test_device_reduce.cu 48.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/******************************************************************************
 * Test of DeviceReduce utilities
 ******************************************************************************/

// Ensure printing of CUDA runtime errors to console
#define CUB_STDERR

#include <stdio.h>
#include <limits>
#include <typeinfo>

#include <thrust/device_ptr.h>
#include <thrust/reduce.h>

#include <cub/util_allocator.cuh>
#include <cub/device/device_reduce.cuh>
#include <cub/device/device_segmented_reduce.cuh>
#include <cub/iterator/constant_input_iterator.cuh>
#include <cub/iterator/discard_output_iterator.cuh>
#include <cub/iterator/transform_input_iterator.cuh>

#include "test_util.h"

using namespace cub;


//---------------------------------------------------------------------
// Globals, constants and typedefs
//---------------------------------------------------------------------

int                     g_ptx_version;
int                     g_sm_count;
bool                    g_verbose           = false;
bool                    g_verbose_input     = false;
int                     g_timing_iterations = 0;
int                     g_repeat            = 0;
CachingDeviceAllocator  g_allocator(true);


// Dispatch types
enum Backend
{
    CUB,            // CUB method
    CUB_SEGMENTED,  // CUB segmented method
    CUB_CDP,        // GPU-based (dynamic parallelism) dispatch to CUB method
    THRUST,         // Thrust method
};


// Custom max functor
struct CustomMax
{
    /// Boolean max operator, returns <tt>(a > b) ? a : b</tt>
    template <typename OutputT>
    __host__ __device__ __forceinline__ OutputT operator()(const OutputT &a, const OutputT &b)
    {
        return CUB_MAX(a, b);
    }
};


//---------------------------------------------------------------------
// Dispatch to different CUB DeviceReduce entrypoints
//---------------------------------------------------------------------

/**
 * Dispatch to reduce entrypoint (custom-max)
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT, typename ReductionOpT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    ReductionOpT        reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    typedef typename std::iterator_traits<InputIteratorT>::value_type InputT;

    // The output value type
    typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE),  // OutputT =  (if output iterator's value type is void) ?
        typename std::iterator_traits<InputIteratorT>::value_type,                                          // ... then the input iterator's value type,
        typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT;                          // ... else the output iterator's value type

    // Max-identity
    OutputT identity = Traits<InputT>::Lowest(); // replace with std::numeric_limits<OutputT>::lowest() when C++ support is more prevalent

    // Invoke kernel to device reduction directly
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceReduce::Reduce(d_temp_storage, temp_storage_bytes,
            d_in, d_out, num_items, reduction_op, identity,
            stream, debug_synchronous);
    }

    printf("\t timing_timing_iterations: %d, temp_storage_bytes: %lld\n",
        timing_timing_iterations, temp_storage_bytes);

    return error;
}

/**
 * Dispatch to sum entrypoint
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    cub::Sum            reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // Invoke kernel to device reduction directly
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceReduce::Sum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, stream, debug_synchronous);
    }

    printf("\t timing_timing_iterations: %d, temp_storage_bytes: %lld\n",
        timing_timing_iterations, temp_storage_bytes);

    return error;
}

/**
 * Dispatch to min entrypoint
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    cub::Min            reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // Invoke kernel to device reduction directly
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceReduce::Min(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, stream, debug_synchronous);
    }

    printf("\t timing_timing_iterations: %d, temp_storage_bytes: %lld\n",
        timing_timing_iterations, temp_storage_bytes);

    return error;
}

/**
 * Dispatch to max entrypoint
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    cub::Max            reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // Invoke kernel to device reduction directly
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceReduce::Max(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, stream, debug_synchronous);
    }

    printf("\t timing_timing_iterations: %d, temp_storage_bytes: %lld\n",
        timing_timing_iterations, temp_storage_bytes);

    return error;
}

/**
 * Dispatch to argmin entrypoint
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    cub::ArgMin         reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // Invoke kernel to device reduction directly
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceReduce::ArgMin(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, stream, debug_synchronous);
    }

    printf("\t timing_timing_iterations: %d, temp_storage_bytes: %lld\n",
        timing_timing_iterations, temp_storage_bytes);

    return error;
}

/**
 * Dispatch to argmax entrypoint
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    cub::ArgMax         reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // Invoke kernel to device reduction directly
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceReduce::ArgMax(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, stream, debug_synchronous);
    }

    printf("\t timing_timing_iterations: %d, temp_storage_bytes: %lld\n",
        timing_timing_iterations, temp_storage_bytes);

    return error;
}


//---------------------------------------------------------------------
// Dispatch to different CUB DeviceSegmentedReduce entrypoints
//---------------------------------------------------------------------

/**
 * Dispatch to reduce entrypoint (custom-max)
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT, typename ReductionOpT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB_SEGMENTED>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    ReductionOpT        reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // The input value type
    typedef typename std::iterator_traits<InputIteratorT>::value_type InputT;

    // The output value type
    typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE),  // OutputT =  (if output iterator's value type is void) ?
        typename std::iterator_traits<InputIteratorT>::value_type,                                          // ... then the input iterator's value type,
        typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT;                          // ... else the output iterator's value type

    // Max-identity
    OutputT identity = Traits<InputT>::Lowest(); // replace with std::numeric_limits<OutputT>::lowest() when C++ support is more prevalent

    // Invoke kernel to device reduction directly
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceSegmentedReduce::Reduce(d_temp_storage, temp_storage_bytes,
            d_in, d_out, max_segments, d_segment_offsets, d_segment_offsets + 1, reduction_op, identity,
            stream, debug_synchronous);
    }
    return error;
}

/**
 * Dispatch to sum entrypoint
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB_SEGMENTED>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    cub::Sum            reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // Invoke kernel to device reduction directly
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceSegmentedReduce::Sum(d_temp_storage, temp_storage_bytes,
            d_in, d_out, max_segments, d_segment_offsets, d_segment_offsets + 1,
            stream, debug_synchronous);
    }
    return error;
}

/**
 * Dispatch to min entrypoint
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB_SEGMENTED>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    cub::Min            reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // Invoke kernel to device reduction directly
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceSegmentedReduce::Min(d_temp_storage, temp_storage_bytes,
            d_in, d_out, max_segments, d_segment_offsets, d_segment_offsets + 1,
            stream, debug_synchronous);
    }
    return error;
}

/**
 * Dispatch to max entrypoint
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB_SEGMENTED>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    cub::Max            reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // Invoke kernel to device reduction directly
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceSegmentedReduce::Max(d_temp_storage, temp_storage_bytes,
            d_in, d_out, max_segments, d_segment_offsets, d_segment_offsets + 1,
            stream, debug_synchronous);
    }
    return error;
}

/**
 * Dispatch to argmin entrypoint
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB_SEGMENTED>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    cub::ArgMin         reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // Invoke kernel to device reduction directly
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceSegmentedReduce::ArgMin(d_temp_storage, temp_storage_bytes,
            d_in, d_out, max_segments, d_segment_offsets, d_segment_offsets + 1,
            stream, debug_synchronous);
    }
    return error;
}

/**
 * Dispatch to argmax entrypoint
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB_SEGMENTED>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    cub::ArgMax         reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // Invoke kernel to device reduction directly
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceSegmentedReduce::ArgMax(d_temp_storage, temp_storage_bytes,
            d_in, d_out, max_segments, d_segment_offsets, d_segment_offsets + 1,
            stream, debug_synchronous);
    }
    return error;
}


//---------------------------------------------------------------------
// Dispatch to different Thrust entrypoints
//---------------------------------------------------------------------

/**
 * Dispatch to reduction entrypoint (min or max specialization)
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT, typename ReductionOpT>
cudaError_t Dispatch(
    Int2Type<THRUST>    dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    ReductionOpT         reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // The output value type
    typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE),  // OutputT =  (if output iterator's value type is void) ?
        typename std::iterator_traits<InputIteratorT>::value_type,                                          // ... then the input iterator's value type,
        typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT;                          // ... else the output iterator's value type

    if (d_temp_storage == 0)
    {
        temp_storage_bytes = 1;
    }
    else
    {
        OutputT init;
        CubDebugExit(cudaMemcpy(&init, d_in + 0, sizeof(OutputT), cudaMemcpyDeviceToHost));

        thrust::device_ptr<OutputT> d_in_wrapper(d_in);
        OutputT retval;
        for (int i = 0; i < timing_timing_iterations; ++i)
        {
            retval = thrust::reduce(d_in_wrapper, d_in_wrapper + num_items, init, reduction_op);
        }

        if (!Equals<OutputIteratorT, DiscardOutputIterator<int> >::VALUE)
            CubDebugExit(cudaMemcpy(d_out, &retval, sizeof(OutputT), cudaMemcpyHostToDevice));
    }

    return cudaSuccess;
}

/**
 * Dispatch to reduction entrypoint (sum specialization)
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT>
cudaError_t Dispatch(
    Int2Type<THRUST>    dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    Sum                 reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // The output value type
    typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE),  // OutputT =  (if output iterator's value type is void) ?
        typename std::iterator_traits<InputIteratorT>::value_type,                                          // ... then the input iterator's value type,
        typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT;                          // ... else the output iterator's value type

    if (d_temp_storage == 0)
    {
        temp_storage_bytes = 1;
    }
    else
    {
        thrust::device_ptr<OutputT> d_in_wrapper(d_in);
        OutputT retval;
        for (int i = 0; i < timing_timing_iterations; ++i)
        {
            retval = thrust::reduce(d_in_wrapper, d_in_wrapper + num_items);
        }

        if (!Equals<OutputIteratorT, DiscardOutputIterator<int> >::VALUE)
            CubDebugExit(cudaMemcpy(d_out, &retval, sizeof(OutputT), cudaMemcpyHostToDevice));
    }

    return cudaSuccess;
}


//---------------------------------------------------------------------
// CUDA nested-parallelism test kernel
//---------------------------------------------------------------------

/**
 * Simple wrapper kernel to invoke DeviceReduce
 */
template <
    typename            InputIteratorT,
    typename            OutputIteratorT,
    typename            OffsetIteratorT,
    typename            ReductionOpT>
__global__ void CnpDispatchKernel(
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t              temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    ReductionOpT        reduction_op,
    bool                debug_synchronous)
{
#ifndef CUB_CDP
    *d_cdp_error = cudaErrorNotSupported;
#else
    *d_cdp_error = Dispatch(Int2Type<CUB>(), timing_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes,
        d_in, d_out, num_items, max_segments, d_segment_offsets, reduction_op, 0, debug_synchronous);
    *d_temp_storage_bytes = temp_storage_bytes;
#endif
}


/**
 * Dispatch to CUB_CDP kernel
 */
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetIteratorT, typename ReductionOpT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB_CDP>       dispatch_to,
    int                 timing_timing_iterations,
    size_t              *d_temp_storage_bytes,
    cudaError_t         *d_cdp_error,

    void*               d_temp_storage,
    size_t&             temp_storage_bytes,
    InputIteratorT      d_in,
    OutputIteratorT     d_out,
    int                 num_items,
    int                 max_segments,
    OffsetIteratorT     d_segment_offsets,
    ReductionOpT        reduction_op,
    cudaStream_t        stream,
    bool                debug_synchronous)
{
    // Invoke kernel to invoke device-side dispatch
    CnpDispatchKernel<<<1,1>>>(timing_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes,
        d_in, d_out, num_items, max_segments, d_segment_offsets, reduction_op, debug_synchronous);

    // Copy out temp_storage_bytes
    CubDebugExit(cudaMemcpy(&temp_storage_bytes, d_temp_storage_bytes, sizeof(size_t) * 1, cudaMemcpyDeviceToHost));

    // Copy out error
    cudaError_t retval;
    CubDebugExit(cudaMemcpy(&retval, d_cdp_error, sizeof(cudaError_t) * 1, cudaMemcpyDeviceToHost));
    return retval;
}



//---------------------------------------------------------------------
// Problem generation
//---------------------------------------------------------------------

/// Initialize problem
template <typename InputT>
void Initialize(
    GenMode         gen_mode,
    InputT          *h_in,
    int             num_items)
{
    for (int i = 0; i < num_items; ++i)
    {
        InitValue(gen_mode, h_in[i], i);
    }

    if (g_verbose_input)
    {
        printf("Input:\n");
        DisplayResults(h_in, num_items);
        printf("\n\n");
    }
}


/// Solve problem (max/custom-max functor)
template <typename ReductionOpT, typename InputT, typename _OutputT>
struct Solution
{
    typedef _OutputT OutputT;

    template <typename HostInputIteratorT, typename OffsetT, typename OffsetIteratorT>
    static void Solve(HostInputIteratorT h_in, OutputT *h_reference, OffsetT num_segments, OffsetIteratorT h_segment_offsets,
        ReductionOpT reduction_op)
    {
        for (int i = 0; i < num_segments; ++i)
        {
            OutputT aggregate = Traits<InputT>::Lowest(); // replace with std::numeric_limits<OutputT>::lowest() when C++ support is more prevalent
            for (int j = h_segment_offsets[i]; j < h_segment_offsets[i + 1]; ++j)
                aggregate = reduction_op(aggregate, OutputT(h_in[j]));
            h_reference[i] = aggregate;
        }
    }
};

/// Solve problem (min functor)
template <typename InputT, typename _OutputT>
struct Solution<cub::Min, InputT, _OutputT>
{
    typedef _OutputT OutputT;

    template <typename HostInputIteratorT, typename OffsetT, typename OffsetIteratorT>
    static void Solve(HostInputIteratorT h_in, OutputT *h_reference, OffsetT num_segments, OffsetIteratorT h_segment_offsets,
        cub::Min reduction_op)
    {
        for (int i = 0; i < num_segments; ++i)
        {
            OutputT aggregate = Traits<InputT>::Max();    // replace with std::numeric_limits<OutputT>::max() when C++ support is more prevalent
            for (int j = h_segment_offsets[i]; j < h_segment_offsets[i + 1]; ++j)
                aggregate = reduction_op(aggregate, OutputT(h_in[j]));
            h_reference[i] = aggregate;
        }
    }
};


/// Solve problem (sum functor)
template <typename InputT, typename _OutputT>
struct Solution<cub::Sum, InputT, _OutputT>
{
    typedef _OutputT OutputT;

    template <typename HostInputIteratorT, typename OffsetT, typename OffsetIteratorT>
    static void Solve(HostInputIteratorT h_in, OutputT *h_reference, OffsetT num_segments, OffsetIteratorT h_segment_offsets,
        cub::Sum reduction_op)
    {
        for (int i = 0; i < num_segments; ++i)
        {
            OutputT aggregate;
            InitValue(INTEGER_SEED, aggregate, 0);
            for (int j = h_segment_offsets[i]; j < h_segment_offsets[i + 1]; ++j)
                aggregate = reduction_op(aggregate, OutputT(h_in[j]));
            h_reference[i] = aggregate;
        }
    }
};

/// Solve problem (argmin functor)
template <typename InputValueT, typename OutputValueT>
struct Solution<cub::ArgMin, InputValueT, OutputValueT>
{
    typedef KeyValuePair<int, OutputValueT> OutputT;

    template <typename HostInputIteratorT, typename OffsetT, typename OffsetIteratorT>
    static void Solve(HostInputIteratorT h_in, OutputT *h_reference, OffsetT num_segments, OffsetIteratorT h_segment_offsets,
        cub::ArgMin reduction_op)
    {
        for (int i = 0; i < num_segments; ++i)
        {
            OutputT aggregate(1, Traits<InputValueT>::Max()); // replace with std::numeric_limits<OutputT>::max() when C++ support is more prevalent
            for (int j = h_segment_offsets[i]; j < h_segment_offsets[i + 1]; ++j)
            {
                OutputT item(j - h_segment_offsets[i], OutputValueT(h_in[j]));
                aggregate = reduction_op(aggregate, item);
            }
            h_reference[i] = aggregate;
        }
    }
};


/// Solve problem (argmax functor)
template <typename InputValueT, typename OutputValueT>
struct Solution<cub::ArgMax, InputValueT, OutputValueT>
{
    typedef KeyValuePair<int, OutputValueT> OutputT;

    template <typename HostInputIteratorT, typename OffsetT, typename OffsetIteratorT>
    static void Solve(HostInputIteratorT h_in, OutputT *h_reference, OffsetT num_segments, OffsetIteratorT h_segment_offsets,
        cub::ArgMax reduction_op)
    {
        for (int i = 0; i < num_segments; ++i)
        {
            OutputT aggregate(1, Traits<InputValueT>::Lowest()); // replace with std::numeric_limits<OutputT>::lowest() when C++ support is more prevalent
            for (int j = h_segment_offsets[i]; j < h_segment_offsets[i + 1]; ++j)
            {
                OutputT item(j - h_segment_offsets[i], OutputValueT(h_in[j]));
                aggregate = reduction_op(aggregate, item);
            }
            h_reference[i] = aggregate;
        }
    }
};


//---------------------------------------------------------------------
// Problem generation
//---------------------------------------------------------------------

/// Test DeviceReduce for a given problem input
template <
    typename                BackendT,
    typename                DeviceInputIteratorT,
    typename                DeviceOutputIteratorT,
    typename                HostReferenceIteratorT,
    typename                OffsetT,
    typename                OffsetIteratorT,
    typename                ReductionOpT>
void Test(
    BackendT                backend,
    DeviceInputIteratorT    d_in,
    DeviceOutputIteratorT   d_out,
    OffsetT                 num_items,
    OffsetT                 num_segments,
    OffsetIteratorT         d_segment_offsets,
    ReductionOpT            reduction_op,
    HostReferenceIteratorT  h_reference)
{
    // Input data types
    typedef typename std::iterator_traits<DeviceInputIteratorT>::value_type InputT;

    // Allocate CUB_CDP device arrays for temp storage size and error
    size_t          *d_temp_storage_bytes = NULL;
    cudaError_t     *d_cdp_error = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_temp_storage_bytes,  sizeof(size_t) * 1));
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_cdp_error,           sizeof(cudaError_t) * 1));

    // Inquire temp device storage
    void            *d_temp_storage = NULL;
    size_t          temp_storage_bytes = 0;
    CubDebugExit(Dispatch(backend, 1,
        d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes,
        d_in, d_out, num_items, num_segments, d_segment_offsets,
        reduction_op, 0, true));

    // Allocate temp device storage
    CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));

    // Run warmup/correctness iteration
    CubDebugExit(Dispatch(backend, 1,
        d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes,
        d_in, d_out, num_items, num_segments, d_segment_offsets,
        reduction_op, 0, true));

    // Check for correctness (and display results, if specified)
    int compare = CompareDeviceResults(h_reference, d_out, num_segments, g_verbose, g_verbose);
    printf("\t%s", compare ? "FAIL" : "PASS");

    // Flush any stdout/stderr
    fflush(stdout);
    fflush(stderr);

    // Performance
    if (g_timing_iterations > 0)
    {
        GpuTimer gpu_timer;
        gpu_timer.Start();

        CubDebugExit(Dispatch(backend, g_timing_iterations,
            d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes,
            d_in, d_out, num_items, num_segments, d_segment_offsets,
            reduction_op, 0, false));

        gpu_timer.Stop();
        float elapsed_millis = gpu_timer.ElapsedMillis();

        // Display performance
        float avg_millis = elapsed_millis / g_timing_iterations;
        float giga_rate = float(num_items) / avg_millis / 1000.0f / 1000.0f;
        float giga_bandwidth = giga_rate * sizeof(InputT);
        printf(", %.3f avg ms, %.3f billion items/s, %.3f logical GB/s", avg_millis, giga_rate, giga_bandwidth);
    }

    if (d_temp_storage_bytes) CubDebugExit(g_allocator.DeviceFree(d_temp_storage_bytes));
    if (d_cdp_error) CubDebugExit(g_allocator.DeviceFree(d_cdp_error));
    if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));

    // Correctness asserts
    AssertEquals(0, compare);
}


/// Test DeviceReduce
template <
    Backend                 BACKEND,
    typename                OutputValueT,
    typename                HostInputIteratorT,
    typename                DeviceInputIteratorT,
    typename                OffsetT,
    typename                OffsetIteratorT,
    typename                ReductionOpT>
void SolveAndTest(
    HostInputIteratorT      h_in,
    DeviceInputIteratorT    d_in,
    OffsetT                 num_items,
    OffsetT                 num_segments,
    OffsetIteratorT         h_segment_offsets,
    OffsetIteratorT         d_segment_offsets,
    ReductionOpT            reduction_op)
{
    typedef typename std::iterator_traits<DeviceInputIteratorT>::value_type     InputValueT;
    typedef Solution<ReductionOpT, InputValueT, OutputValueT>                   SolutionT;
    typedef typename SolutionT::OutputT                                         OutputT;

    printf("\n\n%s cub::DeviceReduce<%s> %d items (%s), %d segments\n",
        (BACKEND == CUB_CDP) ? "CUB_CDP" : (BACKEND == THRUST) ? "Thrust" : (BACKEND == CUB_SEGMENTED) ? "CUB_SEGMENTED" : "CUB",
        typeid(ReductionOpT).name(), num_items, typeid(HostInputIteratorT).name(), num_segments);
    fflush(stdout);

    // Allocate and solve solution
    OutputT *h_reference = new OutputT[num_segments];
    SolutionT::Solve(h_in, h_reference, num_segments, h_segment_offsets, reduction_op);

    // Run with discard iterator
    DiscardOutputIterator<OffsetT> discard_itr;
    Test(Int2Type<BACKEND>(), d_in, discard_itr, num_items, num_segments, d_segment_offsets, reduction_op, h_reference);

    // Run with output data (cleared for sanity-check)
    OutputT *d_out = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_out, sizeof(OutputT) * num_segments));
    CubDebugExit(cudaMemset(d_out, 0, sizeof(OutputT) * num_segments));
    Test(Int2Type<BACKEND>(), d_in, d_out, num_items, num_segments, d_segment_offsets, reduction_op, h_reference);

    // Cleanup
    if (d_out) CubDebugExit(g_allocator.DeviceFree(d_out));
    if (h_reference) delete[] h_reference;
}


/// Test specific problem type
template <
    Backend         BACKEND,
    typename        InputT,
    typename        OutputT,
    typename        OffsetT,
    typename        ReductionOpT>
void TestProblem(
    OffsetT         num_items,
    OffsetT         num_segments,
    GenMode         gen_mode,
    ReductionOpT    reduction_op)
{
    printf("\n\nInitializing %d %s->%s (gen mode %d)... ", num_items, typeid(InputT).name(), typeid(OutputT).name(), gen_mode); fflush(stdout);
    fflush(stdout);

    // Initialize value data
    InputT* h_in = new InputT[num_items];
    Initialize(gen_mode, h_in, num_items);

    // Initialize segment data
    OffsetT *h_segment_offsets = new OffsetT[num_segments + 1];
    InitializeSegments(num_items, num_segments, h_segment_offsets, g_verbose_input);

    // Initialize device data
    OffsetT *d_segment_offsets      = NULL;
    InputT  *d_in                   = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in,              sizeof(InputT) * num_items));
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_segment_offsets, sizeof(OffsetT) * (num_segments + 1)));
    CubDebugExit(cudaMemcpy(d_in,               h_in,                   sizeof(InputT) * num_items, cudaMemcpyHostToDevice));
    CubDebugExit(cudaMemcpy(d_segment_offsets,  h_segment_offsets,      sizeof(OffsetT) * (num_segments + 1), cudaMemcpyHostToDevice));

    SolveAndTest<BACKEND, OutputT>(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, reduction_op);

    if (h_segment_offsets)  delete[] h_segment_offsets;
    if (d_segment_offsets)  CubDebugExit(g_allocator.DeviceFree(d_segment_offsets));
    if (h_in)               delete[] h_in;
    if (d_in)               CubDebugExit(g_allocator.DeviceFree(d_in));
}


/// Test different operators
template <
    Backend             BACKEND,
    typename            OutputT,
    typename            HostInputIteratorT,
    typename            DeviceInputIteratorT,
    typename            OffsetT,
    typename            OffsetIteratorT>
void TestByOp(
    HostInputIteratorT      h_in,
    DeviceInputIteratorT    d_in,
    OffsetT                 num_items,
    OffsetT                 num_segments,
    OffsetIteratorT         h_segment_offsets,
    OffsetIteratorT         d_segment_offsets)
{
    SolveAndTest<BACKEND, OutputT>(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, CustomMax());
    SolveAndTest<BACKEND, OutputT>(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, Sum());
    SolveAndTest<BACKEND, OutputT>(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, Min());
    SolveAndTest<BACKEND, OutputT>(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, ArgMin());
    SolveAndTest<BACKEND, OutputT>(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, Max());
    SolveAndTest<BACKEND, OutputT>(h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets, ArgMax());
}


/// Test different backends
template <
    typename    InputT,
    typename    OutputT,
    typename    OffsetT>
void TestByBackend(
    OffsetT     num_items,
    OffsetT     max_segments,
    GenMode     gen_mode)
{
    // Initialize host data
    printf("\n\nInitializing %d %s -> %s (gen mode %d)... ",
        num_items, typeid(InputT).name(), typeid(OutputT).name(), gen_mode); fflush(stdout);

    InputT  *h_in               = new InputT[num_items];
    OffsetT *h_segment_offsets  = new OffsetT[max_segments + 1];
    Initialize(gen_mode, h_in, num_items);

    // Initialize device data
    InputT  *d_in               = NULL;
    OffsetT *d_segment_offsets  = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in, sizeof(InputT) * num_items));
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_segment_offsets, sizeof(OffsetT) * (max_segments + 1)));
    CubDebugExit(cudaMemcpy(d_in, h_in, sizeof(InputT) * num_items, cudaMemcpyHostToDevice));

    //
    // Test single-segment implementations
    //

    InitializeSegments(num_items, 1, h_segment_offsets, g_verbose_input);

    // Page-aligned-input tests
    TestByOp<CUB, OutputT>(h_in, d_in, num_items, 1, h_segment_offsets, (OffsetT*) NULL);                 // Host-dispatch
#ifdef CUB_CDP
    TestByOp<CUB_CDP, OutputT>(h_in, d_in, num_items, 1, h_segment_offsets, (OffsetT*) NULL);             // Device-dispatch
#endif

    // Non-page-aligned-input tests
    if (num_items > 1)
    {
        InitializeSegments(num_items - 1, 1, h_segment_offsets, g_verbose_input);
        TestByOp<CUB, OutputT>(h_in + 1, d_in + 1, num_items - 1, 1, h_segment_offsets, (OffsetT*) NULL);
    }

    //
    // Test segmented implementation
    //

    // Right now we assign a single thread block to each segment, so lets keep it to under 128K items per segment
    int max_items_per_segment = 128000;

    for (int num_segments = (num_items + max_items_per_segment - 1) / max_items_per_segment;
        num_segments < max_segments;
        num_segments = (num_segments * 32) + 1)
    {
        // Test with segment pointer
        InitializeSegments(num_items, num_segments, h_segment_offsets, g_verbose_input);
        CubDebugExit(cudaMemcpy(d_segment_offsets, h_segment_offsets, sizeof(OffsetT) * (num_segments + 1), cudaMemcpyHostToDevice));
        TestByOp<CUB_SEGMENTED, OutputT>(
            h_in, d_in, num_items, num_segments, h_segment_offsets, d_segment_offsets);

        // Test with segment iterator
        typedef CastOp<OffsetT> IdentityOpT;
        IdentityOpT identity_op;
        TransformInputIterator<OffsetT, IdentityOpT, OffsetT*, OffsetT> h_segment_offsets_itr(
            h_segment_offsets,
            identity_op);
       TransformInputIterator<OffsetT, IdentityOpT, OffsetT*, OffsetT> d_segment_offsets_itr(
            d_segment_offsets,
            identity_op);

        TestByOp<CUB_SEGMENTED, OutputT>(
            h_in, d_in, num_items, num_segments, h_segment_offsets_itr, d_segment_offsets_itr);
    }

    if (h_in)               delete[] h_in;
    if (h_segment_offsets)  delete[] h_segment_offsets;
    if (d_in)               CubDebugExit(g_allocator.DeviceFree(d_in));
    if (d_segment_offsets)  CubDebugExit(g_allocator.DeviceFree(d_segment_offsets));
}


/// Test different input-generation modes
template <
    typename InputT,
    typename OutputT,
    typename OffsetT>
void TestByGenMode(
    OffsetT num_items,
    OffsetT max_segments)
{
    //
    // Test pointer support using different input-generation modes
    //

    TestByBackend<InputT, OutputT>(num_items, max_segments, UNIFORM);
    TestByBackend<InputT, OutputT>(num_items, max_segments, INTEGER_SEED);
    TestByBackend<InputT, OutputT>(num_items, max_segments, RANDOM);

    //
    // Test iterator support using a constant-iterator and SUM
    //

    InputT val;
    InitValue(UNIFORM, val, 0);
    ConstantInputIterator<InputT, OffsetT> h_in(val);

    OffsetT *h_segment_offsets = new OffsetT[1 + 1];
    InitializeSegments(num_items, 1, h_segment_offsets, g_verbose_input);

    SolveAndTest<CUB, OutputT>(h_in, h_in, num_items, 1, h_segment_offsets, (OffsetT*) NULL, Sum());
#ifdef CUB_CDP
    SolveAndTest<CUB_CDP, OutputT>(h_in, h_in, num_items, 1, h_segment_offsets, (OffsetT*) NULL, Sum());
#endif

    if (h_segment_offsets) delete[] h_segment_offsets;
}


/// Test different problem sizes
template <
    typename InputT,
    typename OutputT,
    typename OffsetT>
struct TestBySize
{
    OffsetT max_items;
    OffsetT max_segments;

    TestBySize(OffsetT max_items, OffsetT max_segments) :
        max_items(max_items),
        max_segments(max_segments)
    {}

    template <typename ActivePolicyT>
    cudaError_t Invoke()
    {
        //
        // Black-box testing on all backends
        //

        // Test 0, 1, many
        TestByGenMode<InputT, OutputT>(0,           max_segments);
        TestByGenMode<InputT, OutputT>(1,           max_segments);
        TestByGenMode<InputT, OutputT>(max_items,   max_segments);

        // Test random problem sizes from a log-distribution [8, max_items-ish)
        int     num_iterations = 8;
        double  max_exp = log(double(max_items)) / log(double(2.0));
        for (int i = 0; i < num_iterations; ++i)
        {
            OffsetT num_items = (OffsetT) pow(2.0, RandomValue(max_exp - 3.0) + 3.0);
            TestByGenMode<InputT, OutputT>(num_items, max_segments);
        }

        //
        // White-box testing of single-segment problems around specific sizes
        //

        // Tile-boundaries: multiple blocks, one tile per block
        OffsetT tile_size = ActivePolicyT::ReducePolicy::BLOCK_THREADS * ActivePolicyT::ReducePolicy::ITEMS_PER_THREAD;
        TestProblem<CUB, InputT, OutputT>(tile_size * 4,  1,      RANDOM, Sum());
        TestProblem<CUB, InputT, OutputT>(tile_size * 4 + 1, 1,   RANDOM, Sum());
        TestProblem<CUB, InputT, OutputT>(tile_size * 4 - 1, 1,   RANDOM, Sum());

        // Tile-boundaries: multiple blocks, multiple tiles per block
        OffsetT sm_occupancy = 32;
        OffsetT occupancy = tile_size * sm_occupancy * g_sm_count;
        TestProblem<CUB, InputT, OutputT>(occupancy,  1,      RANDOM, Sum());
        TestProblem<CUB, InputT, OutputT>(occupancy + 1, 1,   RANDOM, Sum());
        TestProblem<CUB, InputT, OutputT>(occupancy - 1, 1,   RANDOM, Sum());

        return cudaSuccess;
    }
};


/// Test problem type
template <
    typename    InputT,
    typename    OutputT,
    typename    OffsetT>
void TestType(
    OffsetT     max_items,
    OffsetT     max_segments)
{
    typedef typename DeviceReducePolicy<OutputT, OffsetT, cub::Sum>::MaxPolicy MaxPolicyT;

    TestBySize<InputT, OutputT, OffsetT> dispatch(max_items, max_segments);

    MaxPolicyT::Invoke(g_ptx_version, dispatch);
}


//---------------------------------------------------------------------
// Main
//---------------------------------------------------------------------


/**
 * Main
 */
int main(int argc, char** argv)
{
    typedef int OffsetT;

    OffsetT max_items       = 27000000;
    OffsetT max_segments    = 34000;

    // Initialize command line
    CommandLineArgs args(argc, argv);
    g_verbose = args.CheckCmdLineFlag("v");
    g_verbose_input = args.CheckCmdLineFlag("v2");
    args.GetCmdLineArgument("n", max_items);
    args.GetCmdLineArgument("s", max_segments);
    args.GetCmdLineArgument("i", g_timing_iterations);
    args.GetCmdLineArgument("repeat", g_repeat);

    // Print usage
    if (args.CheckCmdLineFlag("help"))
    {
        printf("%s "
            "[--n=<input items> "
            "[--s=<num segments> "
            "[--i=<timing iterations> "
            "[--device=<device-id>] "
            "[--repeat=<repetitions of entire test suite>]"
            "[--v] "
            "[--cdp]"
            "\n", argv[0]);
        exit(0);
    }

    // Initialize device
    CubDebugExit(args.DeviceInit());

    // Get ptx version
    CubDebugExit(PtxVersion(g_ptx_version));

    // Get SM count
    g_sm_count = args.deviceProp.multiProcessorCount;

    std::numeric_limits<float>::max();

#ifdef QUICKER_TEST

    // Compile/run basic test



    TestProblem<CUB, int, int>(     max_items, 1, RANDOM, Sum());

    TestProblem<CUB, char, int>(    max_items, 1, RANDOM, Sum());

    TestProblem<CUB, int, int>(     max_items, 1, RANDOM, ArgMax());

    TestProblem<CUB, float, float>( max_items, 1, RANDOM, Sum());

    TestProblem<CUB_SEGMENTED, int, int>(max_items, max_segments, RANDOM, Sum());


#elif defined(QUICK_TEST)

    // Compile/run quick comparison tests

    TestProblem<CUB, char, char>(         max_items * 4, 1, UNIFORM, Sum());
    TestProblem<THRUST, char, char>(      max_items * 4, 1, UNIFORM, Sum());

    printf("\n----------------------------\n");
    TestProblem<CUB, short, short>(        max_items * 2, 1, UNIFORM, Sum());
    TestProblem<THRUST, short, short>(     max_items * 2, 1, UNIFORM, Sum());

    printf("\n----------------------------\n");
    TestProblem<CUB, int, int>(          max_items,     1, UNIFORM, Sum());
    TestProblem<THRUST, int, int>(       max_items,     1, UNIFORM, Sum());

    printf("\n----------------------------\n");
    TestProblem<CUB, long long, long long>(    max_items / 2, 1, UNIFORM, Sum());
    TestProblem<THRUST, long long, long long>( max_items / 2, 1, UNIFORM, Sum());

    printf("\n----------------------------\n");
    TestProblem<CUB, TestFoo, TestFoo>(      max_items / 4, 1, UNIFORM, Max());
    TestProblem<THRUST, TestFoo, TestFoo>(   max_items / 4, 1, UNIFORM, Max());

#else

    // Compile/run thorough tests
    for (int i = 0; i <= g_repeat; ++i)
    {
        // Test different input types
        TestType<char, char>(max_items, max_segments);

        TestType<unsigned char, unsigned char>(max_items, max_segments);

        TestType<char, int>(max_items, max_segments);

//        TestType<short, short>(max_items, max_segments);
//        TestType<int, int>(max_items, max_segments);
//        TestType<long, long>(max_items, max_segments);
//        TestType<long long, long long>(max_items, max_segments);
//
//        TestType<uchar2, uchar2>(max_items, max_segments);
//        TestType<uint2, uint2>(max_items, max_segments);
//        TestType<ulonglong2, ulonglong2>(max_items, max_segments);
//        TestType<ulonglong4, ulonglong4>(max_items, max_segments);
//
//        TestType<TestFoo, TestFoo>(max_items, max_segments);
//        TestType<TestBar, TestBar>(max_items, max_segments);

    }

#endif


    printf("\n");
    return 0;
}