tune_device_reduce.cu 27 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/******************************************************************************
 * Evaluates different tuning configurations of DeviceReduce.
 *
 * The best way to use this program:
 * (1) Find the best all-around single-block tune for a given arch.
 *     For example, 100 samples [1 ..512], 100 timing iterations per config per sample:
 *         ./bin/tune_device_reduce_sm200_nvvm_5.0_abi_i386 --i=100 --s=100 --n=512 --single --device=0
 * (2) Update the single tune in device_reduce.cuh
 * (3) Find the best all-around multi-block tune for a given arch.
 *     For example, 100 samples [single-block tile-size ..  50,331,648], 100 timing iterations per config per sample:
 *         ./bin/tune_device_reduce_sm200_nvvm_5.0_abi_i386 --i=100 --s=100 --device=0
 * (4) Update the multi-block tune in device_reduce.cuh
 *
 ******************************************************************************/

// Ensure printing of CUDA runtime errors to console
#define CUB_STDERR

#include <vector>
#include <algorithm>
#include <stdio.h>
#include <cub/cub.cuh>
#include "../test/test_util.h"

using namespace cub;
using namespace std;


//---------------------------------------------------------------------
// Globals, constants and typedefs
//---------------------------------------------------------------------

#ifndef TUNE_ARCH
#define TUNE_ARCH 100
#endif

int     g_max_items         = 48 * 1024 * 1024;
int     g_samples           = 100;
int     g_timing_iterations        = 2;
bool    g_verbose           = false;
bool    g_single            = false;
bool    g_verify            = true;
CachingDeviceAllocator  g_allocator;


//---------------------------------------------------------------------
// Host utility subroutines
//---------------------------------------------------------------------

/**
 * Initialize problem
 */
template <typename T>
void Initialize(
    GenMode         gen_mode,
    T               *h_in,
    int             num_items)
{
    for (int i = 0; i < num_items; ++i)
    {
        InitValue(gen_mode, h_in[i], i);
    }
}

/**
 * Sequential reduction
 */
template <typename T, typename ReductionOp>
T Reduce(
    T               *h_in,
    ReductionOp     reduction_op,
    int             num_items)
{
    T retval = h_in[0];
    for (int i = 1; i < num_items; ++i)
        retval = reduction_op(retval, h_in[i]);

    return retval;
}



//---------------------------------------------------------------------
// Full tile test generation
//---------------------------------------------------------------------



/**
 * Wrapper structure for generating and running different tuning configurations
 */
template <
    typename T,
    typename OffsetT,
    typename ReductionOp>
struct Schmoo
{
    //---------------------------------------------------------------------
    // Types
    //---------------------------------------------------------------------

    /// Pairing of kernel function pointer and corresponding dispatch params
    template <typename KernelPtr>
    struct DispatchTuple
    {
        KernelPtr                           kernel_ptr;
        DeviceReduce::KernelDispachParams   params;

        float                               avg_throughput;
        float                               best_avg_throughput;
        OffsetT                              best_size;
        float                               hmean_speedup;


        DispatchTuple() :
            kernel_ptr(0),
            params(DeviceReduce::KernelDispachParams()),
            avg_throughput(0.0),
            best_avg_throughput(0.0),
            hmean_speedup(0.0),
            best_size(0)
        {}
    };

    /**
     * Comparison operator for DispatchTuple.avg_throughput
     */
    template <typename Tuple>
    static bool MinSpeedup(const Tuple &a, const Tuple &b)
    {
        float delta = a.hmean_speedup - b.hmean_speedup;

        return ((delta < 0.02) && (delta > -0.02)) ?
            (a.best_avg_throughput < b.best_avg_throughput) :       // Negligible average performance differences: defer to best performance
            (a.hmean_speedup < b.hmean_speedup);
    }



    /// Multi-block reduction kernel type and dispatch tuple type
    typedef void (*MultiBlockDeviceReduceKernelPtr)(T*, T*, OffsetT, GridEvenShare<OffsetT>, GridQueue<OffsetT>, ReductionOp);
    typedef DispatchTuple<MultiBlockDeviceReduceKernelPtr> MultiDispatchTuple;

    /// Single-block reduction kernel type and dispatch tuple type
    typedef void (*SingleBlockDeviceReduceKernelPtr)(T*, T*, OffsetT, ReductionOp);
    typedef DispatchTuple<SingleBlockDeviceReduceKernelPtr> SingleDispatchTuple;


    //---------------------------------------------------------------------
    // Fields
    //---------------------------------------------------------------------

    vector<MultiDispatchTuple> multi_kernels;       // List of generated multi-block kernels
    vector<SingleDispatchTuple> single_kernels;     // List of generated single-block kernels


    //---------------------------------------------------------------------
    // Kernel enumeration methods
    //---------------------------------------------------------------------

    /**
     * Must have smem that fits in the SM
     * Must have vector load length that divides items per thread
     */
    template <typename TilesReducePolicy, typename ReductionOp>
    struct SmemSize
    {
        enum
        {
            BYTES = sizeof(typename BlockReduceTiles<TilesReducePolicy, T*, OffsetT, ReductionOp>::TempStorage),
            IS_OK = ((BYTES < ArchProps<TUNE_ARCH>::SMEM_BYTES) &&
                     (TilesReducePolicy::ITEMS_PER_THREAD % TilesReducePolicy::VECTOR_LOAD_LENGTH == 0))
        };
    };


    /**
     * Specialization that allows kernel generation with the specified TilesReducePolicy
     */
    template <
        typename    TilesReducePolicy,
        bool        IsOk = SmemSize<TilesReducePolicy, ReductionOp>::IS_OK>
    struct Ok
    {
        /// Enumerate multi-block kernel and add to the list
        template <typename KernelsVector>
        static void GenerateMulti(
            KernelsVector &multi_kernels,
            int subscription_factor)
        {
            MultiDispatchTuple tuple;
            tuple.params.template Init<TilesReducePolicy>(subscription_factor);
            tuple.kernel_ptr = ReducePrivatizedKernel<TilesReducePolicy, T*, T*, OffsetT, ReductionOp>;
            multi_kernels.push_back(tuple);
        }


        /// Enumerate single-block kernel and add to the list
        template <typename KernelsVector>
        static void GenerateSingle(KernelsVector &single_kernels)
        {
            SingleDispatchTuple tuple;
            tuple.params.template Init<TilesReducePolicy>();
            tuple.kernel_ptr = ReduceSingleKernel<TilesReducePolicy, T*, T*, OffsetT, ReductionOp>;
            single_kernels.push_back(tuple);
        }
    };

    /**
     * Specialization that rejects kernel generation with the specified TilesReducePolicy
     */
    template <typename TilesReducePolicy>
    struct Ok<TilesReducePolicy, false>
    {
        template <typename KernelsVector>
        static void GenerateMulti(KernelsVector &multi_kernels, int subscription_factor) {}

        template <typename KernelsVector>
        static void GenerateSingle(KernelsVector &single_kernels) {}
    };


    /// Enumerate block-scheduling variations
    template <
        int                     BLOCK_THREADS,
        int                     ITEMS_PER_THREAD,
        int                     VECTOR_LOAD_LENGTH,
        BlockReduceAlgorithm    BLOCK_ALGORITHM,
        CacheLoadModifier      LOAD_MODIFIER>
    void Enumerate()
    {
        // Multi-block kernels
        Ok<BlockReduceTilesPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_MODIFIER, GRID_MAPPING_RAKE> >::GenerateMulti(multi_kernels, 1);
        Ok<BlockReduceTilesPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_MODIFIER, GRID_MAPPING_RAKE> >::GenerateMulti(multi_kernels, 2);
        Ok<BlockReduceTilesPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_MODIFIER, GRID_MAPPING_RAKE> >::GenerateMulti(multi_kernels, 4);
        Ok<BlockReduceTilesPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_MODIFIER, GRID_MAPPING_RAKE> >::GenerateMulti(multi_kernels, 8);
#if TUNE_ARCH >= 200
        Ok<BlockReduceTilesPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_MODIFIER, GRID_MAPPING_DYNAMIC> >::GenerateMulti(multi_kernels, 1);
#endif

        // Single-block kernels
        Ok<BlockReduceTilesPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_MODIFIER, GRID_MAPPING_RAKE> >::GenerateSingle(single_kernels);
    }


    /// Enumerate load modifier variations
    template <
        int                     BLOCK_THREADS,
        int                     ITEMS_PER_THREAD,
        int                     VECTOR_LOAD_LENGTH,
        BlockReduceAlgorithm    BLOCK_ALGORITHM>
    void Enumerate()
    {
        Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_DEFAULT>();
#if TUNE_ARCH >= 350
        Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_LDG>();
#endif
    }


    /// Enumerate block algorithms
    template <
        int BLOCK_THREADS,
        int ITEMS_PER_THREAD,
        int VECTOR_LOAD_LENGTH>
    void Enumerate()
    {
        Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_REDUCE_RAKING>();
        Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_REDUCE_WARP_REDUCTIONS>();
    }


    /// Enumerate vectorization variations
    template <
        int BLOCK_THREADS,
        int ITEMS_PER_THREAD>
    void Enumerate()
    {
        Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, 1>();
        Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, 2>();
        Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, 4>();
    }


    /// Enumerate thread-granularity variations
    template <int BLOCK_THREADS>
    void Enumerate()
    {
        Enumerate<BLOCK_THREADS, 7>();
        Enumerate<BLOCK_THREADS, 8>();
        Enumerate<BLOCK_THREADS, 9>();

        Enumerate<BLOCK_THREADS, 11>();
        Enumerate<BLOCK_THREADS, 12>();
        Enumerate<BLOCK_THREADS, 13>();

        Enumerate<BLOCK_THREADS, 15>();
        Enumerate<BLOCK_THREADS, 16>();
        Enumerate<BLOCK_THREADS, 17>();

        Enumerate<BLOCK_THREADS, 19>();
        Enumerate<BLOCK_THREADS, 20>();
        Enumerate<BLOCK_THREADS, 21>();

        Enumerate<BLOCK_THREADS, 23>();
        Enumerate<BLOCK_THREADS, 24>();
        Enumerate<BLOCK_THREADS, 25>();
    }


    /// Enumerate block size variations
    void Enumerate()
    {
        printf("\nEnumerating kernels\n"); fflush(stdout);

        Enumerate<32>();
        Enumerate<64>();
        Enumerate<96>();
        Enumerate<128>();
        Enumerate<160>();
        Enumerate<192>();
        Enumerate<256>();
        Enumerate<512>();
    }


    //---------------------------------------------------------------------
    // Test methods
    //---------------------------------------------------------------------

    /**
     * Test a configuration
     */
    void TestConfiguration(
        MultiDispatchTuple      &multi_dispatch,
        SingleDispatchTuple     &single_dispatch,
        T*                      d_in,
        T*                      d_out,
        T*                      h_reference,
        OffsetT                  num_items,
        ReductionOp             reduction_op)
    {
        // Clear output
        if (g_verify) CubDebugExit(cudaMemset(d_out, 0, sizeof(T)));

        // Allocate temporary storage
        void            *d_temp_storage = NULL;
        size_t          temp_storage_bytes = 0;
        CubDebugExit(DeviceReduce::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            multi_dispatch.kernel_ptr,
            single_dispatch.kernel_ptr,
            FillAndResetDrainKernel<OffsetT>,
            multi_dispatch.params,
            single_dispatch.params,
            d_in,
            d_out,
            num_items,
            reduction_op));
        CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));

        // Warmup/correctness iteration
        CubDebugExit(DeviceReduce::Dispatch(
            d_temp_storage,
            temp_storage_bytes,
            multi_dispatch.kernel_ptr,
            single_dispatch.kernel_ptr,
            FillAndResetDrainKernel<OffsetT>,
            multi_dispatch.params,
            single_dispatch.params,
            d_in,
            d_out,
            num_items,
            reduction_op));

        if (g_verify) CubDebugExit(cudaDeviceSynchronize());

        // Copy out and display results
        int compare = (g_verify) ?
            CompareDeviceResults(h_reference, d_out, 1, true, false) :
            0;

        // Performance
        GpuTimer gpu_timer;
        float elapsed_millis = 0.0;
        for (int i = 0; i < g_timing_iterations; i++)
        {
            gpu_timer.Start();

            CubDebugExit(DeviceReduce::Dispatch(
                d_temp_storage,
                temp_storage_bytes,
                multi_dispatch.kernel_ptr,
                single_dispatch.kernel_ptr,
                FillAndResetDrainKernel<OffsetT>,
                multi_dispatch.params,
                single_dispatch.params,
                d_in,
                d_out,
                num_items,
                reduction_op));

            gpu_timer.Stop();
            elapsed_millis += gpu_timer.ElapsedMillis();
        }

        // Mooch
        CubDebugExit(cudaDeviceSynchronize());

        float avg_elapsed = elapsed_millis / g_timing_iterations;
        float avg_throughput = float(num_items) / avg_elapsed / 1000.0 / 1000.0;
        float avg_bandwidth = avg_throughput * sizeof(T);

        multi_dispatch.avg_throughput = CUB_MAX(avg_throughput, multi_dispatch.avg_throughput);
        if (avg_throughput > multi_dispatch.best_avg_throughput)
        {
            multi_dispatch.best_avg_throughput = avg_throughput;
            multi_dispatch.best_size = num_items;
        }

        single_dispatch.avg_throughput = CUB_MAX(avg_throughput, single_dispatch.avg_throughput);
        if (avg_throughput > single_dispatch.best_avg_throughput)
        {
            single_dispatch.best_avg_throughput = avg_throughput;
            single_dispatch.best_size = num_items;
        }

        if (g_verbose)
        {
            printf("\t%.2f GB/s, multi_dispatch( ", avg_bandwidth);
            multi_dispatch.params.Print();
            printf(" ), single_dispatch( ");
            single_dispatch.params.Print();
            printf(" )\n");
            fflush(stdout);
        }

        AssertEquals(0, compare);

        // Cleanup temporaries
        if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));
    }


    /**
     * Evaluate multi-block configurations
     */
    void TestMulti(
        T*                      h_in,
        T*                      d_in,
        T*                      d_out,
        ReductionOp             reduction_op)
    {
        // Simple single kernel tuple for use with multi kernel sweep
        typedef typename DeviceReduce::TunedPolicies<T, OffsetT, TUNE_ARCH>::SinglePolicy SimpleSinglePolicy;
        SingleDispatchTuple simple_single_tuple;
        simple_single_tuple.params.template Init<SimpleSinglePolicy>();
        simple_single_tuple.kernel_ptr = ReduceSingleKernel<SimpleSinglePolicy, T*, T*, OffsetT, ReductionOp>;

        double max_exponent      = log2(double(g_max_items));
        double min_exponent      = log2(double(simple_single_tuple.params.tile_size));
        unsigned int max_int     = (unsigned int) -1;

        for (int sample = 0; sample < g_samples; ++sample)
        {
            printf("\nMulti-block sample %d, ", sample);

            int num_items;
            if (sample == 0)
            {
                // First sample: use max items
                num_items = g_max_items;
                printf("num_items: %d", num_items); fflush(stdout);
            }
            else
            {
                // Sample a problem size from [2^g_min_exponent, g_max_items].  First 2/3 of the samples are log-distributed, the other 1/3 are uniformly-distributed.
                unsigned int bits;
                RandomBits(bits);
                double scale = double(bits) / max_int;

                if (sample < g_samples / 2)
                {
                    // log bias
                    double exponent = ((max_exponent - min_exponent) * scale) + min_exponent;
                    num_items = pow(2.0, exponent);
                    num_items = CUB_MIN(num_items, g_max_items);
                    printf("num_items: %d (2^%.2f)", num_items, exponent); fflush(stdout);
                }
                else
                {
                    // uniform bias
                    num_items = CUB_MAX(pow(2.0, min_exponent), scale * g_max_items);
                    num_items = CUB_MIN(num_items, g_max_items);
                    printf("num_items: %d (%.2f * %d)", num_items, scale, g_max_items); fflush(stdout);
                }
            }
            if (g_verbose)
                printf("\n");
            else
                printf(", ");

            // Compute reference
            T h_reference = Reduce(h_in, reduction_op, num_items);

            // Run test on each multi-kernel configuration
            float best_avg_throughput = 0.0;
            for (int j = 0; j < multi_kernels.size(); ++j)
            {
                multi_kernels[j].avg_throughput = 0.0;

                TestConfiguration(multi_kernels[j], simple_single_tuple, d_in, d_out, &h_reference, num_items, reduction_op);

                best_avg_throughput = CUB_MAX(best_avg_throughput, multi_kernels[j].avg_throughput);
            }

            // Print best throughput for this problem size
            printf("Best: %.2fe9 items/s (%.2f GB/s)\n", best_avg_throughput, best_avg_throughput * sizeof(T));

            // Accumulate speedup (inverse for harmonic mean)
            for (int j = 0; j < multi_kernels.size(); ++j)
                multi_kernels[j].hmean_speedup += best_avg_throughput / multi_kernels[j].avg_throughput;
        }

        // Find max overall throughput and compute hmean speedups
        float overall_max_throughput = 0.0;
        for (int j = 0; j < multi_kernels.size(); ++j)
        {
            overall_max_throughput = CUB_MAX(overall_max_throughput, multi_kernels[j].best_avg_throughput);
            multi_kernels[j].hmean_speedup = float(g_samples) / multi_kernels[j].hmean_speedup;
        }

        // Sort by cumulative speedup
        sort(multi_kernels.begin(), multi_kernels.end(), MinSpeedup<MultiDispatchTuple>);

        // Print ranked multi configurations
        printf("\nRanked multi_kernels:\n");
        for (int j = 0; j < multi_kernels.size(); ++j)
        {
            printf("\t (%d) params( ", multi_kernels.size() - j);
            multi_kernels[j].params.Print();
            printf(" ) hmean speedup: %.3f, best throughput %.2f @ %d elements (%.2f GB/s, %.2f%%)\n",
                multi_kernels[j].hmean_speedup,
                multi_kernels[j].best_avg_throughput,
                (int) multi_kernels[j].best_size,
                multi_kernels[j].best_avg_throughput * sizeof(T),
                multi_kernels[j].best_avg_throughput / overall_max_throughput);
        }

        printf("\nMax multi-block throughput %.2f (%.2f GB/s)\n", overall_max_throughput, overall_max_throughput * sizeof(T));
    }


    /**
     * Evaluate single-block configurations
     */
    void TestSingle(
        T*                      h_in,
        T*                      d_in,
        T*                      d_out,
        ReductionOp             reduction_op)
     {
        // Construct a NULL-ptr multi-kernel tuple that forces a single-kernel pass
        MultiDispatchTuple multi_tuple;

        double max_exponent     = log2(double(g_max_items));
        unsigned int max_int    = (unsigned int) -1;

        for (int sample = 0; sample < g_samples; ++sample)
        {
            printf("\nSingle-block sample %d, ", sample);

            int num_items;
            if (sample == 0)
            {
                // First sample: use max items
                num_items = g_max_items;
                printf("num_items: %d", num_items); fflush(stdout);
            }
            else
            {
                // Sample a problem size from [2, g_max_items], log-distributed
                unsigned int bits;
                RandomBits(bits);
                double scale = double(bits) / max_int;
                double exponent = ((max_exponent - 1) * scale) + 1;
                num_items = pow(2.0, exponent);
                printf("num_items: %d (2^%.2f)", num_items, exponent); fflush(stdout);
            }

            if (g_verbose)
                printf("\n");
            else
                printf(", ");

            // Compute reference
            T h_reference = Reduce(h_in, reduction_op, num_items);

            // Run test on each single-kernel configuration (pick first multi-config to use, which shouldn't be
            float best_avg_throughput = 0.0;
            for (int j = 0; j < single_kernels.size(); ++j)
            {
                single_kernels[j].avg_throughput = 0.0;

                TestConfiguration(multi_tuple, single_kernels[j], d_in, d_out, &h_reference, num_items, reduction_op);

                best_avg_throughput = CUB_MAX(best_avg_throughput, single_kernels[j].avg_throughput);
            }

            // Print best throughput for this problem size
            printf("Best: %.2fe9 items/s (%.2f GB/s)\n", best_avg_throughput, best_avg_throughput * sizeof(T));

            // Accumulate speedup (inverse for harmonic mean)
            for (int j = 0; j < single_kernels.size(); ++j)
                single_kernels[j].hmean_speedup += best_avg_throughput / single_kernels[j].avg_throughput;
        }

        // Find max overall throughput and compute hmean speedups
        float overall_max_throughput = 0.0;
        for (int j = 0; j < single_kernels.size(); ++j)
        {
            overall_max_throughput = CUB_MAX(overall_max_throughput, single_kernels[j].best_avg_throughput);
            single_kernels[j].hmean_speedup = float(g_samples) / single_kernels[j].hmean_speedup;
        }

        // Sort by cumulative speedup
        sort(single_kernels.begin(), single_kernels.end(), MinSpeedup<SingleDispatchTuple>);

        // Print ranked single configurations
        printf("\nRanked single_kernels:\n");
        for (int j = 0; j < single_kernels.size(); ++j)
        {
            printf("\t (%d) params( ", single_kernels.size() - j);
            single_kernels[j].params.Print();
            printf(" ) hmean speedup: %.3f, best throughput %.2f @ %d elements (%.2f GB/s, %.2f%%)\n",
                single_kernels[j].hmean_speedup,
                single_kernels[j].best_avg_throughput,
                (int) single_kernels[j].best_size,
                single_kernels[j].best_avg_throughput * sizeof(T),
                single_kernels[j].best_avg_throughput / overall_max_throughput);
        }

        printf("\nMax single-block throughput %.2f (%.2f GB/s)\n", overall_max_throughput, overall_max_throughput * sizeof(T));
    }

};



//---------------------------------------------------------------------
// Main
//---------------------------------------------------------------------

/**
 * Main
 */
int main(int argc, char** argv)
{
    // Initialize command line
    CommandLineArgs args(argc, argv);
    args.GetCmdLineArgument("n", g_max_items);
    args.GetCmdLineArgument("s", g_samples);
    args.GetCmdLineArgument("i", g_timing_iterations);
    g_verbose = args.CheckCmdLineFlag("v");
    g_single = args.CheckCmdLineFlag("single");
    g_verify = !args.CheckCmdLineFlag("noverify");

    // Print usage
    if (args.CheckCmdLineFlag("help"))
    {
        printf("%s "
            "[--device=<device-id>] "
            "[--n=<max items>]"
            "[--s=<samples>]"
            "[--i=<timing iterations>]"
            "[--single]"
            "[--v]"
            "[--noverify]"
            "\n", argv[0]);
        exit(0);
    }

    // Initialize device
    CubDebugExit(args.DeviceInit());

#if (TUNE_SIZE == 1)
    typedef unsigned char T;
#elif (TUNE_SIZE == 2)
    typedef unsigned short T;
#elif (TUNE_SIZE == 4)
    typedef unsigned int T;
#elif (TUNE_SIZE == 8)
    typedef unsigned long long T;
#else
    // Default
    typedef unsigned int T;
#endif

    typedef unsigned int OffsetT;
    Sum reduction_op;

    // Enumerate kernels
    Schmoo<T, OffsetT, Sum > schmoo;
    schmoo.Enumerate();

    // Allocate host arrays
    T *h_in = new T[g_max_items];

    // Initialize problem
    Initialize(UNIFORM, h_in, g_max_items);

    // Initialize device arrays
    T *d_in = NULL;
    T *d_out = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in, sizeof(T) * g_max_items));
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_out, sizeof(T) * 1));
    CubDebugExit(cudaMemcpy(d_in, h_in, sizeof(T) * g_max_items, cudaMemcpyHostToDevice));

    // Test kernels
    if (g_single)
        schmoo.TestSingle(h_in, d_in, d_out, reduction_op);
    else
        schmoo.TestMulti(h_in, d_in, d_out, reduction_op);

    // Cleanup
    if (h_in) delete[] h_in;
    if (d_in) CubDebugExit(g_allocator.DeviceFree(d_in));
    if (d_out) CubDebugExit(g_allocator.DeviceFree(d_out));

    return 0;
}