randgen.h 25.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Classes and functions to generate random paths through an FST.

#ifndef FST_RANDGEN_H_
#define FST_RANDGEN_H_

#include <math.h>
#include <stddef.h>
#include <limits>
#include <map>
#include <memory>
#include <random>
#include <utility>
#include <vector>

#include <fst/log.h>

#include <fst/accumulator.h>
#include <fst/cache.h>
#include <fst/dfs-visit.h>
#include <fst/float-weight.h>
#include <fst/fst-decl.h>
#include <fst/fst.h>
#include <fst/mutable-fst.h>
#include <fst/properties.h>
#include <fst/util.h>
#include <fst/weight.h>

namespace fst {

// The RandGenFst class is roughly similar to ArcMapFst in that it takes two
// template parameters denoting the input and output arc types. However, it also
// takes an additional template parameter which specifies a sampler object which
// samples (with replacement) arcs from an FST state. The sampler in turn takes
// a template parameter for a selector object which actually chooses the arc.
//
// Arc selector functors are used to select a random transition given an FST
// state s, returning a number N such that 0 <= N <= NumArcs(s). If N is
// NumArcs(s), then the final weight is selected; otherwise the N-th arc is
// selected. It is assumed these are not applied to any state which is neither
// final nor has any arcs leaving it.

// Randomly selects a transition using the uniform distribution. This class is
// not thread-safe.
template <class Arc>
class UniformArcSelector {
 public:
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  // Constructs a selector with a non-deterministic seed.
  UniformArcSelector() : rand_(std::random_device()()) {}
  // Constructs a selector with a given seed.
  explicit UniformArcSelector(uint64 seed) : rand_(seed) {}

  size_t operator()(const Fst<Arc> &fst, StateId s) const {
    const auto n = fst.NumArcs(s) + (fst.Final(s) != Weight::Zero());
    return static_cast<size_t>(
        std::uniform_int_distribution<>(0, n - 1)(rand_));
  }

 private:
  mutable std::mt19937_64 rand_;
};

// Randomly selects a transition w.r.t. the weights treated as negative log
// probabilities after normalizing for the total weight leaving the state. Zero
// transitions are disregarded. It assumed that Arc::Weight::Value() accesses
// the floating point representation of the weight. This class is not
// thread-safe.
template <class Arc>
class LogProbArcSelector {
 public:
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  // Constructs a selector with a non-deterministic seed.
  LogProbArcSelector() : rand_(std::random_device()()) {}
  // Constructs a selector with a given seed.
  explicit LogProbArcSelector(uint64 seed) : rand_(seed) {}

  size_t operator()(const Fst<Arc> &fst, StateId s) const {
    // Finds total weight leaving state.
    auto sum = Log64Weight::Zero();
    ArcIterator<Fst<Arc>> aiter(fst, s);
    for (; !aiter.Done(); aiter.Next()) {
      const auto &arc = aiter.Value();
      sum = Plus(sum, to_log_weight_(arc.weight));
    }
    sum = Plus(sum, to_log_weight_(fst.Final(s)));
    const double threshold =
        std::uniform_real_distribution<>(0, exp(-sum.Value()))(rand_);
    auto p = Log64Weight::Zero();
    size_t n = 0;
    for (aiter.Reset(); !aiter.Done(); aiter.Next(), ++n) {
      p = Plus(p, to_log_weight_(aiter.Value().weight));
      if (exp(-p.Value()) > threshold) return n;
    }
    return n;
  }

 private:
  mutable std::mt19937_64 rand_;
  WeightConvert<Weight, Log64Weight> to_log_weight_;
};

// Useful alias when using StdArc.
using StdArcSelector = LogProbArcSelector<StdArc>;

// Same as LogProbArcSelector but use CacheLogAccumulator to cache the weight
// accumulation computations. This class is not thread-safe.
template <class Arc>
class FastLogProbArcSelector : public LogProbArcSelector<Arc> {
 public:
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using LogProbArcSelector<Arc>::operator();

  // Constructs a selector with a non-deterministic seed.
  FastLogProbArcSelector() : seed_(std::random_device()()), rand_(seed_) {}
  // Constructs a selector with a given seed.
  explicit FastLogProbArcSelector(uint64 seed) : seed_(seed), rand_(seed_) {}

  size_t operator()(const Fst<Arc> &fst, StateId s,
                    CacheLogAccumulator<Arc> *accumulator) const {
    accumulator->SetState(s);
    ArcIterator<Fst<Arc>> aiter(fst, s);
    // Finds total weight leaving state.
    const double sum = to_log_weight_(accumulator->Sum(fst.Final(s), &aiter, 0,
                                                       fst.NumArcs(s)))
                           .Value();
    const double r = -log(std::uniform_real_distribution<>(0, 1)(rand_));
    Weight w = from_log_weight_(r + sum);
    aiter.Reset();
    return accumulator->LowerBound(w, &aiter);
  }

  uint64 Seed() const { return seed_; }

 private:
  const uint64 seed_;
  mutable std::mt19937_64 rand_;
  WeightConvert<Weight, Log64Weight> to_log_weight_;
  WeightConvert<Log64Weight, Weight> from_log_weight_;
};

// Random path state info maintained by RandGenFst and passed to samplers.
template <typename Arc>
struct RandState {
  using StateId = typename Arc::StateId;

  StateId state_id;  // Current input FST state.
  size_t nsamples;   // Number of samples to be sampled at this state.
  size_t length;     // Length of path to this random state.
  size_t select;     // Previous sample arc selection.
  const RandState<Arc> *parent;  // Previous random state on this path.

  explicit RandState(StateId state_id, size_t nsamples = 0, size_t length = 0,
                     size_t select = 0, const RandState<Arc> *parent = nullptr)
      : state_id(state_id),
        nsamples(nsamples),
        length(length),
        select(select),
        parent(parent) {}

  RandState() : RandState(kNoStateId) {}
};

// This class, given an arc selector, samples, with replacement, multiple random
// transitions from an FST's state. This is a generic version with a
// straightforward use of the arc selector. Specializations may be defined for
// arc selectors for greater efficiency or special behavior.
template <class Arc, class Selector>
class ArcSampler {
 public:
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  // The max_length argument may be interpreted (or ignored) by a selector as
  // it chooses. This generic version interprets this literally.
  ArcSampler(const Fst<Arc> &fst, const Selector &selector,
             int32 max_length = std::numeric_limits<int32>::max())
      : fst_(fst), selector_(selector), max_length_(max_length) {}

  // Allow updating FST argument; pass only if changed.
  ArcSampler(const ArcSampler<Arc, Selector> &sampler,
             const Fst<Arc> *fst = nullptr)
      : fst_(fst ? *fst : sampler.fst_),
        selector_(sampler.selector_),
        max_length_(sampler.max_length_) {
    Reset();
  }

  // Samples a fixed number of samples from the given state. The length argument
  // specifies the length of the path to the state. Returns true if the samples
  // were collected. No samples may be collected if either there are no
  // transitions leaving the state and the state is non-final, or if the path
  // length has been exceeded. Iterator members are provided to read the samples
  // in the order in which they were collected.
  bool Sample(const RandState<Arc> &rstate) {
    sample_map_.clear();
    if ((fst_.NumArcs(rstate.state_id) == 0 &&
         fst_.Final(rstate.state_id) == Weight::Zero()) ||
        rstate.length == max_length_) {
      Reset();
      return false;
    }
    for (size_t i = 0; i < rstate.nsamples; ++i) {
      ++sample_map_[selector_(fst_, rstate.state_id)];
    }
    Reset();
    return true;
  }

  // More samples?
  bool Done() const { return sample_iter_ == sample_map_.end(); }

  // Gets the next sample.
  void Next() { ++sample_iter_; }

  std::pair<size_t, size_t> Value() const { return *sample_iter_; }

  void Reset() { sample_iter_ = sample_map_.begin(); }

  bool Error() const { return false; }

 private:
  const Fst<Arc> &fst_;
  const Selector &selector_;
  const int32 max_length_;

  // Stores (N, K) as described for Value().
  std::map<size_t, size_t> sample_map_;
  std::map<size_t, size_t>::const_iterator sample_iter_;

  ArcSampler<Arc, Selector> &operator=(const ArcSampler &) = delete;
};

// Samples one sample of num_to_sample dimensions from a multinomial
// distribution parameterized by a vector of probabilities. The result
// container should be pre-initialized (e.g., an empty map or a zeroed vector
// sized the same as the vector of probabilities.
// probs.size()).
template <class Result, class RNG>
void OneMultinomialSample(const std::vector<double> &probs,
                          size_t num_to_sample, Result *result, RNG *rng) {
  // Left-over probability mass.
  double norm = 0;
  for (double p : probs) norm += p;
  // Left-over number of samples needed.
  for (size_t i = 0; i < probs.size(); ++i) {
    size_t num_sampled = 0;
    if (probs[i] > 0) {
      std::binomial_distribution<> d(num_to_sample, probs[i] / norm);
      num_sampled = d(*rng);
    }
    if (num_sampled != 0) (*result)[i] = num_sampled;
    norm -= probs[i];
    num_to_sample -= num_sampled;
  }
}

// Specialization for FastLogProbArcSelector.
template <class Arc>
class ArcSampler<Arc, FastLogProbArcSelector<Arc>> {
 public:
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using Accumulator = CacheLogAccumulator<Arc>;
  using Selector = FastLogProbArcSelector<Arc>;

  ArcSampler(const Fst<Arc> &fst, const Selector &selector,
             int32 max_length = std::numeric_limits<int32>::max())
      : fst_(fst),
        selector_(selector),
        max_length_(max_length),
        accumulator_(new Accumulator()) {
    accumulator_->Init(fst);
    rng_.seed(selector_.Seed());
  }

  ArcSampler(const ArcSampler<Arc, Selector> &sampler,
             const Fst<Arc> *fst = nullptr)
      : fst_(fst ? *fst : sampler.fst_),
        selector_(sampler.selector_),
        max_length_(sampler.max_length_) {
    if (fst) {
      accumulator_.reset(new Accumulator());
      accumulator_->Init(*fst);
    } else {  // Shallow copy.
      accumulator_.reset(new Accumulator(*sampler.accumulator_));
    }
  }

  bool Sample(const RandState<Arc> &rstate) {
    sample_map_.clear();
    if ((fst_.NumArcs(rstate.state_id) == 0 &&
         fst_.Final(rstate.state_id) == Weight::Zero()) ||
        rstate.length == max_length_) {
      Reset();
      return false;
    }
    if (fst_.NumArcs(rstate.state_id) + 1 < rstate.nsamples) {
      MultinomialSample(rstate);
      Reset();
      return true;
    }
    for (size_t i = 0; i < rstate.nsamples; ++i) {
      ++sample_map_[selector_(fst_, rstate.state_id, accumulator_.get())];
    }
    Reset();
    return true;
  }

  bool Done() const { return sample_iter_ == sample_map_.end(); }

  void Next() { ++sample_iter_; }

  std::pair<size_t, size_t> Value() const { return *sample_iter_; }

  void Reset() { sample_iter_ = sample_map_.begin(); }

  bool Error() const { return accumulator_->Error(); }

 private:
  using RNG = std::mt19937;

  // Sample according to the multinomial distribution of rstate.nsamples draws
  // from p_.
  void MultinomialSample(const RandState<Arc> &rstate) {
    p_.clear();
    for (ArcIterator<Fst<Arc>> aiter(fst_, rstate.state_id); !aiter.Done();
         aiter.Next()) {
      p_.push_back(exp(-to_log_weight_(aiter.Value().weight).Value()));
    }
    if (fst_.Final(rstate.state_id) != Weight::Zero()) {
      p_.push_back(exp(-to_log_weight_(fst_.Final(rstate.state_id)).Value()));
    }
    if (rstate.nsamples < std::numeric_limits<RNG::result_type>::max()) {
      OneMultinomialSample(p_, rstate.nsamples, &sample_map_, &rng_);
    } else {
      for (size_t i = 0; i < p_.size(); ++i) {
        sample_map_[i] = ceil(p_[i] * rstate.nsamples);
      }
    }
  }

  const Fst<Arc> &fst_;
  const Selector &selector_;
  const int32 max_length_;

  // Stores (N, K) for Value().
  std::map<size_t, size_t> sample_map_;
  std::map<size_t, size_t>::const_iterator sample_iter_;

  std::unique_ptr<Accumulator> accumulator_;
  RNG rng_;                // Random number generator.
  std::vector<double> p_;  // Multinomial parameters.
  WeightConvert<Weight, Log64Weight> to_log_weight_;
};

// Options for random path generation with RandGenFst. The template argument is
// a sampler, typically the class ArcSampler. Ownership of the sampler is taken
// by RandGenFst.
template <class Sampler>
struct RandGenFstOptions : public CacheOptions {
  Sampler *sampler;          // How to sample transitions at a state.
  int32 npath;               // Number of paths to generate.
  bool weighted;             // Is the output tree weighted by path count, or
                             // is it just an unweighted DAG?
  bool remove_total_weight;  // Remove total weight when output is weighted.

  RandGenFstOptions(const CacheOptions &opts, Sampler *sampler, int32 npath = 1,
                    bool weighted = true, bool remove_total_weight = false)
      : CacheOptions(opts),
        sampler(sampler),
        npath(npath),
        weighted(weighted),
        remove_total_weight(remove_total_weight) {}
};

namespace internal {

// Implementation of RandGenFst.
template <class FromArc, class ToArc, class Sampler>
class RandGenFstImpl : public CacheImpl<ToArc> {
 public:
  using FstImpl<ToArc>::SetType;
  using FstImpl<ToArc>::SetProperties;
  using FstImpl<ToArc>::SetInputSymbols;
  using FstImpl<ToArc>::SetOutputSymbols;

  using CacheBaseImpl<CacheState<ToArc>>::PushArc;
  using CacheBaseImpl<CacheState<ToArc>>::HasArcs;
  using CacheBaseImpl<CacheState<ToArc>>::HasFinal;
  using CacheBaseImpl<CacheState<ToArc>>::HasStart;
  using CacheBaseImpl<CacheState<ToArc>>::SetArcs;
  using CacheBaseImpl<CacheState<ToArc>>::SetFinal;
  using CacheBaseImpl<CacheState<ToArc>>::SetStart;

  using Label = typename FromArc::Label;
  using StateId = typename FromArc::StateId;
  using FromWeight = typename FromArc::Weight;

  using ToWeight = typename ToArc::Weight;

  RandGenFstImpl(const Fst<FromArc> &fst,
                 const RandGenFstOptions<Sampler> &opts)
      : CacheImpl<ToArc>(opts),
        fst_(fst.Copy()),
        sampler_(opts.sampler),
        npath_(opts.npath),
        weighted_(opts.weighted),
        remove_total_weight_(opts.remove_total_weight),
        superfinal_(kNoLabel) {
    SetType("randgen");
    SetProperties(
        RandGenProperties(fst.Properties(kFstProperties, false), weighted_),
        kCopyProperties);
    SetInputSymbols(fst.InputSymbols());
    SetOutputSymbols(fst.OutputSymbols());
  }

  RandGenFstImpl(const RandGenFstImpl &impl)
      : CacheImpl<ToArc>(impl),
        fst_(impl.fst_->Copy(true)),
        sampler_(new Sampler(*impl.sampler_, fst_.get())),
        npath_(impl.npath_),
        weighted_(impl.weighted_),
        superfinal_(kNoLabel) {
    SetType("randgen");
    SetProperties(impl.Properties(), kCopyProperties);
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
  }

  StateId Start() {
    if (!HasStart()) {
      const auto s = fst_->Start();
      if (s == kNoStateId) return kNoStateId;
      SetStart(state_table_.size());
      state_table_.emplace_back(
          new RandState<FromArc>(s, npath_, 0, 0, nullptr));
    }
    return CacheImpl<ToArc>::Start();
  }

  ToWeight Final(StateId s) {
    if (!HasFinal(s)) Expand(s);
    return CacheImpl<ToArc>::Final(s);
  }

  size_t NumArcs(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<ToArc>::NumArcs(s);
  }

  size_t NumInputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<ToArc>::NumInputEpsilons(s);
  }

  size_t NumOutputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl<ToArc>::NumOutputEpsilons(s);
  }

  uint64 Properties() const override { return Properties(kFstProperties); }

  // Sets error if found, and returns other FST impl properties.
  uint64 Properties(uint64 mask) const override {
    if ((mask & kError) &&
        (fst_->Properties(kError, false) || sampler_->Error())) {
      SetProperties(kError, kError);
    }
    return FstImpl<ToArc>::Properties(mask);
  }

  void InitArcIterator(StateId s, ArcIteratorData<ToArc> *data) {
    if (!HasArcs(s)) Expand(s);
    CacheImpl<ToArc>::InitArcIterator(s, data);
  }

  // Computes the outgoing transitions from a state, creating new destination
  // states as needed.
  void Expand(StateId s) {
    if (s == superfinal_) {
      SetFinal(s, ToWeight::One());
      SetArcs(s);
      return;
    }
    SetFinal(s, ToWeight::Zero());
    const auto &rstate = *state_table_[s];
    sampler_->Sample(rstate);
    ArcIterator<Fst<FromArc>> aiter(*fst_, rstate.state_id);
    const auto narcs = fst_->NumArcs(rstate.state_id);
    for (; !sampler_->Done(); sampler_->Next()) {
      const auto &sample_pair = sampler_->Value();
      const auto pos = sample_pair.first;
      const auto count = sample_pair.second;
      double prob = static_cast<double>(count) / rstate.nsamples;
      if (pos < narcs) {  // Regular transition.
        aiter.Seek(sample_pair.first);
        const auto &aarc = aiter.Value();
        const auto weight =
            weighted_ ? to_weight_(Log64Weight(-log(prob))) : ToWeight::One();
        const ToArc barc(aarc.ilabel, aarc.olabel, weight, state_table_.size());
        PushArc(s, barc);
        auto *nrstate = new RandState<FromArc>(aarc.nextstate, count,
                                               rstate.length + 1, pos, &rstate);
        state_table_.emplace_back(nrstate);
      } else {  // Super-final transition.
        if (weighted_) {
          const auto weight =
              remove_total_weight_
                  ? to_weight_(Log64Weight(-log(prob)))
                  : to_weight_(Log64Weight(-log(prob * npath_)));
          SetFinal(s, weight);
        } else {
          if (superfinal_ == kNoLabel) {
            superfinal_ = state_table_.size();
            state_table_.emplace_back(
                new RandState<FromArc>(kNoStateId, 0, 0, 0, nullptr));
          }
          for (size_t n = 0; n < count; ++n) {
            const ToArc barc(0, 0, ToWeight::One(), superfinal_);
            PushArc(s, barc);
          }
        }
      }
    }
    SetArcs(s);
  }

 private:
  const std::unique_ptr<Fst<FromArc>> fst_;
  std::unique_ptr<Sampler> sampler_;
  const int32 npath_;
  std::vector<std::unique_ptr<RandState<FromArc>>> state_table_;
  const bool weighted_;
  bool remove_total_weight_;
  StateId superfinal_;
  WeightConvert<Log64Weight, ToWeight> to_weight_;
};

}  // namespace internal

// FST class to randomly generate paths through an FST, with details controlled
// by RandGenOptionsFst. Output format is a tree weighted by the path count.
template <class FromArc, class ToArc, class Sampler>
class RandGenFst
    : public ImplToFst<internal::RandGenFstImpl<FromArc, ToArc, Sampler>> {
 public:
  using Label = typename FromArc::Label;
  using StateId = typename FromArc::StateId;
  using Weight = typename FromArc::Weight;

  using Store = DefaultCacheStore<FromArc>;
  using State = typename Store::State;

  using Impl = internal::RandGenFstImpl<FromArc, ToArc, Sampler>;

  friend class ArcIterator<RandGenFst<FromArc, ToArc, Sampler>>;
  friend class StateIterator<RandGenFst<FromArc, ToArc, Sampler>>;

  RandGenFst(const Fst<FromArc> &fst, const RandGenFstOptions<Sampler> &opts)
      : ImplToFst<Impl>(std::make_shared<Impl>(fst, opts)) {}

  // See Fst<>::Copy() for doc.
  RandGenFst(const RandGenFst<FromArc, ToArc, Sampler> &fst, bool safe = false)
      : ImplToFst<Impl>(fst, safe) {}

  // Get a copy of this RandGenFst. See Fst<>::Copy() for further doc.
  RandGenFst<FromArc, ToArc, Sampler> *Copy(bool safe = false) const override {
    return new RandGenFst<FromArc, ToArc, Sampler>(*this, safe);
  }

  inline void InitStateIterator(StateIteratorData<ToArc> *data) const override;

  void InitArcIterator(StateId s, ArcIteratorData<ToArc> *data) const override {
    GetMutableImpl()->InitArcIterator(s, data);
  }

 private:
  using ImplToFst<Impl>::GetImpl;
  using ImplToFst<Impl>::GetMutableImpl;

  RandGenFst &operator=(const RandGenFst &) = delete;
};

// Specialization for RandGenFst.
template <class FromArc, class ToArc, class Sampler>
class StateIterator<RandGenFst<FromArc, ToArc, Sampler>>
    : public CacheStateIterator<RandGenFst<FromArc, ToArc, Sampler>> {
 public:
  explicit StateIterator(const RandGenFst<FromArc, ToArc, Sampler> &fst)
      : CacheStateIterator<RandGenFst<FromArc, ToArc, Sampler>>(
            fst, fst.GetMutableImpl()) {}
};

// Specialization for RandGenFst.
template <class FromArc, class ToArc, class Sampler>
class ArcIterator<RandGenFst<FromArc, ToArc, Sampler>>
    : public CacheArcIterator<RandGenFst<FromArc, ToArc, Sampler>> {
 public:
  using StateId = typename FromArc::StateId;

  ArcIterator(const RandGenFst<FromArc, ToArc, Sampler> &fst, StateId s)
      : CacheArcIterator<RandGenFst<FromArc, ToArc, Sampler>>(
            fst.GetMutableImpl(), s) {
    if (!fst.GetImpl()->HasArcs(s)) fst.GetMutableImpl()->Expand(s);
  }
};

template <class FromArc, class ToArc, class Sampler>
inline void RandGenFst<FromArc, ToArc, Sampler>::InitStateIterator(
    StateIteratorData<ToArc> *data) const {
  data->base = new StateIterator<RandGenFst<FromArc, ToArc, Sampler>>(*this);
}

// Options for random path generation.
template <class Selector>
struct RandGenOptions {
  const Selector &selector;  // How an arc is selected at a state.
  int32 max_length;          // Maximum path length.
  int32 npath;               // Number of paths to generate.
  bool weighted;             // Is the output tree weighted by path count, or
                             // is it just an unweighted DAG?
  bool remove_total_weight;  // Remove total weight when output is weighted?

  explicit RandGenOptions(const Selector &selector,
                          int32 max_length = std::numeric_limits<int32>::max(),
                          int32 npath = 1, bool weighted = false,
                          bool remove_total_weight = false)
      : selector(selector),
        max_length(max_length),
        npath(npath),
        weighted(weighted),
        remove_total_weight(remove_total_weight) {}
};

namespace internal {

template <class FromArc, class ToArc>
class RandGenVisitor {
 public:
  using StateId = typename FromArc::StateId;
  using Weight = typename FromArc::Weight;

  explicit RandGenVisitor(MutableFst<ToArc> *ofst) : ofst_(ofst) {}

  void InitVisit(const Fst<FromArc> &ifst) {
    ifst_ = &ifst;
    ofst_->DeleteStates();
    ofst_->SetInputSymbols(ifst.InputSymbols());
    ofst_->SetOutputSymbols(ifst.OutputSymbols());
    if (ifst.Properties(kError, false)) ofst_->SetProperties(kError, kError);
    path_.clear();
  }

  constexpr bool InitState(StateId, StateId) const { return true; }

  bool TreeArc(StateId, const ToArc &arc) {
    if (ifst_->Final(arc.nextstate) == Weight::Zero()) {
      path_.push_back(arc);
    } else {
      OutputPath();
    }
    return true;
  }

  bool BackArc(StateId, const FromArc &) {
    FSTERROR() << "RandGenVisitor: cyclic input";
    ofst_->SetProperties(kError, kError);
    return false;
  }

  bool ForwardOrCrossArc(StateId, const FromArc &) {
    OutputPath();
    return true;
  }

  void FinishState(StateId s, StateId p, const FromArc *) {
    if (p != kNoStateId && ifst_->Final(s) == Weight::Zero()) path_.pop_back();
  }

  void FinishVisit() {}

 private:
  void OutputPath() {
    if (ofst_->Start() == kNoStateId) {
      const auto start = ofst_->AddState();
      ofst_->SetStart(start);
    }
    auto src = ofst_->Start();
    for (size_t i = 0; i < path_.size(); ++i) {
      const auto dest = ofst_->AddState();
      const ToArc arc(path_[i].ilabel, path_[i].olabel, Weight::One(), dest);
      ofst_->AddArc(src, arc);
      src = dest;
    }
    ofst_->SetFinal(src, Weight::One());
  }

  const Fst<FromArc> *ifst_;
  MutableFst<ToArc> *ofst_;
  std::vector<ToArc> path_;

  RandGenVisitor(const RandGenVisitor &) = delete;
  RandGenVisitor &operator=(const RandGenVisitor &) = delete;
};

}  // namespace internal

// Randomly generate paths through an FST; details controlled by
// RandGenOptions.
template <class FromArc, class ToArc, class Selector>
void RandGen(const Fst<FromArc> &ifst, MutableFst<ToArc> *ofst,
             const RandGenOptions<Selector> &opts) {
  using State = typename ToArc::StateId;
  using Weight = typename ToArc::Weight;
  using Sampler = ArcSampler<FromArc, Selector>;
  auto *sampler = new Sampler(ifst, opts.selector, opts.max_length);
  RandGenFstOptions<Sampler> fopts(CacheOptions(true, 0), sampler, opts.npath,
                                   opts.weighted, opts.remove_total_weight);
  RandGenFst<FromArc, ToArc, Sampler> rfst(ifst, fopts);
  if (opts.weighted) {
    *ofst = rfst;
  } else {
    internal::RandGenVisitor<FromArc, ToArc> rand_visitor(ofst);
    DfsVisit(rfst, &rand_visitor);
  }
}

// Randomly generate a path through an FST with the uniform distribution
// over the transitions.
template <class FromArc, class ToArc>
void RandGen(const Fst<FromArc> &ifst, MutableFst<ToArc> *ofst) {
  const UniformArcSelector<FromArc> uniform_selector;
  RandGenOptions<UniformArcSelector<ToArc>> opts(uniform_selector);
  RandGen(ifst, ofst, opts);
}

}  // namespace fst

#endif  // FST_RANDGEN_H_