concat.h
7.23 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions and classes to compute the concatenation of two FSTs.
#ifndef FST_CONCAT_H_
#define FST_CONCAT_H_
#include <algorithm>
#include <vector>
#include <fst/mutable-fst.h>
#include <fst/rational.h>
namespace fst {
// Computes the concatenation (product) of two FSTs. If FST1 transduces string
// x to y with weight a and FST2 transduces string w to v with weight b, then
// their concatenation transduces string xw to yv with weight Times(a, b).
//
// This version modifies its MutableFst argument (in first position).
//
// Complexity:
//
// Time: O(V1 + V2 + E2)
// Space: O(V1 + V2 + E2)
//
// where Vi is the number of states, and Ei is the number of arcs, of the ith
// FST.
template <class Arc>
void Concat(MutableFst<Arc> *fst1, const Fst<Arc> &fst2) {
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
// Checks that the symbol table are compatible.
if (!CompatSymbols(fst1->InputSymbols(), fst2.InputSymbols()) ||
!CompatSymbols(fst1->OutputSymbols(), fst2.OutputSymbols())) {
FSTERROR() << "Concat: Input/output symbol tables of 1st argument "
<< "does not match input/output symbol tables of 2nd argument";
fst1->SetProperties(kError, kError);
return;
}
const auto props1 = fst1->Properties(kFstProperties, false);
const auto props2 = fst2.Properties(kFstProperties, false);
const auto start1 = fst1->Start();
if (start1 == kNoStateId) {
if (props2 & kError) fst1->SetProperties(kError, kError);
return;
}
const auto numstates1 = fst1->NumStates();
if (fst2.Properties(kExpanded, false)) {
fst1->ReserveStates(numstates1 + CountStates(fst2));
}
for (StateIterator<Fst<Arc>> siter2(fst2); !siter2.Done(); siter2.Next()) {
const auto s1 = fst1->AddState();
const auto s2 = siter2.Value();
fst1->SetFinal(s1, fst2.Final(s2));
fst1->ReserveArcs(s1, fst2.NumArcs(s2));
for (ArcIterator<Fst<Arc>> aiter(fst2, s2); !aiter.Done(); aiter.Next()) {
auto arc = aiter.Value();
arc.nextstate += numstates1;
fst1->AddArc(s1, arc);
}
}
const auto start2 = fst2.Start();
for (StateId s1 = 0; s1 < numstates1; ++s1) {
const auto weight = fst1->Final(s1);
if (weight != Weight::Zero()) {
fst1->SetFinal(s1, Weight::Zero());
if (start2 != kNoStateId) {
fst1->AddArc(s1, Arc(0, 0, weight, start2 + numstates1));
}
}
}
if (start2 != kNoStateId) {
fst1->SetProperties(ConcatProperties(props1, props2), kFstProperties);
}
}
// Computes the concatentation of two FSTs. This version modifies its
// MutableFst argument (in second position).
//
// Complexity:
//
// Time: O(V1 + E1)
// Space: O(V1 + E1)
//
// where Vi is the number of states, and Ei is the number of arcs, of the ith
// FST.
template <class Arc>
void Concat(const Fst<Arc> &fst1, MutableFst<Arc> *fst2) {
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
// Checks that the symbol table are compatible.
if (!CompatSymbols(fst1.InputSymbols(), fst2->InputSymbols()) ||
!CompatSymbols(fst1.OutputSymbols(), fst2->OutputSymbols())) {
FSTERROR() << "Concat: Input/output symbol tables of 1st argument "
<< "does not match input/output symbol tables of 2nd argument";
fst2->SetProperties(kError, kError);
return;
}
const auto props1 = fst1.Properties(kFstProperties, false);
const auto props2 = fst2->Properties(kFstProperties, false);
const auto start2 = fst2->Start();
if (start2 == kNoStateId) {
if (props1 & kError) fst2->SetProperties(kError, kError);
return;
}
const auto numstates2 = fst2->NumStates();
if (fst1.Properties(kExpanded, false)) {
fst2->ReserveStates(numstates2 + CountStates(fst1));
}
for (StateIterator<Fst<Arc>> siter(fst1); !siter.Done(); siter.Next()) {
const auto s1 = siter.Value();
const auto s2 = fst2->AddState();
const auto weight = fst1.Final(s1);
if (weight != Weight::Zero()) {
fst2->ReserveArcs(s2, fst1.NumArcs(s1) + 1);
fst2->AddArc(s2, Arc(0, 0, weight, start2));
} else {
fst2->ReserveArcs(s2, fst1.NumArcs(s1));
}
for (ArcIterator<Fst<Arc>> aiter(fst1, s1); !aiter.Done(); aiter.Next()) {
auto arc = aiter.Value();
arc.nextstate += numstates2;
fst2->AddArc(s2, arc);
}
}
const auto start1 = fst1.Start();
if (start1 != kNoStateId) {
fst2->SetStart(start1 + numstates2);
fst2->SetProperties(ConcatProperties(props1, props2), kFstProperties);
} else {
fst2->SetStart(fst2->AddState());
}
}
// Computes the concatentation of two FSTs. This version modifies its
// RationalFst input (in first position).
template <class Arc>
void Concat(RationalFst<Arc> *fst1, const Fst<Arc> &fst2) {
fst1->GetMutableImpl()->AddConcat(fst2, true);
}
// Computes the concatentation of two FSTs. This version modifies its
// RationalFst input (in second position).
template <class Arc>
void Concat(const Fst<Arc> &fst1, RationalFst<Arc> *fst2) {
fst2->GetMutableImpl()->AddConcat(fst1, false);
}
using ConcatFstOptions = RationalFstOptions;
// Computes the concatenation (product) of two FSTs; this version is a delayed
// FST. If FST1 transduces string x to y with weight a and FST2 transduces
// string w to v with weight b, then their concatenation transduces string xw
// to yv with Times(a, b).
//
// Complexity:
//
// Time: O(v1 + e1 + v2 + e2),
// Space: O(v1 + v2)
//
// where vi is the number of states visited, and ei is the number of arcs
// visited, of the ith FST. Constant time and space to visit an input state or
// arc is assumed and exclusive of caching.
template <class A>
class ConcatFst : public RationalFst<A> {
public:
using Arc = A;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
ConcatFst(const Fst<Arc> &fst1, const Fst<Arc> &fst2) {
GetMutableImpl()->InitConcat(fst1, fst2);
}
ConcatFst(const Fst<Arc> &fst1, const Fst<Arc> &fst2,
const ConcatFstOptions &opts)
: RationalFst<Arc>(opts) {
GetMutableImpl()->InitConcat(fst1, fst2);
}
// See Fst<>::Copy() for doc.
ConcatFst(const ConcatFst<Arc> &fst, bool safe = false)
: RationalFst<Arc>(fst, safe) {}
// Get a copy of this ConcatFst. See Fst<>::Copy() for further doc.
ConcatFst<Arc> *Copy(bool safe = false) const override {
return new ConcatFst<Arc>(*this, safe);
}
private:
using ImplToFst<internal::RationalFstImpl<Arc>>::GetImpl;
using ImplToFst<internal::RationalFstImpl<Arc>>::GetMutableImpl;
};
// Specialization for ConcatFst.
template <class Arc>
class StateIterator<ConcatFst<Arc>> : public StateIterator<RationalFst<Arc>> {
public:
explicit StateIterator(const ConcatFst<Arc> &fst)
: StateIterator<RationalFst<Arc>>(fst) {}
};
// Specialization for ConcatFst.
template <class Arc>
class ArcIterator<ConcatFst<Arc>> : public ArcIterator<RationalFst<Arc>> {
public:
using StateId = typename Arc::StateId;
ArcIterator(const ConcatFst<Arc> &fst, StateId s)
: ArcIterator<RationalFst<Arc>>(fst, s) {}
};
// Useful alias when using StdArc.
using StdConcatFst = ConcatFst<StdArc>;
} // namespace fst
#endif // FST_CONCAT_H_