label-reachable.h
18.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Class to determine if a non-epsilon label can be read as the first
// non-epsilon symbol along some path from a given state.
#ifndef FST_LABEL_REACHABLE_H_
#define FST_LABEL_REACHABLE_H_
#include <unordered_map>
#include <utility>
#include <vector>
#include <fst/log.h>
#include <fst/accumulator.h>
#include <fst/arcsort.h>
#include <fst/interval-set.h>
#include <fst/state-reachable.h>
#include <fst/util.h>
#include <fst/vector-fst.h>
namespace fst {
// Stores shareable data for label reachable class copies.
template <typename Label>
class LabelReachableData {
public:
using LabelIntervalSet = IntervalSet<Label>;
using Interval = typename LabelIntervalSet::Interval;
explicit LabelReachableData(bool reach_input, bool keep_relabel_data = true)
: reach_input_(reach_input),
keep_relabel_data_(keep_relabel_data),
have_relabel_data_(true),
final_label_(kNoLabel) {}
~LabelReachableData() {}
bool ReachInput() const { return reach_input_; }
std::vector<LabelIntervalSet> *MutableIntervalSets() {
return &interval_sets_;
}
const LabelIntervalSet &GetIntervalSet(int s) const {
return interval_sets_[s];
}
int NumIntervalSets() const { return interval_sets_.size(); }
std::unordered_map<Label, Label> *Label2Index() {
if (!have_relabel_data_) {
FSTERROR() << "LabelReachableData: No relabeling data";
}
return &label2index_;
}
void SetFinalLabel(Label final_label) { final_label_ = final_label; }
Label FinalLabel() const { return final_label_; }
static LabelReachableData<Label> *Read(std::istream &istrm,
const FstReadOptions &opts) {
auto *data = new LabelReachableData<Label>();
ReadType(istrm, &data->reach_input_);
ReadType(istrm, &data->keep_relabel_data_);
data->have_relabel_data_ = data->keep_relabel_data_;
if (data->keep_relabel_data_) ReadType(istrm, &data->label2index_);
ReadType(istrm, &data->final_label_);
ReadType(istrm, &data->interval_sets_);
return data;
}
bool Write(std::ostream &ostrm, const FstWriteOptions &opts) const {
WriteType(ostrm, reach_input_);
WriteType(ostrm, keep_relabel_data_);
if (keep_relabel_data_) WriteType(ostrm, label2index_);
WriteType(ostrm, FinalLabel());
WriteType(ostrm, interval_sets_);
return true;
}
private:
LabelReachableData() {}
bool reach_input_; // Input labels considered?
bool keep_relabel_data_; // Save label2index_ to file?
bool have_relabel_data_; // Using label2index_?
Label final_label_; // Final label.
std::unordered_map<Label, Label> label2index_; // Finds index for a label.
std::vector<LabelIntervalSet> interval_sets_; // Interval sets per state.
};
// Tests reachability of labels from a given state. If reach_input is true, then
// input labels are considered, o.w. output labels are considered. To test for
// reachability from a state s, first do SetState(s), then a label l can be
// reached from state s of FST f iff Reach(r) is true where r = Relabel(l). The
// relabeling is required to ensure a compact representation of the reachable
// labels.
// The whole FST can be relabeled instead with Relabel(&f, reach_input) so that
// the test Reach(r) applies directly to the labels of the transformed FST f.
// The relabeled FST will also be sorted appropriately for composition.
//
// Reachablity of a final state from state s (via an epsilon path) can be
// tested with ReachFinal().
//
// Reachability can also be tested on the set of labels specified by an arc
// iterator, useful for FST composition. In particular, Reach(aiter, ...) is
// true if labels on the input (output) side of the transitions of the arc
// iterator, when iter_input is true (false), can be reached from the state s.
// The iterator labels must have already been relabeled.
//
// With the arc iterator test of reachability, the begin position, end position
// and accumulated arc weight of the matches can be returned. The optional
// template argument controls how reachable arc weights are accumulated. The
// default uses semiring Plus(). Alternative ones can be used to distribute the
// weights in composition in various ways.
template <class Arc, class Accumulator = DefaultAccumulator<Arc>,
class D = LabelReachableData<typename Arc::Label>>
class LabelReachable {
public:
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
using Data = D;
using LabelIntervalSet = typename Data::LabelIntervalSet;
using Interval = typename LabelIntervalSet::Interval;
LabelReachable(const Fst<Arc> &fst, bool reach_input,
Accumulator *accumulator = nullptr,
bool keep_relabel_data = true)
: fst_(new VectorFst<Arc>(fst)),
s_(kNoStateId),
data_(std::make_shared<Data>(reach_input, keep_relabel_data)),
accumulator_(accumulator ? accumulator : new Accumulator()),
ncalls_(0),
nintervals_(0),
reach_fst_input_(false),
error_(false) {
const auto ins = fst_->NumStates();
TransformFst();
FindIntervals(ins);
fst_.reset();
}
explicit LabelReachable(std::shared_ptr<Data> data,
Accumulator *accumulator = nullptr)
: s_(kNoStateId),
data_(std::move(data)),
accumulator_(accumulator ? accumulator : new Accumulator()),
ncalls_(0),
nintervals_(0),
reach_fst_input_(false),
error_(false) {}
LabelReachable(const LabelReachable<Arc, Accumulator, Data> &reachable,
bool safe = false)
: s_(kNoStateId),
data_(reachable.data_),
accumulator_(new Accumulator(*reachable.accumulator_, safe)),
ncalls_(0),
nintervals_(0),
reach_fst_input_(reachable.reach_fst_input_),
error_(reachable.error_) {}
~LabelReachable() {
if (ncalls_ > 0) {
VLOG(2) << "# of calls: " << ncalls_;
VLOG(2) << "# of intervals/call: " << (nintervals_ / ncalls_);
}
}
// Relabels w.r.t labels that give compact label sets.
Label Relabel(Label label) {
if (label == 0 || error_) return label;
auto &label2index = *data_->Label2Index();
auto &relabel = label2index[label];
if (!relabel) relabel = label2index.size() + 1; // Adds new label.
return relabel;
}
// Relabels FST w.r.t to labels that give compact label sets.
void Relabel(MutableFst<Arc> *fst, bool relabel_input) {
for (StateIterator<MutableFst<Arc>> siter(*fst); !siter.Done();
siter.Next()) {
for (MutableArcIterator<MutableFst<Arc>> aiter(fst, siter.Value());
!aiter.Done(); aiter.Next()) {
auto arc = aiter.Value();
if (relabel_input) {
arc.ilabel = Relabel(arc.ilabel);
} else {
arc.olabel = Relabel(arc.olabel);
}
aiter.SetValue(arc);
}
}
if (relabel_input) {
ArcSort(fst, ILabelCompare<Arc>());
fst->SetInputSymbols(nullptr);
} else {
ArcSort(fst, OLabelCompare<Arc>());
fst->SetOutputSymbols(nullptr);
}
}
// Returns relabeling pairs (cf. relabel.h::Relabel()). If avoid_collisions is
// true, extra pairs are added to ensure no collisions when relabeling
// automata that have labels unseen here.
void RelabelPairs(std::vector<std::pair<Label, Label>> *pairs,
bool avoid_collisions = false) {
pairs->clear();
const auto &label2index = *data_->Label2Index();
// Maps labels to their new values in [1, label2index().size()].
for (auto it = label2index.begin(); it != label2index.end(); ++it) {
if (it->second != data_->FinalLabel()) {
pairs->push_back(std::make_pair(it->first, it->second));
}
}
if (avoid_collisions) {
// Ensures any label in [1, label2index().size()] is mapped either
// by the above step or to label2index() + 1 (to avoid collisions).
for (size_t i = 1; i <= label2index.size(); ++i) {
const auto it = label2index.find(i);
if (it == label2index.end() || it->second == data_->FinalLabel()) {
pairs->push_back(std::make_pair(i, label2index.size() + 1));
}
}
}
}
// Set current state. Optionally set state associated
// with arc iterator to be passed to Reach.
void SetState(StateId s, StateId aiter_s = kNoStateId) {
s_ = s;
if (aiter_s != kNoStateId) {
accumulator_->SetState(aiter_s);
if (accumulator_->Error()) error_ = true;
}
}
// Can reach this label from current state?
// Original labels must be transformed by the Relabel methods above.
bool Reach(Label label) const {
if (label == 0 || error_) return false;
return data_->GetIntervalSet(s_).Member(label);
}
// Can reach final state (via epsilon transitions) from this state?
bool ReachFinal() const {
if (error_) return false;
return data_->GetIntervalSet(s_).Member(data_->FinalLabel());
}
// Initialize with secondary FST to be used with Reach(Iterator,...).
// If reach_input = true, then arc input labels are considered in
// Reach(aiter, ...), o.w. output labels are considered. If copy is true, then
// the FST is a copy of the FST used in the previous call to this method
// (useful to avoid unnecessary updates).
template <class FST>
void ReachInit(const FST &fst, bool reach_input, bool copy = false) {
reach_fst_input_ = reach_input;
if (!fst.Properties(reach_fst_input_ ? kILabelSorted : kOLabelSorted,
true)) {
FSTERROR() << "LabelReachable::ReachInit: Fst is not sorted";
error_ = true;
}
accumulator_->Init(fst, copy);
if (accumulator_->Error()) error_ = true;
}
// Can reach any arc iterator label between iterator positions
// aiter_begin and aiter_end?
// Arc iterator labels must be transformed by the Relabel methods
// above. If compute_weight is true, user may call ReachWeight().
template <class Iterator>
bool Reach(Iterator *aiter, ssize_t aiter_begin, ssize_t aiter_end,
bool compute_weight) {
if (error_) return false;
const auto &interval_set = data_->GetIntervalSet(s_);
++ncalls_;
nintervals_ += interval_set.Size();
reach_begin_ = -1;
reach_end_ = -1;
reach_weight_ = Weight::Zero();
const auto flags = aiter->Flags(); // Save flags to restore them on exit.
aiter->SetFlags(kArcNoCache, kArcNoCache); // Makes caching optional.
aiter->Seek(aiter_begin);
if (2 * (aiter_end - aiter_begin) < interval_set.Size()) {
// Checks each arc against intervals, setting arc iterator flags to only
// compute the ilabel or olabel values, since they are the only values
// required for most of the arcs processed.
aiter->SetFlags(reach_fst_input_ ? kArcILabelValue : kArcOLabelValue,
kArcValueFlags);
Label reach_label = kNoLabel;
for (auto aiter_pos = aiter_begin; aiter_pos < aiter_end;
aiter->Next(), ++aiter_pos) {
const auto &arc = aiter->Value();
const auto label = reach_fst_input_ ? arc.ilabel : arc.olabel;
if (label == reach_label || Reach(label)) {
reach_label = label;
if (reach_begin_ < 0) reach_begin_ = aiter_pos;
reach_end_ = aiter_pos + 1;
if (compute_weight) {
if (!(aiter->Flags() & kArcWeightValue)) {
// If arc.weight wasn't computed by the call to aiter->Value()
// above, we need to call aiter->Value() again after having set
// the arc iterator flags to compute the arc weight value.
aiter->SetFlags(kArcWeightValue, kArcValueFlags);
const auto &arcb = aiter->Value();
// Call the accumulator.
reach_weight_ = accumulator_->Sum(reach_weight_, arcb.weight);
// Only ilabel or olabel required to process the following arcs.
aiter->SetFlags(
reach_fst_input_ ? kArcILabelValue : kArcOLabelValue,
kArcValueFlags);
} else {
// Calls the accumulator.
reach_weight_ = accumulator_->Sum(reach_weight_, arc.weight);
}
}
}
}
} else {
// Checks each interval against arcs.
auto begin_low = aiter_begin;
auto end_low = aiter_begin;
for (const auto &interval : interval_set) {
begin_low = LowerBound(aiter, end_low, aiter_end, interval.begin);
end_low = LowerBound(aiter, begin_low, aiter_end, interval.end);
if (end_low - begin_low > 0) {
if (reach_begin_ < 0) reach_begin_ = begin_low;
reach_end_ = end_low;
if (compute_weight) {
aiter->SetFlags(kArcWeightValue, kArcValueFlags);
reach_weight_ =
accumulator_->Sum(reach_weight_, aiter, begin_low, end_low);
}
}
}
}
aiter->SetFlags(flags, kArcFlags); // Restores original flag values.
return reach_begin_ >= 0;
}
// Returns iterator position of first matching arc.
ssize_t ReachBegin() const { return reach_begin_; }
// Returns iterator position one past last matching arc.
ssize_t ReachEnd() const { return reach_end_; }
// Return the sum of the weights for matching arcs. Valid only if
// compute_weight was true in Reach() call.
Weight ReachWeight() const { return reach_weight_; }
// Access to the relabeling map. Excludes epsilon (0) label but
// includes kNoLabel that is used internally for super-final
// transitons.
const std::unordered_map<Label, Label> &Label2Index() const {
return *data_->Label2Index();
}
const Data *GetData() const { return data_.get(); }
std::shared_ptr<Data> GetSharedData() const { return data_; }
bool Error() const { return error_ || accumulator_->Error(); }
private:
// Redirects labeled arcs (input or output labels determined by ReachInput())
// to new label-specific final states. Each original final state is
// redirected via a transition labeled with kNoLabel to a new
// kNoLabel-specific final state. Creates super-initial state for all states
// with zero in-degree.
void TransformFst() {
auto ins = fst_->NumStates();
auto ons = ins;
std::vector<ssize_t> indeg(ins, 0);
// Redirects labeled arcs to new final states.
for (StateId s = 0; s < ins; ++s) {
for (MutableArcIterator<VectorFst<Arc>> aiter(fst_.get(), s);
!aiter.Done(); aiter.Next()) {
auto arc = aiter.Value();
const auto label = data_->ReachInput() ? arc.ilabel : arc.olabel;
if (label) {
auto insert_result = label2state_.insert(std::make_pair(label, ons));
if (insert_result.second) {
indeg.push_back(0);
++ons;
}
arc.nextstate = label2state_[label];
aiter.SetValue(arc);
}
++indeg[arc.nextstate]; // Finds in-degrees for next step.
}
// Redirects final weights to new final state.
const auto final_weight = fst_->Final(s);
if (final_weight != Weight::Zero()) {
auto insert_result = label2state_.insert(std::make_pair(kNoLabel, ons));
if (insert_result.second) {
indeg.push_back(0);
++ons;
}
Arc arc(kNoLabel, kNoLabel, final_weight, label2state_[kNoLabel]);
fst_->AddArc(s, arc);
++indeg[arc.nextstate]; // Finds in-degrees for next step.
fst_->SetFinal(s, Weight::Zero());
}
}
// Adds new final states to the FST.
while (fst_->NumStates() < ons) {
StateId s = fst_->AddState();
fst_->SetFinal(s, Weight::One());
}
// Creates a super-initial state for all states with zero in-degree.
const auto start = fst_->AddState();
fst_->SetStart(start);
for (StateId s = 0; s < start; ++s) {
if (indeg[s] == 0) {
Arc arc(0, 0, Weight::One(), s);
fst_->AddArc(start, arc);
}
}
}
void FindIntervals(StateId ins) {
StateReachable<Arc, Label, LabelIntervalSet> state_reachable(*fst_);
if (state_reachable.Error()) {
error_ = true;
return;
}
auto &state2index = state_reachable.State2Index();
auto &interval_sets = *data_->MutableIntervalSets();
interval_sets = state_reachable.IntervalSets();
interval_sets.resize(ins);
auto &label2index = *data_->Label2Index();
for (const auto &kv : label2state_) {
Label i = state2index[kv.second];
label2index[kv.first] = i;
if (kv.first == kNoLabel) data_->SetFinalLabel(i);
}
label2state_.clear();
double nintervals = 0;
ssize_t non_intervals = 0;
for (StateId s = 0; s < ins; ++s) {
nintervals += interval_sets[s].Size();
if (interval_sets[s].Size() > 1) {
++non_intervals;
VLOG(3) << "state: " << s
<< " # of intervals: " << interval_sets[s].Size();
}
}
VLOG(2) << "# of states: " << ins;
VLOG(2) << "# of intervals: " << nintervals;
VLOG(2) << "# of intervals/state: " << nintervals / ins;
VLOG(2) << "# of non-interval states: " << non_intervals;
}
template <class Iterator>
ssize_t LowerBound(Iterator *aiter, ssize_t aiter_begin, ssize_t aiter_end,
Label match_label) const {
// Only needs to compute the ilabel or olabel of arcs when performing the
// binary search.
aiter->SetFlags(reach_fst_input_ ? kArcILabelValue : kArcOLabelValue,
kArcValueFlags);
ssize_t low = aiter_begin;
ssize_t high = aiter_end;
while (low < high) {
const ssize_t mid = low + (high - low) / 2;
aiter->Seek(mid);
auto label =
reach_fst_input_ ? aiter->Value().ilabel : aiter->Value().olabel;
if (label < match_label) {
low = mid + 1;
} else {
high = mid;
}
}
aiter->Seek(low);
aiter->SetFlags(kArcValueFlags, kArcValueFlags);
return low;
}
std::unique_ptr<VectorFst<Arc>> fst_;
// Current state
StateId s_;
// Finds final state for a label
std::unordered_map<Label, StateId> label2state_;
// Iterator position of first match.
ssize_t reach_begin_;
// Iterator position after last match.
ssize_t reach_end_;
// Gives weight sum of arc iterator arcs with reachable labels.
Weight reach_weight_;
// Shareable data between copies.
std::shared_ptr<Data> data_;
// Sums arc weights.
std::unique_ptr<Accumulator> accumulator_;
double ncalls_;
double nintervals_;
bool reach_fst_input_;
bool error_;
};
} // namespace fst
#endif // FST_LABEL_REACHABLE_H_