]</b> Random-access input iterator type for reading values
* \tparam SegmentOffsetIterator <b>[inferred]</b> Random-access input iterator type for reading segment end-offsets
* \tparam OutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing segment reductions
* \tparam Value <b>[inferred]</b> Value type
* \tparam ReductionOp <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <
typename ValueIterator,
typename SegmentOffsetIterator,
typename OutputIteratorT,
typename Value,
typename ReductionOp>
__host__ __device__ __forceinline__
static cudaError_t Reduce(
void* d_temp_storage, ///< [in] %Device allocation of temporary storage. When NULL, the required allocation size is returned in \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation.
ValueIterator d_values, ///< [in] A sequence of \p num_values data to reduce
SegmentOffsetIterator d_segment_offsets, ///< [in] A sequence of (\p num_segments + 1) segment offsets
OutputIteratorT d_output, ///< [out] A sequence of \p num_segments segment totals
int num_values, ///< [in] Total number of values to reduce
int num_segments, ///< [in] Number of segments being reduced
Value identity, ///< [in] Identity value (for zero-length segments)
ReductionOp reduction_op, ///< [in] Reduction operator
cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
{
// Signed integer type for global offsets
typedef int OffsetT;
typedef DeviceSegReduceDispatch<
ValueIterator,
SegmentOffsetIterator,
OutputIteratorT,
ReductionOp,
OffsetT>
DeviceSegReduceDispatch;
return DeviceSegReduceDispatch::Dispatch(
d_temp_storage,
temp_storage_bytes,
d_values,
d_segment_offsets,
d_output,
num_values,
num_segments,
identity,
reduction_op,
stream,
debug_synchronous);
}
/**
* \brief Computes a device-wide segmented sum using the addition ('+') operator.
*
* \par
* Does not support non-commutative summation.
*
* \devicestorage
*
* \cdp
*
* \iterator
*
* \tparam ValueIterator <b>[inferred]</b> Random-access input iterator type for reading values
* \tparam SegmentOffsetIterator <b>[inferred]</b> Random-access input iterator type for reading segment end-offsets
* \tparam OutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing segment reductions
*/
template <
typename ValueIterator,
typename SegmentOffsetIterator,
typename OutputIteratorT>
__host__ __device__ __forceinline__
static cudaError_t Sum(
void* d_temp_storage, ///< [in] %Device allocation of temporary storage. When NULL, the required allocation size is returned in \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation.
ValueIterator d_values, ///< [in] A sequence of \p num_values data to reduce
SegmentOffsetIterator d_segment_offsets, ///< [in] A sequence of (\p num_segments + 1) segment offsets
OutputIteratorT d_output, ///< [out] A sequence of \p num_segments segment totals
int num_values, ///< [in] Total number of values to reduce
int num_segments, ///< [in] Number of segments being reduced
cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
{
// Signed integer type for global offsets
typedef int OffsetT;
// Value type
typedef typename std::iterator_traits<ValueIterator>::value_type Value;
Value identity = Value();
cub::Sum reduction_op;
typedef DeviceSegReduceDispatch<
ValueIterator,
SegmentOffsetIterator,
OutputIteratorT,
cub::Sum,
OffsetT>
DeviceSegReduceDispatch;
return DeviceSegReduceDispatch::Dispatch(
d_temp_storage,
temp_storage_bytes,
d_values,
d_segment_offsets,
d_output,
num_values,
num_segments,
identity,
reduction_op,
stream,
debug_synchronous);
}
};
//---------------------------------------------------------------------
// Test generation
//---------------------------------------------------------------------
/**
* Initialize problem
*/
template <typename OffsetT, typename Value>
void Initialize(
GenMode gen_mode,
Value *h_values,
vector<OffsetT> &segment_offsets,
int num_values,
int avg_segment_size)
{
// Initialize values
// if (g_verbose) printf("Values: ");
for (int i = 0; i < num_values; ++i)
{
InitValue(gen_mode, h_values[i], i);
// if (g_verbose) std::cout << h_values[i] << ", ";
}
// if (g_verbose) printf("\n\n");
// Initialize segment lengths
const unsigned int MAX_INTEGER = -1u;
const unsigned int MAX_SEGMENT_LENGTH = avg_segment_size * 2;
const double SCALE_FACTOR = double(MAX_SEGMENT_LENGTH) / double(MAX_INTEGER);
segment_offsets.push_back(0);
OffsetT consumed = 0;
OffsetT remaining = num_values;
while (remaining > 0)
{
// Randomly sample a 32-bit unsigned int
unsigned int segment_length;
RandomBits(segment_length);
// Scale to maximum segment length
segment_length = (unsigned int) (double(segment_length) * SCALE_FACTOR);
segment_length = CUB_MIN(segment_length, remaining);
consumed += segment_length;
remaining -= segment_length;
segment_offsets.push_back(consumed);
}
}
/**
* Compute reference answer
*/
template <typename OffsetT, typename Value>
void ComputeReference(
Value *h_values,
OffsetT *h_segment_offsets,
Value *h_reference,
int num_segments,
Value identity)
{
if (g_verbose) printf("%d segment reductions: ", num_segments);
for (int segment = 0; segment < num_segments; ++segment)
{
h_reference[segment] = identity;
for (int i = h_segment_offsets[segment]; i < h_segment_offsets[segment + 1]; ++i)
{
h_reference[segment] += h_values[i];
}
if (g_verbose) std::cout << h_reference[segment] << ", ";
}
if (g_verbose) printf("\n\n");
}
/**
* Simple test of device
*/
template <
bool CDP,
typename OffsetT,
typename Value,
typename ReductionOp>
void Test(
OffsetT num_values,
int avg_segment_size,
ReductionOp reduction_op,
Value identity,
char* type_string)
{
Value *h_values = NULL;
Value *h_reference = NULL;
OffsetT *h_segment_offsets = NULL;
printf("%d\n", num_values);
// Initialize problem on host
h_values = new Value[num_values];
vector<OffsetT> segment_offsets;
Initialize(UNIFORM, h_values, segment_offsets, num_values, avg_segment_size);
// Allocate simple offsets array and copy STL vector into it
h_segment_offsets = new OffsetT[segment_offsets.size()];
for (int i = 0; i < segment_offsets.size(); ++i)
h_segment_offsets[i] = segment_offsets[i];
OffsetT num_segments = segment_offsets.size() - 1;
if (g_verbose)
{
printf("%d segment offsets: ", num_segments);
for (int i = 0; i < num_segments; ++i)
std::cout << h_segment_offsets[i] << "(" << h_segment_offsets[i + 1] - h_segment_offsets[i] << "), ";
if (g_verbose) std::cout << std::endl << std::endl;
}
// Solve problem on host
h_reference = new Value[num_segments];
ComputeReference(h_values, h_segment_offsets, h_reference, num_segments, identity);
printf("\n\n%s cub::DeviceSegReduce::%s %d items (%d-byte %s), %d segments (%d-byte offset indices)\n",
(CDP) ? "CDP device invoked" : "Host-invoked",
(Equals<ReductionOp, Sum>::VALUE) ? "Sum" : "Reduce",
num_values, (int) sizeof(Value), type_string,
num_segments, (int) sizeof(OffsetT));
fflush(stdout);
// Allocate and initialize problem on device
Value *d_values = NULL;
OffsetT *d_segment_offsets = NULL;
Value *d_output = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_values, sizeof(Value) * num_values));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_segment_offsets, sizeof(OffsetT) * (num_segments + 1)));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_output, sizeof(Value) * num_segments));
CubDebugExit(cudaMemcpy(d_values, h_values, sizeof(Value) * num_values, cudaMemcpyHostToDevice));
CubDebugExit(cudaMemcpy(d_segment_offsets, h_segment_offsets, sizeof(OffsetT) * (num_segments + 1), cudaMemcpyHostToDevice));
// Request and allocate temporary storage
void *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
CubDebugExit(DeviceSegReduce::Sum(d_temp_storage, temp_storage_bytes, d_values, d_segment_offsets, d_output, num_values, num_segments, 0, false));
CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));
// Clear device output
CubDebugExit(cudaMemset(d_output, 0, sizeof(Value) * num_segments));
// Run warmup/correctness iteration
CubDebugExit(DeviceSegReduce::Sum(d_temp_storage, temp_storage_bytes, d_values, d_segment_offsets, d_output, num_values, num_segments, 0, true));
// Check for correctness (and display results, if specified)
int compare = CompareDeviceResults(h_reference, d_output, num_segments, true, g_verbose);
printf("\t%s", compare ? "FAIL" : "PASS");
// Flush any stdout/stderr
fflush(stdout);
fflush(stderr);
// Performance
GpuTimer gpu_timer;
gpu_timer.Start();
for (int i = 0; i < g_timing_iterations; ++i)
{
CubDebugExit(DeviceSegReduce::Sum(d_temp_storage, temp_storage_bytes, d_values, d_segment_offsets, d_output, num_values, num_segments, 0, false));
}
gpu_timer.Stop();
float elapsed_millis = gpu_timer.ElapsedMillis();
// Display performance
if (g_timing_iterations > 0)
{
float avg_millis = elapsed_millis / g_timing_iterations;
float giga_rate = float(num_values) / avg_millis / 1000.0 / 1000.0;
float giga_bandwidth = giga_rate *
printf(", %.3f avg ms, %.3f billion items/s, %.3f logical GB/s", avg_millis, giga_rate, giga_bandwidth);
}
// Device cleanup
if (d_values) CubDebugExit(g_allocator.DeviceFree(d_values));
if (d_segment_offsets) CubDebugExit(g_allocator.DeviceFree(d_segment_offsets));
if (d_output) CubDebugExit(g_allocator.DeviceFree(d_output));
if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));
// Host cleanup
if (h_values) delete[] h_values;
if (h_segment_offsets) delete[] h_segment_offsets;
if (h_reference) delete[] h_reference;
}
/**
* Main
*/
int main(int argc, char** argv)
{
int num_values = 32 * 1024 * 1024;
int avg_segment_size = 500;
// Initialize command line
CommandLineArgs args(argc, argv);
g_verbose = args.CheckCmdLineFlag("v");
args.GetCmdLineArgument("n", num_values);
args.GetCmdLineArgument("ss", avg_segment_size);
args.GetCmdLineArgument("i", g_timing_iterations);
// Print usage
if (args.CheckCmdLineFlag("help"))
{
printf("%s "
"[--device=<device-id>] "
"[--v] "
"[--i=<timing iterations>] "
"[--n=<input samples>]\n"
"[--ss=<average segment size>]\n"
"\n", argv[0]);
exit(0);
}
// Initialize device
CubDebugExit(args.DeviceInit());
Test<false>((int) num_values, avg_segment_size, Sum(), (long long) 0, CUB_TYPE_STRING(long long));
return 0;
}