tune_device_reduce.cu
27 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/******************************************************************************
* Evaluates different tuning configurations of DeviceReduce.
*
* The best way to use this program:
* (1) Find the best all-around single-block tune for a given arch.
* For example, 100 samples [1 ..512], 100 timing iterations per config per sample:
* ./bin/tune_device_reduce_sm200_nvvm_5.0_abi_i386 --i=100 --s=100 --n=512 --single --device=0
* (2) Update the single tune in device_reduce.cuh
* (3) Find the best all-around multi-block tune for a given arch.
* For example, 100 samples [single-block tile-size .. 50,331,648], 100 timing iterations per config per sample:
* ./bin/tune_device_reduce_sm200_nvvm_5.0_abi_i386 --i=100 --s=100 --device=0
* (4) Update the multi-block tune in device_reduce.cuh
*
******************************************************************************/
// Ensure printing of CUDA runtime errors to console
#define CUB_STDERR
#include <vector>
#include <algorithm>
#include <stdio.h>
#include <cub/cub.cuh>
#include "../test/test_util.h"
using namespace cub;
using namespace std;
//---------------------------------------------------------------------
// Globals, constants and typedefs
//---------------------------------------------------------------------
#ifndef TUNE_ARCH
#define TUNE_ARCH 100
#endif
int g_max_items = 48 * 1024 * 1024;
int g_samples = 100;
int g_timing_iterations = 2;
bool g_verbose = false;
bool g_single = false;
bool g_verify = true;
CachingDeviceAllocator g_allocator;
//---------------------------------------------------------------------
// Host utility subroutines
//---------------------------------------------------------------------
/**
* Initialize problem
*/
template <typename T>
void Initialize(
GenMode gen_mode,
T *h_in,
int num_items)
{
for (int i = 0; i < num_items; ++i)
{
InitValue(gen_mode, h_in[i], i);
}
}
/**
* Sequential reduction
*/
template <typename T, typename ReductionOp>
T Reduce(
T *h_in,
ReductionOp reduction_op,
int num_items)
{
T retval = h_in[0];
for (int i = 1; i < num_items; ++i)
retval = reduction_op(retval, h_in[i]);
return retval;
}
//---------------------------------------------------------------------
// Full tile test generation
//---------------------------------------------------------------------
/**
* Wrapper structure for generating and running different tuning configurations
*/
template <
typename T,
typename OffsetT,
typename ReductionOp>
struct Schmoo
{
//---------------------------------------------------------------------
// Types
//---------------------------------------------------------------------
/// Pairing of kernel function pointer and corresponding dispatch params
template <typename KernelPtr>
struct DispatchTuple
{
KernelPtr kernel_ptr;
DeviceReduce::KernelDispachParams params;
float avg_throughput;
float best_avg_throughput;
OffsetT best_size;
float hmean_speedup;
DispatchTuple() :
kernel_ptr(0),
params(DeviceReduce::KernelDispachParams()),
avg_throughput(0.0),
best_avg_throughput(0.0),
hmean_speedup(0.0),
best_size(0)
{}
};
/**
* Comparison operator for DispatchTuple.avg_throughput
*/
template <typename Tuple>
static bool MinSpeedup(const Tuple &a, const Tuple &b)
{
float delta = a.hmean_speedup - b.hmean_speedup;
return ((delta < 0.02) && (delta > -0.02)) ?
(a.best_avg_throughput < b.best_avg_throughput) : // Negligible average performance differences: defer to best performance
(a.hmean_speedup < b.hmean_speedup);
}
/// Multi-block reduction kernel type and dispatch tuple type
typedef void (*MultiBlockDeviceReduceKernelPtr)(T*, T*, OffsetT, GridEvenShare<OffsetT>, GridQueue<OffsetT>, ReductionOp);
typedef DispatchTuple<MultiBlockDeviceReduceKernelPtr> MultiDispatchTuple;
/// Single-block reduction kernel type and dispatch tuple type
typedef void (*SingleBlockDeviceReduceKernelPtr)(T*, T*, OffsetT, ReductionOp);
typedef DispatchTuple<SingleBlockDeviceReduceKernelPtr> SingleDispatchTuple;
//---------------------------------------------------------------------
// Fields
//---------------------------------------------------------------------
vector<MultiDispatchTuple> multi_kernels; // List of generated multi-block kernels
vector<SingleDispatchTuple> single_kernels; // List of generated single-block kernels
//---------------------------------------------------------------------
// Kernel enumeration methods
//---------------------------------------------------------------------
/**
* Must have smem that fits in the SM
* Must have vector load length that divides items per thread
*/
template <typename TilesReducePolicy, typename ReductionOp>
struct SmemSize
{
enum
{
BYTES = sizeof(typename BlockReduceTiles<TilesReducePolicy, T*, OffsetT, ReductionOp>::TempStorage),
IS_OK = ((BYTES < ArchProps<TUNE_ARCH>::SMEM_BYTES) &&
(TilesReducePolicy::ITEMS_PER_THREAD % TilesReducePolicy::VECTOR_LOAD_LENGTH == 0))
};
};
/**
* Specialization that allows kernel generation with the specified TilesReducePolicy
*/
template <
typename TilesReducePolicy,
bool IsOk = SmemSize<TilesReducePolicy, ReductionOp>::IS_OK>
struct Ok
{
/// Enumerate multi-block kernel and add to the list
template <typename KernelsVector>
static void GenerateMulti(
KernelsVector &multi_kernels,
int subscription_factor)
{
MultiDispatchTuple tuple;
tuple.params.template Init<TilesReducePolicy>(subscription_factor);
tuple.kernel_ptr = ReducePrivatizedKernel<TilesReducePolicy, T*, T*, OffsetT, ReductionOp>;
multi_kernels.push_back(tuple);
}
/// Enumerate single-block kernel and add to the list
template <typename KernelsVector>
static void GenerateSingle(KernelsVector &single_kernels)
{
SingleDispatchTuple tuple;
tuple.params.template Init<TilesReducePolicy>();
tuple.kernel_ptr = ReduceSingleKernel<TilesReducePolicy, T*, T*, OffsetT, ReductionOp>;
single_kernels.push_back(tuple);
}
};
/**
* Specialization that rejects kernel generation with the specified TilesReducePolicy
*/
template <typename TilesReducePolicy>
struct Ok<TilesReducePolicy, false>
{
template <typename KernelsVector>
static void GenerateMulti(KernelsVector &multi_kernels, int subscription_factor) {}
template <typename KernelsVector>
static void GenerateSingle(KernelsVector &single_kernels) {}
};
/// Enumerate block-scheduling variations
template <
int BLOCK_THREADS,
int ITEMS_PER_THREAD,
int VECTOR_LOAD_LENGTH,
BlockReduceAlgorithm BLOCK_ALGORITHM,
CacheLoadModifier LOAD_MODIFIER>
void Enumerate()
{
// Multi-block kernels
Ok<BlockReduceTilesPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_MODIFIER, GRID_MAPPING_RAKE> >::GenerateMulti(multi_kernels, 1);
Ok<BlockReduceTilesPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_MODIFIER, GRID_MAPPING_RAKE> >::GenerateMulti(multi_kernels, 2);
Ok<BlockReduceTilesPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_MODIFIER, GRID_MAPPING_RAKE> >::GenerateMulti(multi_kernels, 4);
Ok<BlockReduceTilesPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_MODIFIER, GRID_MAPPING_RAKE> >::GenerateMulti(multi_kernels, 8);
#if TUNE_ARCH >= 200
Ok<BlockReduceTilesPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_MODIFIER, GRID_MAPPING_DYNAMIC> >::GenerateMulti(multi_kernels, 1);
#endif
// Single-block kernels
Ok<BlockReduceTilesPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_MODIFIER, GRID_MAPPING_RAKE> >::GenerateSingle(single_kernels);
}
/// Enumerate load modifier variations
template <
int BLOCK_THREADS,
int ITEMS_PER_THREAD,
int VECTOR_LOAD_LENGTH,
BlockReduceAlgorithm BLOCK_ALGORITHM>
void Enumerate()
{
Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_DEFAULT>();
#if TUNE_ARCH >= 350
Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_ALGORITHM, LOAD_LDG>();
#endif
}
/// Enumerate block algorithms
template <
int BLOCK_THREADS,
int ITEMS_PER_THREAD,
int VECTOR_LOAD_LENGTH>
void Enumerate()
{
Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_REDUCE_RAKING>();
Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH, BLOCK_REDUCE_WARP_REDUCTIONS>();
}
/// Enumerate vectorization variations
template <
int BLOCK_THREADS,
int ITEMS_PER_THREAD>
void Enumerate()
{
Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, 1>();
Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, 2>();
Enumerate<BLOCK_THREADS, ITEMS_PER_THREAD, 4>();
}
/// Enumerate thread-granularity variations
template <int BLOCK_THREADS>
void Enumerate()
{
Enumerate<BLOCK_THREADS, 7>();
Enumerate<BLOCK_THREADS, 8>();
Enumerate<BLOCK_THREADS, 9>();
Enumerate<BLOCK_THREADS, 11>();
Enumerate<BLOCK_THREADS, 12>();
Enumerate<BLOCK_THREADS, 13>();
Enumerate<BLOCK_THREADS, 15>();
Enumerate<BLOCK_THREADS, 16>();
Enumerate<BLOCK_THREADS, 17>();
Enumerate<BLOCK_THREADS, 19>();
Enumerate<BLOCK_THREADS, 20>();
Enumerate<BLOCK_THREADS, 21>();
Enumerate<BLOCK_THREADS, 23>();
Enumerate<BLOCK_THREADS, 24>();
Enumerate<BLOCK_THREADS, 25>();
}
/// Enumerate block size variations
void Enumerate()
{
printf("\nEnumerating kernels\n"); fflush(stdout);
Enumerate<32>();
Enumerate<64>();
Enumerate<96>();
Enumerate<128>();
Enumerate<160>();
Enumerate<192>();
Enumerate<256>();
Enumerate<512>();
}
//---------------------------------------------------------------------
// Test methods
//---------------------------------------------------------------------
/**
* Test a configuration
*/
void TestConfiguration(
MultiDispatchTuple &multi_dispatch,
SingleDispatchTuple &single_dispatch,
T* d_in,
T* d_out,
T* h_reference,
OffsetT num_items,
ReductionOp reduction_op)
{
// Clear output
if (g_verify) CubDebugExit(cudaMemset(d_out, 0, sizeof(T)));
// Allocate temporary storage
void *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
CubDebugExit(DeviceReduce::Dispatch(
d_temp_storage,
temp_storage_bytes,
multi_dispatch.kernel_ptr,
single_dispatch.kernel_ptr,
FillAndResetDrainKernel<OffsetT>,
multi_dispatch.params,
single_dispatch.params,
d_in,
d_out,
num_items,
reduction_op));
CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));
// Warmup/correctness iteration
CubDebugExit(DeviceReduce::Dispatch(
d_temp_storage,
temp_storage_bytes,
multi_dispatch.kernel_ptr,
single_dispatch.kernel_ptr,
FillAndResetDrainKernel<OffsetT>,
multi_dispatch.params,
single_dispatch.params,
d_in,
d_out,
num_items,
reduction_op));
if (g_verify) CubDebugExit(cudaDeviceSynchronize());
// Copy out and display results
int compare = (g_verify) ?
CompareDeviceResults(h_reference, d_out, 1, true, false) :
0;
// Performance
GpuTimer gpu_timer;
float elapsed_millis = 0.0;
for (int i = 0; i < g_timing_iterations; i++)
{
gpu_timer.Start();
CubDebugExit(DeviceReduce::Dispatch(
d_temp_storage,
temp_storage_bytes,
multi_dispatch.kernel_ptr,
single_dispatch.kernel_ptr,
FillAndResetDrainKernel<OffsetT>,
multi_dispatch.params,
single_dispatch.params,
d_in,
d_out,
num_items,
reduction_op));
gpu_timer.Stop();
elapsed_millis += gpu_timer.ElapsedMillis();
}
// Mooch
CubDebugExit(cudaDeviceSynchronize());
float avg_elapsed = elapsed_millis / g_timing_iterations;
float avg_throughput = float(num_items) / avg_elapsed / 1000.0 / 1000.0;
float avg_bandwidth = avg_throughput * sizeof(T);
multi_dispatch.avg_throughput = CUB_MAX(avg_throughput, multi_dispatch.avg_throughput);
if (avg_throughput > multi_dispatch.best_avg_throughput)
{
multi_dispatch.best_avg_throughput = avg_throughput;
multi_dispatch.best_size = num_items;
}
single_dispatch.avg_throughput = CUB_MAX(avg_throughput, single_dispatch.avg_throughput);
if (avg_throughput > single_dispatch.best_avg_throughput)
{
single_dispatch.best_avg_throughput = avg_throughput;
single_dispatch.best_size = num_items;
}
if (g_verbose)
{
printf("\t%.2f GB/s, multi_dispatch( ", avg_bandwidth);
multi_dispatch.params.Print();
printf(" ), single_dispatch( ");
single_dispatch.params.Print();
printf(" )\n");
fflush(stdout);
}
AssertEquals(0, compare);
// Cleanup temporaries
if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));
}
/**
* Evaluate multi-block configurations
*/
void TestMulti(
T* h_in,
T* d_in,
T* d_out,
ReductionOp reduction_op)
{
// Simple single kernel tuple for use with multi kernel sweep
typedef typename DeviceReduce::TunedPolicies<T, OffsetT, TUNE_ARCH>::SinglePolicy SimpleSinglePolicy;
SingleDispatchTuple simple_single_tuple;
simple_single_tuple.params.template Init<SimpleSinglePolicy>();
simple_single_tuple.kernel_ptr = ReduceSingleKernel<SimpleSinglePolicy, T*, T*, OffsetT, ReductionOp>;
double max_exponent = log2(double(g_max_items));
double min_exponent = log2(double(simple_single_tuple.params.tile_size));
unsigned int max_int = (unsigned int) -1;
for (int sample = 0; sample < g_samples; ++sample)
{
printf("\nMulti-block sample %d, ", sample);
int num_items;
if (sample == 0)
{
// First sample: use max items
num_items = g_max_items;
printf("num_items: %d", num_items); fflush(stdout);
}
else
{
// Sample a problem size from [2^g_min_exponent, g_max_items]. First 2/3 of the samples are log-distributed, the other 1/3 are uniformly-distributed.
unsigned int bits;
RandomBits(bits);
double scale = double(bits) / max_int;
if (sample < g_samples / 2)
{
// log bias
double exponent = ((max_exponent - min_exponent) * scale) + min_exponent;
num_items = pow(2.0, exponent);
num_items = CUB_MIN(num_items, g_max_items);
printf("num_items: %d (2^%.2f)", num_items, exponent); fflush(stdout);
}
else
{
// uniform bias
num_items = CUB_MAX(pow(2.0, min_exponent), scale * g_max_items);
num_items = CUB_MIN(num_items, g_max_items);
printf("num_items: %d (%.2f * %d)", num_items, scale, g_max_items); fflush(stdout);
}
}
if (g_verbose)
printf("\n");
else
printf(", ");
// Compute reference
T h_reference = Reduce(h_in, reduction_op, num_items);
// Run test on each multi-kernel configuration
float best_avg_throughput = 0.0;
for (int j = 0; j < multi_kernels.size(); ++j)
{
multi_kernels[j].avg_throughput = 0.0;
TestConfiguration(multi_kernels[j], simple_single_tuple, d_in, d_out, &h_reference, num_items, reduction_op);
best_avg_throughput = CUB_MAX(best_avg_throughput, multi_kernels[j].avg_throughput);
}
// Print best throughput for this problem size
printf("Best: %.2fe9 items/s (%.2f GB/s)\n", best_avg_throughput, best_avg_throughput * sizeof(T));
// Accumulate speedup (inverse for harmonic mean)
for (int j = 0; j < multi_kernels.size(); ++j)
multi_kernels[j].hmean_speedup += best_avg_throughput / multi_kernels[j].avg_throughput;
}
// Find max overall throughput and compute hmean speedups
float overall_max_throughput = 0.0;
for (int j = 0; j < multi_kernels.size(); ++j)
{
overall_max_throughput = CUB_MAX(overall_max_throughput, multi_kernels[j].best_avg_throughput);
multi_kernels[j].hmean_speedup = float(g_samples) / multi_kernels[j].hmean_speedup;
}
// Sort by cumulative speedup
sort(multi_kernels.begin(), multi_kernels.end(), MinSpeedup<MultiDispatchTuple>);
// Print ranked multi configurations
printf("\nRanked multi_kernels:\n");
for (int j = 0; j < multi_kernels.size(); ++j)
{
printf("\t (%d) params( ", multi_kernels.size() - j);
multi_kernels[j].params.Print();
printf(" ) hmean speedup: %.3f, best throughput %.2f @ %d elements (%.2f GB/s, %.2f%%)\n",
multi_kernels[j].hmean_speedup,
multi_kernels[j].best_avg_throughput,
(int) multi_kernels[j].best_size,
multi_kernels[j].best_avg_throughput * sizeof(T),
multi_kernels[j].best_avg_throughput / overall_max_throughput);
}
printf("\nMax multi-block throughput %.2f (%.2f GB/s)\n", overall_max_throughput, overall_max_throughput * sizeof(T));
}
/**
* Evaluate single-block configurations
*/
void TestSingle(
T* h_in,
T* d_in,
T* d_out,
ReductionOp reduction_op)
{
// Construct a NULL-ptr multi-kernel tuple that forces a single-kernel pass
MultiDispatchTuple multi_tuple;
double max_exponent = log2(double(g_max_items));
unsigned int max_int = (unsigned int) -1;
for (int sample = 0; sample < g_samples; ++sample)
{
printf("\nSingle-block sample %d, ", sample);
int num_items;
if (sample == 0)
{
// First sample: use max items
num_items = g_max_items;
printf("num_items: %d", num_items); fflush(stdout);
}
else
{
// Sample a problem size from [2, g_max_items], log-distributed
unsigned int bits;
RandomBits(bits);
double scale = double(bits) / max_int;
double exponent = ((max_exponent - 1) * scale) + 1;
num_items = pow(2.0, exponent);
printf("num_items: %d (2^%.2f)", num_items, exponent); fflush(stdout);
}
if (g_verbose)
printf("\n");
else
printf(", ");
// Compute reference
T h_reference = Reduce(h_in, reduction_op, num_items);
// Run test on each single-kernel configuration (pick first multi-config to use, which shouldn't be
float best_avg_throughput = 0.0;
for (int j = 0; j < single_kernels.size(); ++j)
{
single_kernels[j].avg_throughput = 0.0;
TestConfiguration(multi_tuple, single_kernels[j], d_in, d_out, &h_reference, num_items, reduction_op);
best_avg_throughput = CUB_MAX(best_avg_throughput, single_kernels[j].avg_throughput);
}
// Print best throughput for this problem size
printf("Best: %.2fe9 items/s (%.2f GB/s)\n", best_avg_throughput, best_avg_throughput * sizeof(T));
// Accumulate speedup (inverse for harmonic mean)
for (int j = 0; j < single_kernels.size(); ++j)
single_kernels[j].hmean_speedup += best_avg_throughput / single_kernels[j].avg_throughput;
}
// Find max overall throughput and compute hmean speedups
float overall_max_throughput = 0.0;
for (int j = 0; j < single_kernels.size(); ++j)
{
overall_max_throughput = CUB_MAX(overall_max_throughput, single_kernels[j].best_avg_throughput);
single_kernels[j].hmean_speedup = float(g_samples) / single_kernels[j].hmean_speedup;
}
// Sort by cumulative speedup
sort(single_kernels.begin(), single_kernels.end(), MinSpeedup<SingleDispatchTuple>);
// Print ranked single configurations
printf("\nRanked single_kernels:\n");
for (int j = 0; j < single_kernels.size(); ++j)
{
printf("\t (%d) params( ", single_kernels.size() - j);
single_kernels[j].params.Print();
printf(" ) hmean speedup: %.3f, best throughput %.2f @ %d elements (%.2f GB/s, %.2f%%)\n",
single_kernels[j].hmean_speedup,
single_kernels[j].best_avg_throughput,
(int) single_kernels[j].best_size,
single_kernels[j].best_avg_throughput * sizeof(T),
single_kernels[j].best_avg_throughput / overall_max_throughput);
}
printf("\nMax single-block throughput %.2f (%.2f GB/s)\n", overall_max_throughput, overall_max_throughput * sizeof(T));
}
};
//---------------------------------------------------------------------
// Main
//---------------------------------------------------------------------
/**
* Main
*/
int main(int argc, char** argv)
{
// Initialize command line
CommandLineArgs args(argc, argv);
args.GetCmdLineArgument("n", g_max_items);
args.GetCmdLineArgument("s", g_samples);
args.GetCmdLineArgument("i", g_timing_iterations);
g_verbose = args.CheckCmdLineFlag("v");
g_single = args.CheckCmdLineFlag("single");
g_verify = !args.CheckCmdLineFlag("noverify");
// Print usage
if (args.CheckCmdLineFlag("help"))
{
printf("%s "
"[--device=<device-id>] "
"[--n=<max items>]"
"[--s=<samples>]"
"[--i=<timing iterations>]"
"[--single]"
"[--v]"
"[--noverify]"
"\n", argv[0]);
exit(0);
}
// Initialize device
CubDebugExit(args.DeviceInit());
#if (TUNE_SIZE == 1)
typedef unsigned char T;
#elif (TUNE_SIZE == 2)
typedef unsigned short T;
#elif (TUNE_SIZE == 4)
typedef unsigned int T;
#elif (TUNE_SIZE == 8)
typedef unsigned long long T;
#else
// Default
typedef unsigned int T;
#endif
typedef unsigned int OffsetT;
Sum reduction_op;
// Enumerate kernels
Schmoo<T, OffsetT, Sum > schmoo;
schmoo.Enumerate();
// Allocate host arrays
T *h_in = new T[g_max_items];
// Initialize problem
Initialize(UNIFORM, h_in, g_max_items);
// Initialize device arrays
T *d_in = NULL;
T *d_out = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in, sizeof(T) * g_max_items));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_out, sizeof(T) * 1));
CubDebugExit(cudaMemcpy(d_in, h_in, sizeof(T) * g_max_items, cudaMemcpyHostToDevice));
// Test kernels
if (g_single)
schmoo.TestSingle(h_in, d_in, d_out, reduction_op);
else
schmoo.TestMulti(h_in, d_in, d_out, reduction_op);
// Cleanup
if (h_in) delete[] h_in;
if (d_in) CubDebugExit(g_allocator.DeviceFree(d_in));
if (d_out) CubDebugExit(g_allocator.DeviceFree(d_out));
return 0;
}