label-reachable.h 18.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Class to determine if a non-epsilon label can be read as the first
// non-epsilon symbol along some path from a given state.

#ifndef FST_LABEL_REACHABLE_H_
#define FST_LABEL_REACHABLE_H_

#include <unordered_map>
#include <utility>
#include <vector>

#include <fst/log.h>

#include <fst/accumulator.h>
#include <fst/arcsort.h>
#include <fst/interval-set.h>
#include <fst/state-reachable.h>
#include <fst/util.h>
#include <fst/vector-fst.h>


namespace fst {

// Stores shareable data for label reachable class copies.
template <typename Label>
class LabelReachableData {
 public:
  using LabelIntervalSet = IntervalSet<Label>;
  using Interval = typename LabelIntervalSet::Interval;

  explicit LabelReachableData(bool reach_input, bool keep_relabel_data = true)
      : reach_input_(reach_input),
        keep_relabel_data_(keep_relabel_data),
        have_relabel_data_(true),
        final_label_(kNoLabel) {}

  ~LabelReachableData() {}

  bool ReachInput() const { return reach_input_; }

  std::vector<LabelIntervalSet> *MutableIntervalSets() {
    return &interval_sets_;
  }

  const LabelIntervalSet &GetIntervalSet(int s) const {
    return interval_sets_[s];
  }

  int NumIntervalSets() const { return interval_sets_.size(); }

  std::unordered_map<Label, Label> *Label2Index() {
    if (!have_relabel_data_) {
      FSTERROR() << "LabelReachableData: No relabeling data";
    }
    return &label2index_;
  }

  void SetFinalLabel(Label final_label) { final_label_ = final_label; }

  Label FinalLabel() const { return final_label_; }

  static LabelReachableData<Label> *Read(std::istream &istrm,
                                         const FstReadOptions &opts) {
    auto *data = new LabelReachableData<Label>();
    ReadType(istrm, &data->reach_input_);
    ReadType(istrm, &data->keep_relabel_data_);
    data->have_relabel_data_ = data->keep_relabel_data_;
    if (data->keep_relabel_data_) ReadType(istrm, &data->label2index_);
    ReadType(istrm, &data->final_label_);
    ReadType(istrm, &data->interval_sets_);
    return data;
  }

  bool Write(std::ostream &ostrm, const FstWriteOptions &opts) const {
    WriteType(ostrm, reach_input_);
    WriteType(ostrm, keep_relabel_data_);
    if (keep_relabel_data_) WriteType(ostrm, label2index_);
    WriteType(ostrm, FinalLabel());
    WriteType(ostrm, interval_sets_);
    return true;
  }

 private:
  LabelReachableData() {}

  bool reach_input_;                              // Input labels considered?
  bool keep_relabel_data_;                        // Save label2index_ to file?
  bool have_relabel_data_;                        // Using label2index_?
  Label final_label_;                             // Final label.
  std::unordered_map<Label, Label> label2index_;  // Finds index for a label.
  std::vector<LabelIntervalSet> interval_sets_;   // Interval sets per state.
};

// Tests reachability of labels from a given state. If reach_input is true, then
// input labels are considered, o.w. output labels are considered. To test for
// reachability from a state s, first do SetState(s), then a label l can be
// reached from state s of FST f iff Reach(r) is true where r = Relabel(l). The
// relabeling is required to ensure a compact representation of the reachable
// labels.

// The whole FST can be relabeled instead with Relabel(&f, reach_input) so that
// the test Reach(r) applies directly to the labels of the transformed FST f.
// The relabeled FST will also be sorted appropriately for composition.
//
// Reachablity of a final state from state s (via an epsilon path) can be
// tested with ReachFinal().
//
// Reachability can also be tested on the set of labels specified by an arc
// iterator, useful for FST composition. In particular, Reach(aiter, ...) is
// true if labels on the input (output) side of the transitions of the arc
// iterator, when iter_input is true (false), can be reached from the state s.
// The iterator labels must have already been relabeled.
//
// With the arc iterator test of reachability, the begin position, end position
// and accumulated arc weight of the matches can be returned. The optional
// template argument controls how reachable arc weights are accumulated. The
// default uses semiring Plus(). Alternative ones can be used to distribute the
// weights in composition in various ways.
template <class Arc, class Accumulator = DefaultAccumulator<Arc>,
          class D = LabelReachableData<typename Arc::Label>>
class LabelReachable {
 public:
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;
  using Data = D;

  using LabelIntervalSet = typename Data::LabelIntervalSet;

  using Interval = typename LabelIntervalSet::Interval;

  LabelReachable(const Fst<Arc> &fst, bool reach_input,
                 Accumulator *accumulator = nullptr,
                 bool keep_relabel_data = true)
      : fst_(new VectorFst<Arc>(fst)),
        s_(kNoStateId),
        data_(std::make_shared<Data>(reach_input, keep_relabel_data)),
        accumulator_(accumulator ? accumulator : new Accumulator()),
        ncalls_(0),
        nintervals_(0),
        reach_fst_input_(false),
        error_(false) {
    const auto ins = fst_->NumStates();
    TransformFst();
    FindIntervals(ins);
    fst_.reset();
  }

  explicit LabelReachable(std::shared_ptr<Data> data,
                          Accumulator *accumulator = nullptr)
      : s_(kNoStateId),
        data_(std::move(data)),
        accumulator_(accumulator ? accumulator : new Accumulator()),
        ncalls_(0),
        nintervals_(0),
        reach_fst_input_(false),
        error_(false) {}

  LabelReachable(const LabelReachable<Arc, Accumulator, Data> &reachable,
                 bool safe = false)
      : s_(kNoStateId),
        data_(reachable.data_),
        accumulator_(new Accumulator(*reachable.accumulator_, safe)),
        ncalls_(0),
        nintervals_(0),
        reach_fst_input_(reachable.reach_fst_input_),
        error_(reachable.error_) {}

  ~LabelReachable() {
    if (ncalls_ > 0) {
      VLOG(2) << "# of calls: " << ncalls_;
      VLOG(2) << "# of intervals/call: " << (nintervals_ / ncalls_);
    }
  }

  // Relabels w.r.t labels that give compact label sets.
  Label Relabel(Label label) {
    if (label == 0 || error_) return label;
    auto &label2index = *data_->Label2Index();
    auto &relabel = label2index[label];
    if (!relabel) relabel = label2index.size() + 1;  // Adds new label.
    return relabel;
  }

  // Relabels FST w.r.t to labels that give compact label sets.
  void Relabel(MutableFst<Arc> *fst, bool relabel_input) {
    for (StateIterator<MutableFst<Arc>> siter(*fst); !siter.Done();
         siter.Next()) {
      for (MutableArcIterator<MutableFst<Arc>> aiter(fst, siter.Value());
           !aiter.Done(); aiter.Next()) {
        auto arc = aiter.Value();
        if (relabel_input) {
          arc.ilabel = Relabel(arc.ilabel);
        } else {
          arc.olabel = Relabel(arc.olabel);
        }
        aiter.SetValue(arc);
      }
    }
    if (relabel_input) {
      ArcSort(fst, ILabelCompare<Arc>());
      fst->SetInputSymbols(nullptr);
    } else {
      ArcSort(fst, OLabelCompare<Arc>());
      fst->SetOutputSymbols(nullptr);
    }
  }

  // Returns relabeling pairs (cf. relabel.h::Relabel()). If avoid_collisions is
  // true, extra pairs are added to ensure no collisions when relabeling
  // automata that have labels unseen here.
  void RelabelPairs(std::vector<std::pair<Label, Label>> *pairs,
                    bool avoid_collisions = false) {
    pairs->clear();
    const auto &label2index = *data_->Label2Index();
    // Maps labels to their new values in [1, label2index().size()].
    for (auto it = label2index.begin(); it != label2index.end(); ++it) {
      if (it->second != data_->FinalLabel()) {
        pairs->push_back(std::make_pair(it->first, it->second));
      }
    }
    if (avoid_collisions) {
      // Ensures any label in [1, label2index().size()] is mapped either
      // by the above step or to label2index() + 1 (to avoid collisions).
      for (size_t i = 1; i <= label2index.size(); ++i) {
        const auto it = label2index.find(i);
        if (it == label2index.end() || it->second == data_->FinalLabel()) {
          pairs->push_back(std::make_pair(i, label2index.size() + 1));
        }
      }
    }
  }

  // Set current state. Optionally set state associated
  // with arc iterator to be passed to Reach.
  void SetState(StateId s, StateId aiter_s = kNoStateId) {
    s_ = s;
    if (aiter_s != kNoStateId) {
      accumulator_->SetState(aiter_s);
      if (accumulator_->Error()) error_ = true;
    }
  }

  // Can reach this label from current state?
  // Original labels must be transformed by the Relabel methods above.
  bool Reach(Label label) const {
    if (label == 0 || error_) return false;
    return data_->GetIntervalSet(s_).Member(label);
  }

  // Can reach final state (via epsilon transitions) from this state?
  bool ReachFinal() const {
    if (error_) return false;
    return data_->GetIntervalSet(s_).Member(data_->FinalLabel());
  }

  // Initialize with secondary FST to be used with Reach(Iterator,...).
  // If reach_input = true, then arc input labels are considered in
  // Reach(aiter, ...), o.w. output labels are considered. If copy is true, then
  // the FST is a copy of the FST used in the previous call to this method
  // (useful to avoid unnecessary updates).
  template <class FST>
  void ReachInit(const FST &fst, bool reach_input, bool copy = false) {
    reach_fst_input_ = reach_input;
    if (!fst.Properties(reach_fst_input_ ? kILabelSorted : kOLabelSorted,
                        true)) {
      FSTERROR() << "LabelReachable::ReachInit: Fst is not sorted";
      error_ = true;
    }
    accumulator_->Init(fst, copy);
    if (accumulator_->Error()) error_ = true;
  }

  // Can reach any arc iterator label between iterator positions
  // aiter_begin and aiter_end?
  // Arc iterator labels must be transformed by the Relabel methods
  // above. If compute_weight is true, user may call ReachWeight().
  template <class Iterator>
  bool Reach(Iterator *aiter, ssize_t aiter_begin, ssize_t aiter_end,
             bool compute_weight) {
    if (error_) return false;
    const auto &interval_set = data_->GetIntervalSet(s_);
    ++ncalls_;
    nintervals_ += interval_set.Size();
    reach_begin_ = -1;
    reach_end_ = -1;
    reach_weight_ = Weight::Zero();
    const auto flags = aiter->Flags();  // Save flags to restore them on exit.
    aiter->SetFlags(kArcNoCache, kArcNoCache);  // Makes caching optional.
    aiter->Seek(aiter_begin);
    if (2 * (aiter_end - aiter_begin) < interval_set.Size()) {
      // Checks each arc against intervals, setting arc iterator flags to only
      // compute the ilabel or olabel values, since they are the only values
      // required for most of the arcs processed.
      aiter->SetFlags(reach_fst_input_ ? kArcILabelValue : kArcOLabelValue,
                      kArcValueFlags);
      Label reach_label = kNoLabel;
      for (auto aiter_pos = aiter_begin; aiter_pos < aiter_end;
           aiter->Next(), ++aiter_pos) {
        const auto &arc = aiter->Value();
        const auto label = reach_fst_input_ ? arc.ilabel : arc.olabel;
        if (label == reach_label || Reach(label)) {
          reach_label = label;
          if (reach_begin_ < 0) reach_begin_ = aiter_pos;
          reach_end_ = aiter_pos + 1;
          if (compute_weight) {
            if (!(aiter->Flags() & kArcWeightValue)) {
              // If arc.weight wasn't computed by the call to aiter->Value()
              // above, we need to call aiter->Value() again after having set
              // the arc iterator flags to compute the arc weight value.
              aiter->SetFlags(kArcWeightValue, kArcValueFlags);
              const auto &arcb = aiter->Value();
              // Call the accumulator.
              reach_weight_ = accumulator_->Sum(reach_weight_, arcb.weight);
              // Only ilabel or olabel required to process the following arcs.
              aiter->SetFlags(
                  reach_fst_input_ ? kArcILabelValue : kArcOLabelValue,
                  kArcValueFlags);
            } else {
              // Calls the accumulator.
              reach_weight_ = accumulator_->Sum(reach_weight_, arc.weight);
            }
          }
        }
      }
    } else {
      // Checks each interval against arcs.
      auto begin_low = aiter_begin;
      auto end_low = aiter_begin;
      for (const auto &interval : interval_set) {
        begin_low = LowerBound(aiter, end_low, aiter_end, interval.begin);
        end_low = LowerBound(aiter, begin_low, aiter_end, interval.end);
        if (end_low - begin_low > 0) {
          if (reach_begin_ < 0) reach_begin_ = begin_low;
          reach_end_ = end_low;
          if (compute_weight) {
            aiter->SetFlags(kArcWeightValue, kArcValueFlags);
            reach_weight_ =
                accumulator_->Sum(reach_weight_, aiter, begin_low, end_low);
          }
        }
      }
    }
    aiter->SetFlags(flags, kArcFlags);  // Restores original flag values.
    return reach_begin_ >= 0;
  }

  // Returns iterator position of first matching arc.
  ssize_t ReachBegin() const { return reach_begin_; }

  // Returns iterator position one past last matching arc.
  ssize_t ReachEnd() const { return reach_end_; }

  // Return the sum of the weights for matching arcs. Valid only if
  // compute_weight was true in Reach() call.
  Weight ReachWeight() const { return reach_weight_; }

  // Access to the relabeling map. Excludes epsilon (0) label but
  // includes kNoLabel that is used internally for super-final
  // transitons.
  const std::unordered_map<Label, Label> &Label2Index() const {
    return *data_->Label2Index();
  }

  const Data *GetData() const { return data_.get(); }

  std::shared_ptr<Data> GetSharedData() const { return data_; }

  bool Error() const { return error_ || accumulator_->Error(); }

 private:
  // Redirects labeled arcs (input or output labels determined by ReachInput())
  // to new label-specific final states. Each original final state is
  // redirected via a transition labeled with kNoLabel to a new
  // kNoLabel-specific final state. Creates super-initial state for all states
  // with zero in-degree.
  void TransformFst() {
    auto ins = fst_->NumStates();
    auto ons = ins;
    std::vector<ssize_t> indeg(ins, 0);
    // Redirects labeled arcs to new final states.
    for (StateId s = 0; s < ins; ++s) {
      for (MutableArcIterator<VectorFst<Arc>> aiter(fst_.get(), s);
           !aiter.Done(); aiter.Next()) {
        auto arc = aiter.Value();
        const auto label = data_->ReachInput() ? arc.ilabel : arc.olabel;
        if (label) {
          auto insert_result = label2state_.insert(std::make_pair(label, ons));
          if (insert_result.second) {
            indeg.push_back(0);
            ++ons;
          }
          arc.nextstate = label2state_[label];
          aiter.SetValue(arc);
        }
        ++indeg[arc.nextstate];  // Finds in-degrees for next step.
      }
      // Redirects final weights to new final state.
      const auto final_weight = fst_->Final(s);
      if (final_weight != Weight::Zero()) {
        auto insert_result = label2state_.insert(std::make_pair(kNoLabel, ons));
        if (insert_result.second) {
          indeg.push_back(0);
          ++ons;
        }
        Arc arc(kNoLabel, kNoLabel, final_weight, label2state_[kNoLabel]);
        fst_->AddArc(s, arc);
        ++indeg[arc.nextstate];  // Finds in-degrees for next step.
        fst_->SetFinal(s, Weight::Zero());
      }
    }
    // Adds new final states to the FST.
    while (fst_->NumStates() < ons) {
      StateId s = fst_->AddState();
      fst_->SetFinal(s, Weight::One());
    }
    // Creates a super-initial state for all states with zero in-degree.
    const auto start = fst_->AddState();
    fst_->SetStart(start);
    for (StateId s = 0; s < start; ++s) {
      if (indeg[s] == 0) {
        Arc arc(0, 0, Weight::One(), s);
        fst_->AddArc(start, arc);
      }
    }
  }

  void FindIntervals(StateId ins) {
    StateReachable<Arc, Label, LabelIntervalSet> state_reachable(*fst_);
    if (state_reachable.Error()) {
      error_ = true;
      return;
    }
    auto &state2index = state_reachable.State2Index();
    auto &interval_sets = *data_->MutableIntervalSets();
    interval_sets = state_reachable.IntervalSets();
    interval_sets.resize(ins);
    auto &label2index = *data_->Label2Index();
    for (const auto &kv : label2state_) {
      Label i = state2index[kv.second];
      label2index[kv.first] = i;
      if (kv.first == kNoLabel) data_->SetFinalLabel(i);
    }
    label2state_.clear();
    double nintervals = 0;
    ssize_t non_intervals = 0;
    for (StateId s = 0; s < ins; ++s) {
      nintervals += interval_sets[s].Size();
      if (interval_sets[s].Size() > 1) {
        ++non_intervals;
        VLOG(3) << "state: " << s
                << " # of intervals: " << interval_sets[s].Size();
      }
    }
    VLOG(2) << "# of states: " << ins;
    VLOG(2) << "# of intervals: " << nintervals;
    VLOG(2) << "# of intervals/state: " << nintervals / ins;
    VLOG(2) << "# of non-interval states: " << non_intervals;
  }

  template <class Iterator>
  ssize_t LowerBound(Iterator *aiter, ssize_t aiter_begin, ssize_t aiter_end,
                     Label match_label) const {
    // Only needs to compute the ilabel or olabel of arcs when performing the
    // binary search.
    aiter->SetFlags(reach_fst_input_ ? kArcILabelValue : kArcOLabelValue,
                    kArcValueFlags);
    ssize_t low = aiter_begin;
    ssize_t high = aiter_end;
    while (low < high) {
      const ssize_t mid = low + (high - low) / 2;
      aiter->Seek(mid);
      auto label =
          reach_fst_input_ ? aiter->Value().ilabel : aiter->Value().olabel;
      if (label < match_label) {
        low = mid + 1;
      } else {
        high = mid;
      }
    }
    aiter->Seek(low);
    aiter->SetFlags(kArcValueFlags, kArcValueFlags);
    return low;
  }

  std::unique_ptr<VectorFst<Arc>> fst_;
  // Current state
  StateId s_;
  // Finds final state for a label
  std::unordered_map<Label, StateId> label2state_;
  // Iterator position of first match.
  ssize_t reach_begin_;
  // Iterator position after last match.
  ssize_t reach_end_;
  // Gives weight sum of arc iterator arcs with reachable labels.
  Weight reach_weight_;
  // Shareable data between copies.
  std::shared_ptr<Data> data_;
  // Sums arc weights.
  std::unique_ptr<Accumulator> accumulator_;
  double ncalls_;
  double nintervals_;
  bool reach_fst_input_;
  bool error_;
};

}  // namespace fst

#endif  // FST_LABEL_REACHABLE_H_