compact-fst.h 51.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// FST Class for memory-efficient representation of common types of
// FSTs: linear automata, acceptors, unweighted FSTs, ...

#ifndef FST_COMPACT_FST_H_
#define FST_COMPACT_FST_H_

#include <climits>
#include <iterator>
#include <memory>
#include <tuple>
#include <utility>
#include <vector>

#include <fst/log.h>

#include <fst/cache.h>
#include <fst/expanded-fst.h>
#include <fst/fst-decl.h>  // For optional argument declarations
#include <fst/mapped-file.h>
#include <fst/matcher.h>
#include <fst/test-properties.h>
#include <fst/util.h>


namespace fst {

struct CompactFstOptions : public CacheOptions {
  // The default caching behaviour is to do no caching. Most compactors are
  // cheap and therefore we save memory by not doing caching.
  CompactFstOptions() : CacheOptions(true, 0) {}

  explicit CompactFstOptions(const CacheOptions &opts) : CacheOptions(opts) {}
};

// New upcoming (Fst) Compactor interface - currently used internally
// by CompactFstImpl.
//
// class Compactor {
//  public:
//   // Constructor from the Fst to be compacted.
//   Compactor(const Fst<Arc> &fst, ...);
//   // Copy constructor
//   Compactor(const Compactor &compactor, bool safe = false)
//   // Default constructor (optional, see comment below).
//   Compactor();
//
//   // Returns the start state, number of states, and total number of arcs
//   // of the compacted Fst
//   StateId Start() const;
//   StateId NumStates() const;
//   size_t NumArcs() const;
//
//   // Accessor class for state attributes.
//   class State {
//    public:
//     State();  // Required, corresponds to kNoStateId.
//     State(const Compactor *c, StateId);  // Accessor for StateId 's'.
//     StateId GetStateId() const;
//     Weight Final() const;
//     size_t NumArcs() const;
//     Arc GetArc(size_t i) const;
//   };
//
//   // Modifies 'state' accessor to provide access to state id 's'.
//   void SetState(StateId s, State *state);
//   // Tests whether 'fst' can be compacted by this compactor.
//   bool IsCompatible(const Fst<A> &fst) const;
//   // Return the properties that are always true for an fst
//   // compacted using this compactor
//   uint64 Properties() const;
//   // Return a string identifying the type of compactor.
//   static const string &Type();
//   // Return true if an error has occured.
//   bool Error() const;
//   // Writes a compactor to a file.
//   bool Write(std::ostream &strm, const FstWriteOptions &opts) const;
//   // Reads a compactor from a file.
//   static Compactor*Read(std::istream &strm, const FstReadOptions &opts,
//                         const FstHeader &hdr);
// };
//

// Old (Arc) Compactor Interface:
//
// The ArcCompactor class determines how arcs and final weights are compacted
// and expanded.
//
// Final weights are treated as transitions to the superfinal state, i.e.,
// ilabel = olabel = kNoLabel and nextstate = kNoStateId.
//
// There are two types of compactors:
//
// * Fixed out-degree compactors: 'compactor.Size()' returns a positive integer
//   's'. An FST can be compacted by this compactor only if each state has
//   exactly 's' outgoing transitions (counting a non-Zero() final weight as a
//   transition). A typical example is a compactor for string FSTs, i.e.,
//   's == 1'.
//
// * Variable out-degree compactors: 'compactor.Size() == -1'. There are no
//   out-degree restrictions for these compactors.
//
// Interface:
//
// class ArcCompactor {
//  public:
//   // Element is the type of the compacted transitions.
//   using Element = ...
//
//   // Returns the compacted representation of a transition 'arc'
//   // at a state 's'.
//   Element Compact(StateId s, const Arc &arc);
//
//   // Returns the transition at state 's' represented by the compacted
//   // transition 'e'.
//   Arc Expand(StateId s, const Element &e) const;
//
//   // Returns -1 for variable out-degree compactors, and the mandatory
//   // out-degree otherwise.
//   ssize_t Size() const;
//
//   // Tests whether an FST can be compacted by this compactor.
//   bool Compatible(const Fst<A> &fst) const;
//
//   // Returns the properties that are always true for an FST compacted using
//   // this compactor
//   uint64 Properties() const;
//
//   // Returns a string identifying the type of compactor.
//   static const string &Type();
//
//   // Writes a compactor to a file.
//   bool Write(std::ostream &strm) const;
//
//   // Reads a compactor from a file.
//   static ArcCompactor *Read(std::istream &strm);
//
//   // Default constructor (optional, see comment below).
//   ArcCompactor();
// };
//
// The default constructor is only required for FST_REGISTER to work (i.e.,
// enabling Convert() and the command-line utilities to work with this new
// compactor). However, a default constructor always needs to be specified for
// this code to compile, but one can have it simply raise an error when called,
// like so:
//
// Compactor::Compactor() {
//   FSTERROR() << "Compactor: No default constructor";
// }

// Default implementation data for CompactFst, which can shared between
// otherwise independent copies.
//
// The implementation contains two arrays: 'states_' and 'compacts_'.
//
// For fixed out-degree compactors, the 'states_' array is unallocated. The
// 'compacts_' contains the compacted transitions. Its size is 'ncompacts_'.
// The outgoing transitions at a given state are stored consecutively. For a
// given state 's', its 'compactor.Size()' outgoing transitions (including
// superfinal transition when 's' is final), are stored in position
// ['s*compactor.Size()', '(s+1)*compactor.Size()').
//
// For variable out-degree compactors, the states_ array has size
// 'nstates_ + 1' and contains pointers to positions into 'compacts_'. For a
// given state 's', the compacted transitions of 's' are stored in positions
// ['states_[s]', 'states_[s + 1]') in 'compacts_'. By convention,
// 'states_[nstates_] == ncompacts_'.
//
// In both cases, the superfinal transitions (when 's' is final, i.e.,
// 'Final(s) != Weight::Zero()') are stored first.
//
// The unsigned type U is used to represent indices into the compacts_ array.
template <class Element, class Unsigned>
class DefaultCompactStore {
 public:
  DefaultCompactStore()
      : states_(nullptr),
        compacts_(nullptr),
        nstates_(0),
        ncompacts_(0),
        narcs_(0),
        start_(kNoStateId),
        error_(false) {}

  template <class Arc, class Compactor>
  DefaultCompactStore(const Fst<Arc> &fst, const Compactor &compactor);

  template <class Iterator, class Compactor>
  DefaultCompactStore(const Iterator &begin, const Iterator &end,
                      const Compactor &compactor);

  ~DefaultCompactStore() {
    if (!states_region_) delete[] states_;
    if (!compacts_region_) delete[] compacts_;
  }

  template <class Compactor>
  static DefaultCompactStore<Element, Unsigned> *Read(
      std::istream &strm, const FstReadOptions &opts, const FstHeader &hdr,
      const Compactor &compactor);

  bool Write(std::ostream &strm, const FstWriteOptions &opts) const;

  Unsigned States(ssize_t i) const { return states_[i]; }

  const Element &Compacts(size_t i) const { return compacts_[i]; }

  size_t NumStates() const { return nstates_; }

  size_t NumCompacts() const { return ncompacts_; }

  size_t NumArcs() const { return narcs_; }

  ssize_t Start() const { return start_; }

  bool Error() const { return error_; }

  // Returns a string identifying the type of data storage container.
  static const string &Type();

 private:
  std::unique_ptr<MappedFile> states_region_;
  std::unique_ptr<MappedFile> compacts_region_;
  Unsigned *states_;
  Element *compacts_;
  size_t nstates_;
  size_t ncompacts_;
  size_t narcs_;
  ssize_t start_;
  bool error_;
};

template <class Element, class Unsigned>
template <class Arc, class Compactor>
DefaultCompactStore<Element, Unsigned>::DefaultCompactStore(
    const Fst<Arc> &fst, const Compactor &compactor)
    : states_(nullptr),
      compacts_(nullptr),
      nstates_(0),
      ncompacts_(0),
      narcs_(0),
      start_(kNoStateId),
      error_(false) {
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;
  start_ = fst.Start();
  // Counts # of states and arcs.
  StateId nfinals = 0;
  for (StateIterator<Fst<Arc>> siter(fst); !siter.Done(); siter.Next()) {
    ++nstates_;
    const auto s = siter.Value();
    for (ArcIterator<Fst<Arc>> aiter(fst, s); !aiter.Done(); aiter.Next()) {
      ++narcs_;
    }
    if (fst.Final(s) != Weight::Zero()) ++nfinals;
  }
  if (compactor.Size() == -1) {
    states_ = new Unsigned[nstates_ + 1];
    ncompacts_ = narcs_ + nfinals;
    compacts_ = new Element[ncompacts_];
    states_[nstates_] = ncompacts_;
  } else {
    states_ = nullptr;
    ncompacts_ = nstates_ * compactor.Size();
    if ((narcs_ + nfinals) != ncompacts_) {
      FSTERROR() << "DefaultCompactStore: Compactor incompatible with FST";
      error_ = true;
      return;
    }
    compacts_ = new Element[ncompacts_];
  }
  size_t pos = 0;
  size_t fpos = 0;
  for (size_t s = 0; s < nstates_; ++s) {
    fpos = pos;
    if (compactor.Size() == -1) states_[s] = pos;
    if (fst.Final(s) != Weight::Zero()) {
      compacts_[pos++] = compactor.Compact(
          s, Arc(kNoLabel, kNoLabel, fst.Final(s), kNoStateId));
    }
    for (ArcIterator<Fst<Arc>> aiter(fst, s); !aiter.Done(); aiter.Next()) {
      compacts_[pos++] = compactor.Compact(s, aiter.Value());
    }
    if ((compactor.Size() != -1) && ((pos - fpos) != compactor.Size())) {
      FSTERROR() << "DefaultCompactStore: Compactor incompatible with FST";
      error_ = true;
      return;
    }
  }
  if (pos != ncompacts_) {
    FSTERROR() << "DefaultCompactStore: Compactor incompatible with FST";
    error_ = true;
    return;
  }
}

template <class Element, class Unsigned>
template <class Iterator, class Compactor>
DefaultCompactStore<Element, Unsigned>::DefaultCompactStore(
    const Iterator &begin, const Iterator &end, const Compactor &compactor)
    : states_(nullptr),
      compacts_(nullptr),
      nstates_(0),
      ncompacts_(0),
      narcs_(0),
      start_(kNoStateId),
      error_(false) {
  using Arc = typename Compactor::Arc;
  using Weight = typename Arc::Weight;
  if (compactor.Size() != -1) {
    ncompacts_ = std::distance(begin, end);
    if (compactor.Size() == 1) {
      // For strings, allows implicit final weight. Empty input is the empty
      // string.
      if (ncompacts_ == 0) {
        ++ncompacts_;
      } else {
        const auto arc =
            compactor.Expand(ncompacts_ - 1, *(begin + (ncompacts_ - 1)));
        if (arc.ilabel != kNoLabel) ++ncompacts_;
      }
    }
    if (ncompacts_ % compactor.Size()) {
      FSTERROR() << "DefaultCompactStore: Size of input container incompatible"
                 << " with compactor";
      error_ = true;
      return;
    }
    if (ncompacts_ == 0) return;
    start_ = 0;
    nstates_ = ncompacts_ / compactor.Size();
    compacts_ = new Element[ncompacts_];
    size_t i = 0;
    Iterator it = begin;
    for (; it != end; ++it, ++i) {
      compacts_[i] = *it;
      if (compactor.Expand(i, *it).ilabel != kNoLabel) ++narcs_;
    }
    if (i < ncompacts_) {
      compacts_[i] = compactor.Compact(
          i, Arc(kNoLabel, kNoLabel, Weight::One(), kNoStateId));
    }
  } else {
    if (std::distance(begin, end) == 0) return;
    // Count # of states, arcs and compacts.
    auto it = begin;
    for (size_t i = 0; it != end; ++it, ++i) {
      const auto arc = compactor.Expand(i, *it);
      if (arc.ilabel != kNoLabel) {
        ++narcs_;
        ++ncompacts_;
      } else {
        ++nstates_;
        if (arc.weight != Weight::Zero()) ++ncompacts_;
      }
    }
    start_ = 0;
    compacts_ = new Element[ncompacts_];
    states_ = new Unsigned[nstates_ + 1];
    states_[nstates_] = ncompacts_;
    size_t i = 0;
    size_t s = 0;
    for (it = begin; it != end; ++it) {
      const auto arc = compactor.Expand(i, *it);
      if (arc.ilabel != kNoLabel) {
        compacts_[i++] = *it;
      } else {
        states_[s++] = i;
        if (arc.weight != Weight::Zero()) compacts_[i++] = *it;
      }
    }
    if ((s != nstates_) || (i != ncompacts_)) {
      FSTERROR() << "DefaultCompactStore: Ill-formed input container";
      error_ = true;
      return;
    }
  }
}

template <class Element, class Unsigned>
template <class Compactor>
DefaultCompactStore<Element, Unsigned>
    *DefaultCompactStore<Element, Unsigned>::Read(std::istream &strm,
                                                  const FstReadOptions &opts,
                                                  const FstHeader &hdr,
                                                  const Compactor &compactor) {
  std::unique_ptr<DefaultCompactStore<Element, Unsigned>> data(
      new DefaultCompactStore<Element, Unsigned>());
  data->start_ = hdr.Start();
  data->nstates_ = hdr.NumStates();
  data->narcs_ = hdr.NumArcs();
  if (compactor.Size() == -1) {
    if ((hdr.GetFlags() & FstHeader::IS_ALIGNED) && !AlignInput(strm)) {
      LOG(ERROR) << "DefaultCompactStore::Read: Alignment failed: "
                 << opts.source;
      return nullptr;
    }
    auto b = (data->nstates_ + 1) * sizeof(Unsigned);
    data->states_region_.reset(MappedFile::Map(
        &strm, opts.mode == FstReadOptions::MAP, opts.source, b));
    if (!strm || !data->states_region_) {
      LOG(ERROR) << "DefaultCompactStore::Read: Read failed: " << opts.source;
      return nullptr;
    }
    data->states_ =
        static_cast<Unsigned *>(data->states_region_->mutable_data());
  } else {
    data->states_ = nullptr;
  }
  data->ncompacts_ = compactor.Size() == -1 ? data->states_[data->nstates_]
                                            : data->nstates_ * compactor.Size();
  if ((hdr.GetFlags() & FstHeader::IS_ALIGNED) && !AlignInput(strm)) {
    LOG(ERROR) << "DefaultCompactStore::Read: Alignment failed: "
               << opts.source;
    return nullptr;
  }
  size_t b = data->ncompacts_ * sizeof(Element);
  data->compacts_region_.reset(
      MappedFile::Map(&strm, opts.mode == FstReadOptions::MAP, opts.source, b));
  if (!strm || !data->compacts_region_) {
    LOG(ERROR) << "DefaultCompactStore::Read: Read failed: " << opts.source;
    return nullptr;
  }
  data->compacts_ =
      static_cast<Element *>(data->compacts_region_->mutable_data());
  return data.release();
}

template <class Element, class Unsigned>
bool DefaultCompactStore<Element, Unsigned>::Write(
    std::ostream &strm, const FstWriteOptions &opts) const {
  if (states_) {
    if (opts.align && !AlignOutput(strm)) {
      LOG(ERROR) << "DefaultCompactStore::Write: Alignment failed: "
                 << opts.source;
      return false;
    }
    strm.write(reinterpret_cast<char *>(states_),
               (nstates_ + 1) * sizeof(Unsigned));
  }
  if (opts.align && !AlignOutput(strm)) {
    LOG(ERROR) << "DefaultCompactStore::Write: Alignment failed: "
               << opts.source;
    return false;
  }
  strm.write(reinterpret_cast<char *>(compacts_), ncompacts_ * sizeof(Element));
  strm.flush();
  if (!strm) {
    LOG(ERROR) << "DefaultCompactStore::Write: Write failed: " << opts.source;
    return false;
  }
  return true;
}

template <class Element, class Unsigned>
const string &DefaultCompactStore<Element, Unsigned>::Type() {
  static const string *const type = new string("compact");
  return *type;
}

template <class C, class U, class S> class DefaultCompactState;

// Wraps an arc compactor and a compact store as a new Fst compactor.
template <class C, class U,
          class S = DefaultCompactStore<typename C::Element, U>>
class DefaultCompactor {
 public:
  using ArcCompactor = C;
  using Unsigned = U;
  using CompactStore = S;
  using Element = typename C::Element;
  using Arc = typename C::Arc;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;
  using State = DefaultCompactState<C, U, S>;
  friend State;

  DefaultCompactor()
      : arc_compactor_(nullptr), compact_store_(nullptr) {}

  // Constructs from Fst.
  DefaultCompactor(const Fst<Arc> &fst,
                   std::shared_ptr<ArcCompactor> arc_compactor)
      : arc_compactor_(std::move(arc_compactor)),
        compact_store_(std::make_shared<S>(fst, *arc_compactor_)) {}

  DefaultCompactor(const Fst<Arc> &fst,
                   std::shared_ptr<DefaultCompactor<C, U, S>> compactor)
      : arc_compactor_(compactor->arc_compactor_),
        compact_store_(compactor->compact_store_ == nullptr ?
                       std::make_shared<S>(fst, *arc_compactor_) :
                       compactor->compact_store_) {}

  // Constructs from CompactStore.
  DefaultCompactor(std::shared_ptr<ArcCompactor> arc_compactor,
                   std::shared_ptr<CompactStore> compact_store)
      : arc_compactor_(std::move(arc_compactor)),
        compact_store_(std::move(compact_store)) {}

  // Constructs from set of compact elements (when arc_compactor.Size() != -1).
  template <class Iterator>
  DefaultCompactor(const Iterator &b, const Iterator &e,
                   std::shared_ptr<C> arc_compactor)
      : arc_compactor_(std::move(arc_compactor)),
        compact_store_(std::make_shared<S>(b, e, *arc_compactor_)) {}

  // Copy constructor.
  DefaultCompactor(const DefaultCompactor<C, U, S> &compactor)
      : arc_compactor_(std::make_shared<C>(*compactor.GetArcCompactor())),
        compact_store_(compactor.SharedCompactStore()) {}

  template <class OtherC>
  explicit DefaultCompactor(const DefaultCompactor<OtherC, U, S> &compactor)
      : arc_compactor_(std::make_shared<C>(*compactor.GetArcCompactor())),
        compact_store_(compactor.SharedCompactStore()) {}

  StateId Start() const { return compact_store_->Start(); }
  StateId NumStates() const { return compact_store_->NumStates(); }
  size_t NumArcs() const { return compact_store_->NumArcs(); }

  void SetState(StateId s, State *state) const {
    if (state->GetStateId() != s) state->Set(this, s);
  }

  static DefaultCompactor<C, U, S> *Read(std::istream &strm,
                                         const FstReadOptions &opts,
                                         const FstHeader &hdr) {
    std::shared_ptr<C> arc_compactor(C::Read(strm));
    if (arc_compactor == nullptr) return nullptr;
    std::shared_ptr<S> compact_store(S::Read(strm, opts, hdr, *arc_compactor));
    if (compact_store == nullptr) return nullptr;
    return new DefaultCompactor<C, U, S>(arc_compactor, compact_store);
  }

  bool Write(std::ostream &strm, const FstWriteOptions &opts) const {
    return arc_compactor_->Write(strm) && compact_store_->Write(strm, opts);
  }

  uint64 Properties() const { return arc_compactor_->Properties(); }

  bool IsCompatible(const Fst<Arc> &fst) const {
    return arc_compactor_->Compatible(fst);
  }

  bool Error() const { return compact_store_->Error(); }

  bool HasFixedOutdegree() const { return arc_compactor_->Size() != -1; }

  static const string &Type() {
    static const string *const type = [] {
      string type = "compact";
      if (sizeof(U) != sizeof(uint32)) type += std::to_string(8 * sizeof(U));
      type += "_";
      type += C::Type();
      if (CompactStore::Type() != "compact") {
        type += "_";
        type += CompactStore::Type();
      }
      return new string(type);
    }();
    return *type;
  }

  const ArcCompactor *GetArcCompactor() const { return arc_compactor_.get(); }
  CompactStore *GetCompactStore() const { return compact_store_.get(); }

  std::shared_ptr<ArcCompactor> SharedArcCompactor() const {
    return arc_compactor_;
  }

  std::shared_ptr<CompactStore> SharedCompactStore() const {
    return compact_store_;
  }

  // TODO(allauzen): remove dependencies on this method and make private.
  Arc ComputeArc(StateId s, Unsigned i, uint32 f) const {
    return arc_compactor_->Expand(s, compact_store_->Compacts(i), f);
  }

 private:
  std::pair<Unsigned, Unsigned> CompactsRange(StateId s) const {
    std::pair<size_t, size_t> range;
    if (HasFixedOutdegree()) {
      range.first = s * arc_compactor_->Size();
      range.second = arc_compactor_->Size();
    } else {
      range.first = compact_store_->States(s);
      range.second = compact_store_->States(s + 1) - range.first;
    }
    return range;
  }

 private:
  std::shared_ptr<ArcCompactor> arc_compactor_;
  std::shared_ptr<CompactStore> compact_store_;
};

// Default implementation of state attributes accessor class for
// DefaultCompactor. Use of efficient specialization strongly encouraged.
template <class C, class U, class S>
class DefaultCompactState {
 public:
  using Arc = typename C::Arc;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  DefaultCompactState() = default;

  DefaultCompactState(const DefaultCompactor<C, U, S> *compactor, StateId s)
      : compactor_(compactor),
        s_(s),
        range_(compactor->CompactsRange(s)),
        has_final_(
            range_.second != 0 &&
            compactor->ComputeArc(s, range_.first,
                                 kArcILabelValue).ilabel == kNoLabel) {
    if (has_final_) {
      ++range_.first;
      --range_.second;
    }
  }

  void Set(const DefaultCompactor<C, U, S> *compactor, StateId s) {
    compactor_ = compactor;
    s_ = s;
    range_ = compactor->CompactsRange(s);
    if (range_.second != 0 &&
        compactor->ComputeArc(s, range_.first, kArcILabelValue).ilabel
        == kNoLabel) {
      has_final_ = true;
      ++range_.first;
      --range_.second;
    } else {
      has_final_ = false;
    }
  }

  StateId GetStateId() const { return s_; }

  Weight Final() const {
    if (!has_final_) return Weight::Zero();
    return compactor_->ComputeArc(s_, range_.first - 1, kArcWeightValue).weight;
  }

  size_t NumArcs() const { return range_.second; }

  Arc GetArc(size_t i, uint32 f) const {
    return compactor_->ComputeArc(s_, range_.first + i, f);
  }

 private:
  const DefaultCompactor<C, U, S> *compactor_ = nullptr;  // borrowed ref.
  StateId s_ = kNoStateId;
  std::pair<U, U> range_ = {0, 0};
  bool has_final_ = false;
};

// Specialization for DefaultCompactStore.
template <class C, class U>
class DefaultCompactState<C, U, DefaultCompactStore<typename C::Element, U>> {
 public:
  using Arc = typename C::Arc;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;
  using CompactStore = DefaultCompactStore<typename C::Element, U>;

  DefaultCompactState() = default;

  DefaultCompactState(
      const DefaultCompactor<C, U, CompactStore> *compactor, StateId s)
      : arc_compactor_(compactor->GetArcCompactor()), s_(s) {
    Init(compactor);
  }

  void Set(const DefaultCompactor<C, U, CompactStore> *compactor, StateId s) {
    arc_compactor_ = compactor->GetArcCompactor();
    s_ = s;
    has_final_ = false;
    Init(compactor);
  }

  StateId GetStateId() const { return s_; }

  Weight Final() const {
    if (!has_final_) return Weight::Zero();
    return arc_compactor_->Expand(s_, *(compacts_ - 1), kArcWeightValue).weight;
  }

  size_t NumArcs() const { return num_arcs_; }

  Arc GetArc(size_t i, uint32 f) const {
    return arc_compactor_->Expand(s_, compacts_[i], f);
  }

 private:
  void Init(const DefaultCompactor<C, U, CompactStore> *compactor) {
    const auto *store = compactor->GetCompactStore();
    U offset;
    if (!compactor->HasFixedOutdegree()) {  // Variable out-degree compactor.
      offset = store->States(s_);
      num_arcs_ = store->States(s_ + 1) - offset;
    } else {  // Fixed out-degree compactor.
      offset = s_ * arc_compactor_->Size();
      num_arcs_ = arc_compactor_->Size();
    }
    if (num_arcs_ > 0) {
      compacts_ = &(store->Compacts(offset));
      if (arc_compactor_->Expand(s_, *compacts_, kArcILabelValue).ilabel
          == kNoStateId) {
        ++compacts_;
        --num_arcs_;
        has_final_ = true;
      }
    }
  }

 private:
  const C *arc_compactor_ = nullptr;               // Borrowed reference.
  const typename C::Element *compacts_ = nullptr;  // Borrowed reference.
  StateId s_ = kNoStateId;
  U num_arcs_ = 0;
  bool has_final_ = false;
};

template <class Arc, class ArcCompactor, class Unsigned, class CompactStore,
          class CacheStore>
class CompactFst;

template <class F, class G>
void Cast(const F &, G *);

namespace internal {

// Implementation class for CompactFst, which contains parametrizeable
// Fst data storage (DefaultCompactStore by default) and Fst cache.
template <class Arc, class C, class CacheStore = DefaultCacheStore<Arc>>
class CompactFstImpl
    : public CacheBaseImpl<typename CacheStore::State, CacheStore> {
 public:
  using Weight = typename Arc::Weight;
  using StateId = typename Arc::StateId;
  using Compactor = C;

  using FstImpl<Arc>::SetType;
  using FstImpl<Arc>::SetProperties;
  using FstImpl<Arc>::Properties;
  using FstImpl<Arc>::SetInputSymbols;
  using FstImpl<Arc>::SetOutputSymbols;
  using FstImpl<Arc>::WriteHeader;

  using ImplBase = CacheBaseImpl<typename CacheStore::State, CacheStore>;
  using ImplBase::PushArc;
  using ImplBase::HasArcs;
  using ImplBase::HasFinal;
  using ImplBase::HasStart;
  using ImplBase::SetArcs;
  using ImplBase::SetFinal;
  using ImplBase::SetStart;

  CompactFstImpl()
      : ImplBase(CompactFstOptions()),
        compactor_() {
    SetType(Compactor::Type());
    SetProperties(kNullProperties | kStaticProperties);
  }

  CompactFstImpl(const Fst<Arc> &fst, std::shared_ptr<Compactor> compactor,
                 const CompactFstOptions &opts)
      : ImplBase(opts),
        compactor_(std::make_shared<Compactor>(fst, compactor)) {
    SetType(Compactor::Type());
    SetInputSymbols(fst.InputSymbols());
    SetOutputSymbols(fst.OutputSymbols());
    if (compactor_->Error()) SetProperties(kError, kError);
    uint64 copy_properties = fst.Properties(kMutable, false) ?
        fst.Properties(kCopyProperties, true):
        CheckProperties(fst,
                        kCopyProperties & ~kWeightedCycles & ~kUnweightedCycles,
                        kCopyProperties);
    if ((copy_properties & kError) || !compactor_->IsCompatible(fst)) {
      FSTERROR() << "CompactFstImpl: Input Fst incompatible with compactor";
      SetProperties(kError, kError);
      return;
    }
    SetProperties(copy_properties | kStaticProperties);
  }

  CompactFstImpl(std::shared_ptr<Compactor> compactor,
                 const CompactFstOptions &opts)
      : ImplBase(opts),
        compactor_(compactor) {
    SetType(Compactor::Type());
    SetProperties(kStaticProperties | compactor_->Properties());
    if (compactor_->Error()) SetProperties(kError, kError);
  }

  CompactFstImpl(const CompactFstImpl<Arc, Compactor, CacheStore> &impl)
      : ImplBase(impl),
        compactor_(impl.compactor_ == nullptr ?
                   std::make_shared<Compactor>() :
                   std::make_shared<Compactor>(*impl.compactor_)) {
    SetType(impl.Type());
    SetProperties(impl.Properties());
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
  }

  // Allows to change the cache store from OtherI to I.
  template <class OtherCacheStore>
  CompactFstImpl(const CompactFstImpl<Arc, Compactor, OtherCacheStore> &impl)
      : ImplBase(CacheOptions(impl.GetCacheGc(), impl.GetCacheLimit())),
        compactor_(impl.compactor_ == nullptr ?
                   std::make_shared<Compactor>() :
                   std::make_shared<Compactor>(*impl.compactor_)) {
    SetType(impl.Type());
    SetProperties(impl.Properties());
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
  }

  StateId Start() {
    if (!HasStart()) SetStart(compactor_->Start());
    return ImplBase::Start();
  }

  Weight Final(StateId s) {
    if (HasFinal(s)) return ImplBase::Final(s);
    compactor_->SetState(s, &state_);
    return state_.Final();
  }

  StateId NumStates() const {
    if (Properties(kError)) return 0;
    return compactor_->NumStates();
  }

  size_t NumArcs(StateId s) {
    if (HasArcs(s)) return ImplBase::NumArcs(s);
    compactor_->SetState(s, &state_);
    return state_.NumArcs();
  }

  size_t NumInputEpsilons(StateId s) {
    if (!HasArcs(s) && !Properties(kILabelSorted)) Expand(s);
    if (HasArcs(s)) return ImplBase::NumInputEpsilons(s);
    return CountEpsilons(s, false);
  }

  size_t NumOutputEpsilons(StateId s) {
    if (!HasArcs(s) && !Properties(kOLabelSorted)) Expand(s);
    if (HasArcs(s)) return ImplBase::NumOutputEpsilons(s);
    return CountEpsilons(s, true);
  }

  size_t CountEpsilons(StateId s, bool output_epsilons) {
    compactor_->SetState(s, &state_);
    const uint32 f = output_epsilons ? kArcOLabelValue : kArcILabelValue;
    size_t num_eps = 0;
    for (size_t i = 0; i < state_.NumArcs(); ++i) {
      const auto& arc = state_.GetArc(i, f);
      const auto label = output_epsilons ? arc.olabel : arc.ilabel;
      if (label == 0)
        ++num_eps;
      else if (label > 0)
        break;
    }
    return num_eps;
  }

  static CompactFstImpl<Arc, Compactor, CacheStore> *Read(
      std::istream &strm, const FstReadOptions &opts) {
    std::unique_ptr<CompactFstImpl<Arc, Compactor, CacheStore>> impl(
      new CompactFstImpl<Arc, Compactor, CacheStore>());
    FstHeader hdr;
    if (!impl->ReadHeader(strm, opts, kMinFileVersion, &hdr)) {
      return nullptr;
    }
    // Ensures compatibility.
    if (hdr.Version() == kAlignedFileVersion) {
      hdr.SetFlags(hdr.GetFlags() | FstHeader::IS_ALIGNED);
    }
    impl->compactor_ = std::shared_ptr<Compactor>(
        Compactor::Read(strm, opts, hdr));
    if (!impl->compactor_) {
      return nullptr;
    }
    return impl.release();
  }

  bool Write(std::ostream &strm, const FstWriteOptions &opts) const {
    FstHeader hdr;
    hdr.SetStart(compactor_->Start());
    hdr.SetNumStates(compactor_->NumStates());
    hdr.SetNumArcs(compactor_->NumArcs());
    // Ensures compatibility.
    const auto file_version = opts.align ? kAlignedFileVersion : kFileVersion;
    WriteHeader(strm, opts, file_version, &hdr);
    return compactor_->Write(strm, opts);
  }

  // Provides information needed for generic state iterator.
  void InitStateIterator(StateIteratorData<Arc> *data) const {
    data->base = nullptr;
    data->nstates = compactor_->NumStates();
  }

  void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) {
    if (!HasArcs(s)) Expand(s);
    ImplBase::InitArcIterator(s, data);
  }

  void Expand(StateId s) {
    compactor_->SetState(s, &state_);
    for (size_t i = 0; i < state_.NumArcs(); ++i)
      PushArc(s, state_.GetArc(i, kArcValueFlags));
    SetArcs(s);
    if (!HasFinal(s)) SetFinal(s, state_.Final());
  }

  const Compactor *GetCompactor() const { return compactor_.get(); }
  std::shared_ptr<Compactor> SharedCompactor() const { return compactor_; }
  void SetCompactor(std::shared_ptr<Compactor> compactor) {
    // TODO(allauzen): is this correct? is this needed?
    // TODO(allauzen): consider removing and forcing this through direct calls
    // to compactor.
    compactor_ = compactor;
  }

  // Properties always true of this FST class.
  static constexpr uint64 kStaticProperties = kExpanded;

 protected:
  template <class OtherArc, class OtherCompactor, class OtherCacheStore>
  explicit CompactFstImpl(
    const CompactFstImpl<OtherArc, OtherCompactor, OtherCacheStore> &impl)
    : compactor_(std::make_shared<Compactor>(*impl.GetCompactor())) {
    SetType(impl.Type());
    SetProperties(impl.Properties());
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
  }

 private:
  // Allows access during write.
  template <class AnyArc, class ArcCompactor, class Unsigned,
            class CompactStore, class AnyCacheStore>
  friend class ::fst::CompactFst;  // allow access during write.

  // Current unaligned file format version.
  static constexpr int kFileVersion = 2;
  // Current aligned file format version.
  static constexpr int kAlignedFileVersion = 1;
  // Minimum file format version supported.
  static constexpr int kMinFileVersion = 1;

  std::shared_ptr<Compactor> compactor_;
  typename Compactor::State state_;
};

template <class Arc, class Compactor, class CacheStore>
constexpr uint64 CompactFstImpl<Arc, Compactor, CacheStore>::kStaticProperties;

template <class Arc, class Compactor, class CacheStore>
constexpr int CompactFstImpl<Arc, Compactor, CacheStore>::kFileVersion;

template <class Arc, class Compactor, class CacheStore>
constexpr int CompactFstImpl<Arc, Compactor, CacheStore>::kAlignedFileVersion;

template <class Arc, class Compactor, class CacheStore>
constexpr int CompactFstImpl<Arc, Compactor, CacheStore>::kMinFileVersion;

}  // namespace internal

// This class attaches interface to implementation and handles reference
// counting, delegating most methods to ImplToExpandedFst. The Unsigned type
// is used to represent indices into the compact arc array. (Template
// argument defaults are declared in fst-decl.h.)
template <class A, class ArcCompactor, class Unsigned, class CompactStore,
          class CacheStore>
class CompactFst
    : public ImplToExpandedFst<internal::CompactFstImpl<
          A,
          DefaultCompactor<ArcCompactor, Unsigned, CompactStore>,
          CacheStore>> {
 public:
  template <class F, class G>
  void friend Cast(const F &, G *);

  using Arc = A;
  using StateId = typename A::StateId;
  using Compactor = DefaultCompactor<ArcCompactor, Unsigned, CompactStore>;
  using Impl = internal::CompactFstImpl<A, Compactor, CacheStore>;
  using Store = CacheStore;  // for CacheArcIterator

  friend class StateIterator<
      CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>>;
  friend class ArcIterator<
      CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>>;

  CompactFst() : ImplToExpandedFst<Impl>(std::make_shared<Impl>()) {}

  // If data is not nullptr, it is assumed to be already initialized.
  explicit CompactFst(
      const Fst<A> &fst,
      const ArcCompactor &compactor = ArcCompactor(),
      const CompactFstOptions &opts = CompactFstOptions(),
      std::shared_ptr<CompactStore> data = std::shared_ptr<CompactStore>())
      : ImplToExpandedFst<Impl>(
            std::make_shared<Impl>(
                fst,
                std::make_shared<Compactor>(
                    std::make_shared<ArcCompactor>(compactor), data),
                opts)) {}

  // If data is not nullptr, it is assumed to be already initialized.
  CompactFst(
      const Fst<Arc> &fst,
      std::shared_ptr<ArcCompactor> compactor,
      const CompactFstOptions &opts = CompactFstOptions(),
      std::shared_ptr<CompactStore> data = std::shared_ptr<CompactStore>())
      : ImplToExpandedFst<Impl>(
            std::make_shared<Impl>(fst,
                                   std::make_shared<Compactor>(compactor, data),
                                   opts)) {}

  // The following 2 constructors take as input two iterators delimiting a set
  // of (already) compacted transitions, starting with the transitions out of
  // the initial state. The format of the input differs for fixed out-degree
  // and variable out-degree compactors.
  //
  // - For fixed out-degree compactors, the final weight (encoded as a
  // compacted transition) needs to be given only for final states. All strings
  // (compactor of size 1) will be assume to be terminated by a final state
  // even when the final state is not implicitely given.
  //
  // - For variable out-degree compactors, the final weight (encoded as a
  // compacted transition) needs to be given for all states and must appeared
  // first in the list (for state s, final weight of s, followed by outgoing
  // transitons in s).
  //
  // These 2 constructors allows the direct construction of a CompactFst
  // without first creating a more memory-hungry regular FST. This is useful
  // when memory usage is severely constrained.
  template <class Iterator>
  explicit CompactFst(const Iterator &begin, const Iterator &end,
                      const ArcCompactor &compactor = ArcCompactor(),
                      const CompactFstOptions &opts = CompactFstOptions())
      : ImplToExpandedFst<Impl>(
            std::make_shared<Impl>(
                std::make_shared<Compactor>(
                    begin, end, std::make_shared<ArcCompactor>(compactor)),
                opts)) {}

  template <class Iterator>
  CompactFst(const Iterator &begin, const Iterator &end,
             std::shared_ptr<ArcCompactor> compactor,
             const CompactFstOptions &opts = CompactFstOptions())
      : ImplToExpandedFst<Impl>(
            std::make_shared<Impl>(
                std::make_shared<Compactor>(begin, end, compactor), opts)) {}

  // See Fst<>::Copy() for doc.
  CompactFst(
      const CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>
      &fst,
      bool safe = false)
      : ImplToExpandedFst<Impl>(fst, safe) {}

  // Get a copy of this CompactFst. See Fst<>::Copy() for further doc.
  CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore> *Copy(
      bool safe = false) const override {
    return new CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>(
        *this, safe);
  }

  // Read a CompactFst from an input stream; return nullptr on error
  static CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore> *Read(
      std::istream &strm, const FstReadOptions &opts) {
    auto *impl = Impl::Read(strm, opts);
    return impl ? new CompactFst<A, ArcCompactor, Unsigned, CompactStore,
                                 CacheStore>(std::shared_ptr<Impl>(impl))
                : nullptr;
  }

  // Read a CompactFst from a file; return nullptr on error
  // Empty filename reads from standard input
  static CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore> *Read(
      const string &filename) {
    auto *impl = ImplToExpandedFst<Impl>::Read(filename);
    return impl ? new CompactFst<A, ArcCompactor, Unsigned, CompactStore,
                                 CacheStore>(std::shared_ptr<Impl>(impl))
                : nullptr;
  }

  bool Write(std::ostream &strm, const FstWriteOptions &opts) const override {
    return GetImpl()->Write(strm, opts);
  }

  bool Write(const string &filename) const override {
    return Fst<Arc>::WriteFile(filename);
  }

  template <class FST>
  static bool WriteFst(const FST &fst, const ArcCompactor &compactor,
                       std::ostream &strm, const FstWriteOptions &opts);

  void InitStateIterator(StateIteratorData<Arc> *data) const override {
    GetImpl()->InitStateIterator(data);
  }

  void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const override {
    GetMutableImpl()->InitArcIterator(s, data);
  }

  MatcherBase<Arc> *InitMatcher(MatchType match_type) const override {
    return new SortedMatcher<
        CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>>(
        *this, match_type);
  }

  template <class Iterator>
  void SetCompactElements(const Iterator &b, const Iterator &e) {
    GetMutableImpl()->SetCompactor(std::make_shared<Compactor>(
        b, e, std::make_shared<ArcCompactor>()));
  }

 private:
  using ImplToFst<Impl, ExpandedFst<Arc>>::GetImpl;
  using ImplToFst<Impl, ExpandedFst<Arc>>::GetMutableImpl;

  explicit CompactFst(std::shared_ptr<Impl> impl)
      : ImplToExpandedFst<Impl>(impl) {}

  // Use overloading to extract the type of the argument.
  static Impl *GetImplIfCompactFst(
      const CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>
          &compact_fst) {
    return compact_fst.GetImpl();
  }

  // This does not give privileged treatment to subclasses of CompactFst.
  template <typename NonCompactFst>
  static Impl *GetImplIfCompactFst(const NonCompactFst &fst) {
    return nullptr;
  }

  CompactFst &operator=(const CompactFst &fst) = delete;
};

// Writes FST in Compact format, with a possible pass over the machine before
// writing to compute the number of states and arcs.
template <class A, class ArcCompactor, class Unsigned, class CompactStore,
          class CacheStore>
template <class FST>
bool CompactFst<A, ArcCompactor, Unsigned, CompactStore, CacheStore>::WriteFst(
    const FST &fst, const ArcCompactor &compactor, std::ostream &strm,
    const FstWriteOptions &opts) {
  using Arc = A;
  using Weight = typename A::Weight;
  using Element = typename ArcCompactor::Element;
  const auto file_version =
      opts.align ? Impl::kAlignedFileVersion : Impl::kFileVersion;
  size_t num_arcs = -1;
  size_t num_states = -1;
  auto first_pass_compactor = compactor;
  if (auto *impl = GetImplIfCompactFst(fst)) {
    num_arcs = impl->GetCompactor()->GetCompactStore()->NumArcs();
    num_states = impl->GetCompactor()->GetCompactStore()->NumStates();
    first_pass_compactor = *impl->GetCompactor()->GetArcCompactor();
  } else {
    // A first pass is needed to compute the state of the compactor, which
    // is saved ahead of the rest of the data structures. This unfortunately
    // means forcing a complete double compaction when writing in this format.
    // TODO(allauzen): eliminate mutable state from compactors.
    num_arcs = 0;
    num_states = 0;
    for (StateIterator<FST> siter(fst); !siter.Done(); siter.Next()) {
      const auto s = siter.Value();
      ++num_states;
      if (fst.Final(s) != Weight::Zero()) {
        first_pass_compactor.Compact(
            s, Arc(kNoLabel, kNoLabel, fst.Final(s), kNoStateId));
      }
      for (ArcIterator<FST> aiter(fst, s); !aiter.Done(); aiter.Next()) {
        ++num_arcs;
        first_pass_compactor.Compact(s, aiter.Value());
      }
    }
  }
  FstHeader hdr;
  hdr.SetStart(fst.Start());
  hdr.SetNumStates(num_states);
  hdr.SetNumArcs(num_arcs);
  string type = "compact";
  if (sizeof(Unsigned) != sizeof(uint32)) {
    type += std::to_string(CHAR_BIT * sizeof(Unsigned));
  }
  type += "_";
  type += ArcCompactor::Type();
  if (CompactStore::Type() != "compact") {
    type += "_";
    type += CompactStore::Type();
  }
  const auto copy_properties = fst.Properties(kCopyProperties, true);
  if ((copy_properties & kError) || !compactor.Compatible(fst)) {
    FSTERROR() << "Fst incompatible with compactor";
    return false;
  }
  uint64 properties = copy_properties | Impl::kStaticProperties;
  internal::FstImpl<Arc>::WriteFstHeader(fst, strm, opts, file_version, type,
                                         properties, &hdr);
  first_pass_compactor.Write(strm);
  if (first_pass_compactor.Size() == -1) {
    if (opts.align && !AlignOutput(strm)) {
      LOG(ERROR) << "CompactFst::Write: Alignment failed: " << opts.source;
      return false;
    }
    Unsigned compacts = 0;
    for (StateIterator<FST> siter(fst); !siter.Done(); siter.Next()) {
      const auto s = siter.Value();
      strm.write(reinterpret_cast<const char *>(&compacts), sizeof(compacts));
      if (fst.Final(s) != Weight::Zero()) {
        ++compacts;
      }
      compacts += fst.NumArcs(s);
    }
    strm.write(reinterpret_cast<const char *>(&compacts), sizeof(compacts));
  }
  if (opts.align && !AlignOutput(strm)) {
    LOG(ERROR) << "Could not align file during write after writing states";
  }
  const auto &second_pass_compactor = compactor;
  Element element;
  for (StateIterator<FST> siter(fst); !siter.Done(); siter.Next()) {
    const auto s = siter.Value();
    if (fst.Final(s) != Weight::Zero()) {
      element = second_pass_compactor.Compact(
          s, A(kNoLabel, kNoLabel, fst.Final(s), kNoStateId));
      strm.write(reinterpret_cast<const char *>(&element), sizeof(element));
    }
    for (ArcIterator<FST> aiter(fst, s); !aiter.Done(); aiter.Next()) {
      element = second_pass_compactor.Compact(s, aiter.Value());
      strm.write(reinterpret_cast<const char *>(&element), sizeof(element));
    }
  }
  strm.flush();
  if (!strm) {
    LOG(ERROR) << "CompactFst write failed: " << opts.source;
    return false;
  }
  return true;
}

// Specialization for CompactFst; see generic version in fst.h for sample
// usage (but use the CompactFst type!). This version should inline.
template <class Arc, class ArcCompactor, class Unsigned, class CompactStore,
          class CacheStore>
class StateIterator<
    CompactFst<Arc, ArcCompactor, Unsigned, CompactStore, CacheStore>> {
 public:
  using StateId = typename Arc::StateId;

  explicit StateIterator(
      const CompactFst<Arc, ArcCompactor, Unsigned, CompactStore,
                       CacheStore> &fst)
      : nstates_(fst.GetImpl()->NumStates()), s_(0) {}

  bool Done() const { return s_ >= nstates_; }

  StateId Value() const { return s_; }

  void Next() { ++s_; }

  void Reset() { s_ = 0; }

 private:
  StateId nstates_;
  StateId s_;
};

// Specialization for CompactFst. Never caches,
// always iterates over the underlying compact elements.
template <class Arc, class ArcCompactor, class Unsigned,
          class CompactStore, class CacheStore>
class ArcIterator<CompactFst<
    Arc, ArcCompactor, Unsigned, CompactStore, CacheStore>> {
 public:
  using StateId = typename Arc::StateId;
  using Element = typename ArcCompactor::Element;
  using Compactor = DefaultCompactor<ArcCompactor, Unsigned, CompactStore>;
  using State = typename Compactor::State;

  ArcIterator(const CompactFst<Arc, ArcCompactor, Unsigned, CompactStore,
                               CacheStore> &fst,
              StateId s)
      : state_(fst.GetImpl()->GetCompactor(), s),
        pos_(0),
        flags_(kArcValueFlags) {}

  bool Done() const { return pos_ >= state_.NumArcs(); }

  const Arc &Value() const {
    arc_ = state_.GetArc(pos_, flags_);
    return arc_;
  }

  void Next() { ++pos_; }

  size_t Position() const { return pos_; }

  void Reset() { pos_ = 0; }

  void Seek(size_t pos) { pos_ = pos; }

  uint32 Flags() const { return flags_; }

  void SetFlags(uint32 f, uint32 m) {
    flags_ &= ~m;
    flags_ |= (f & kArcValueFlags);
  }

 private:
  State state_;
  size_t pos_;
  mutable Arc arc_;
  uint32 flags_;
};

// ArcCompactor for unweighted string FSTs.
template <class A>
class StringCompactor {
 public:
  using Arc = A;
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using Element = Label;

  Element Compact(StateId s, const Arc &arc) const { return arc.ilabel; }

  Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
    return Arc(p, p, Weight::One(), p != kNoLabel ? s + 1 : kNoStateId);
  }

  constexpr ssize_t Size() const { return 1; }

  constexpr uint64 Properties() const {
    return kString | kAcceptor | kUnweighted;
  }

  bool Compatible(const Fst<Arc> &fst) const {
    const auto props = Properties();
    return fst.Properties(props, true) == props;
  }

  static const string &Type() {
    static const string *const type = new string("string");
    return *type;
  }

  bool Write(std::ostream &strm) const { return true; }

  static StringCompactor *Read(std::istream &strm) {
    return new StringCompactor;
  }
};

// ArcCompactor for weighted string FSTs.
template <class A>
class WeightedStringCompactor {
 public:
  using Arc = A;
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using Element = std::pair<Label, Weight>;

  Element Compact(StateId s, const Arc &arc) const {
    return std::make_pair(arc.ilabel, arc.weight);
  }

  Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
    return Arc(p.first, p.first, p.second,
               p.first != kNoLabel ? s + 1 : kNoStateId);
  }

  constexpr ssize_t Size() const { return 1; }

  constexpr uint64 Properties() const { return kString | kAcceptor; }

  bool Compatible(const Fst<Arc> &fst) const {
    const auto props = Properties();
    return fst.Properties(props, true) == props;
  }

  static const string &Type() {
    static const string *const type = new string("weighted_string");
    return *type;
  }

  bool Write(std::ostream &strm) const { return true; }

  static WeightedStringCompactor *Read(std::istream &strm) {
    return new WeightedStringCompactor;
  }
};

// ArcCompactor for unweighted acceptor FSTs.
template <class A>
class UnweightedAcceptorCompactor {
 public:
  using Arc = A;
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using Element = std::pair<Label, StateId>;

  Element Compact(StateId s, const Arc &arc) const {
    return std::make_pair(arc.ilabel, arc.nextstate);
  }

  Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
    return Arc(p.first, p.first, Weight::One(), p.second);
  }

  constexpr ssize_t Size() const { return -1; }

  constexpr uint64 Properties() const { return kAcceptor | kUnweighted; }

  bool Compatible(const Fst<Arc> &fst) const {
    const auto props = Properties();
    return fst.Properties(props, true) == props;
  }

  static const string &Type() {
    static const string *const type = new string("unweighted_acceptor");
    return *type;
  }

  bool Write(std::ostream &strm) const { return true; }

  static UnweightedAcceptorCompactor *Read(std::istream &istrm) {
    return new UnweightedAcceptorCompactor;
  }
};

// ArcCompactor for weighted acceptor FSTs.
template <class A>
class AcceptorCompactor {
 public:
  using Arc = A;
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using Element = std::pair<std::pair<Label, Weight>, StateId>;

  Element Compact(StateId s, const Arc &arc) const {
    return std::make_pair(std::make_pair(arc.ilabel, arc.weight),
                          arc.nextstate);
  }

  Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
    return Arc(p.first.first, p.first.first, p.first.second, p.second);
  }

  constexpr ssize_t Size() const { return -1; }

  constexpr uint64 Properties() const { return kAcceptor; }

  bool Compatible(const Fst<Arc> &fst) const {
    const auto props = Properties();
    return fst.Properties(props, true) == props;
  }

  static const string &Type() {
    static const string *const type = new string("acceptor");
    return *type;
  }

  bool Write(std::ostream &strm) const { return true; }

  static AcceptorCompactor *Read(std::istream &strm) {
    return new AcceptorCompactor;
  }
};

// ArcCompactor for unweighted FSTs.
template <class A>
class UnweightedCompactor {
 public:
  using Arc = A;
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using Element = std::pair<std::pair<Label, Label>, StateId>;

  Element Compact(StateId s, const Arc &arc) const {
    return std::make_pair(std::make_pair(arc.ilabel, arc.olabel),
                          arc.nextstate);
  }

  Arc Expand(StateId s, const Element &p, uint32 f = kArcValueFlags) const {
    return Arc(p.first.first, p.first.second, Weight::One(), p.second);
  }

  constexpr ssize_t Size() const { return -1; }

  constexpr uint64 Properties() const { return kUnweighted; }

  bool Compatible(const Fst<Arc> &fst) const {
    const auto props = Properties();
    return fst.Properties(props, true) == props;
  }

  static const string &Type() {
    static const string *const type = new string("unweighted");
    return *type;
  }

  bool Write(std::ostream &strm) const { return true; }

  static UnweightedCompactor *Read(std::istream &strm) {
    return new UnweightedCompactor;
  }
};

template <class Arc, class Unsigned /* = uint32 */>
using CompactStringFst = CompactFst<Arc, StringCompactor<Arc>, Unsigned>;

template <class Arc, class Unsigned /* = uint32 */>
using CompactWeightedStringFst =
    CompactFst<Arc, WeightedStringCompactor<Arc>, Unsigned>;

template <class Arc, class Unsigned /* = uint32 */>
using CompactAcceptorFst = CompactFst<Arc, AcceptorCompactor<Arc>, Unsigned>;

template <class Arc, class Unsigned /* = uint32 */>
using CompactUnweightedFst =
    CompactFst<Arc, UnweightedCompactor<Arc>, Unsigned>;

template <class Arc, class Unsigned /* = uint32 */>
using CompactUnweightedAcceptorFst =
    CompactFst<Arc, UnweightedAcceptorCompactor<Arc>, Unsigned>;

using StdCompactStringFst = CompactStringFst<StdArc, uint32>;

using StdCompactWeightedStringFst = CompactWeightedStringFst<StdArc, uint32>;

using StdCompactAcceptorFst = CompactAcceptorFst<StdArc, uint32>;

using StdCompactUnweightedFst = CompactUnweightedFst<StdArc, uint32>;

using StdCompactUnweightedAcceptorFst =
    CompactUnweightedAcceptorFst<StdArc, uint32>;

}  // namespace fst

#endif  // FST_COMPACT_FST_H_