prune.h
12.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions implementing pruning.
#ifndef FST_PRUNE_H_
#define FST_PRUNE_H_
#include <type_traits>
#include <utility>
#include <vector>
#include <fst/log.h>
#include <fst/arcfilter.h>
#include <fst/heap.h>
#include <fst/shortest-distance.h>
namespace fst {
namespace internal {
template <class StateId, class Weight>
class PruneCompare {
public:
PruneCompare(const std::vector<Weight> &idistance,
const std::vector<Weight> &fdistance)
: idistance_(idistance), fdistance_(fdistance) {}
bool operator()(const StateId x, const StateId y) const {
const auto wx = Times(IDistance(x), FDistance(x));
const auto wy = Times(IDistance(y), FDistance(y));
return less_(wx, wy);
}
private:
Weight IDistance(const StateId s) const {
return s < idistance_.size() ? idistance_[s] : Weight::Zero();
}
Weight FDistance(const StateId s) const {
return s < fdistance_.size() ? fdistance_[s] : Weight::Zero();
}
const std::vector<Weight> &idistance_;
const std::vector<Weight> &fdistance_;
NaturalLess<Weight> less_;
};
} // namespace internal
template <class Arc, class ArcFilter>
struct PruneOptions {
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
PruneOptions(const Weight &weight_threshold, StateId state_threshold,
ArcFilter filter, std::vector<Weight> *distance = nullptr,
float delta = kDelta, bool threshold_initial = false)
: weight_threshold(std::move(weight_threshold)),
state_threshold(state_threshold),
filter(std::move(filter)),
distance(distance),
delta(delta),
threshold_initial(threshold_initial) {}
// Pruning weight threshold.
Weight weight_threshold;
// Pruning state threshold.
StateId state_threshold;
// Arc filter.
ArcFilter filter;
// If non-zero, passes in pre-computed shortest distance to final states.
const std::vector<Weight> *distance;
// Determines the degree of convergence required when computing shortest
// distances.
float delta;
// Determines if the shortest path weight is left (true) or right
// (false) multiplied by the threshold to get the limit for
// keeping a state or arc (matters if the semiring is not
// commutative).
bool threshold_initial;
};
// Pruning algorithm: this version modifies its input and it takes an options
// class as an argument. After pruning the FST contains states and arcs that
// belong to a successful path in the FST whose weight is no more than the
// weight of the shortest path Times() the provided weight threshold. When the
// state threshold is not kNoStateId, the output FST is further restricted to
// have no more than the number of states in opts.state_threshold. Weights must
// have the path property. The weight of any cycle needs to be bounded; i.e.,
//
// Plus(weight, Weight::One()) == Weight::One()
template <class Arc, class ArcFilter,
typename std::enable_if<
(Arc::Weight::Properties() & kPath) == kPath>::type * = nullptr>
void Prune(MutableFst<Arc> *fst, const PruneOptions<Arc, ArcFilter> &opts) {
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
using StateHeap = Heap<StateId, internal::PruneCompare<StateId, Weight>>;
auto ns = fst->NumStates();
if (ns < 1) return;
std::vector<Weight> idistance(ns, Weight::Zero());
std::vector<Weight> tmp;
if (!opts.distance) {
tmp.reserve(ns);
ShortestDistance(*fst, &tmp, true, opts.delta);
}
const auto *fdistance = opts.distance ? opts.distance : &tmp;
if ((opts.state_threshold == 0) || (fdistance->size() <= fst->Start()) ||
((*fdistance)[fst->Start()] == Weight::Zero())) {
fst->DeleteStates();
return;
}
internal::PruneCompare<StateId, Weight> compare(idistance, *fdistance);
StateHeap heap(compare);
std::vector<bool> visited(ns, false);
std::vector<size_t> enqueued(ns, StateHeap::kNoKey);
std::vector<StateId> dead;
dead.push_back(fst->AddState());
NaturalLess<Weight> less;
auto s = fst->Start();
const auto limit = opts.threshold_initial ?
Times(opts.weight_threshold, (*fdistance)[s]) :
Times((*fdistance)[s], opts.weight_threshold);
StateId num_visited = 0;
if (!less(limit, (*fdistance)[s])) {
idistance[s] = Weight::One();
enqueued[s] = heap.Insert(s);
++num_visited;
}
while (!heap.Empty()) {
s = heap.Top();
heap.Pop();
enqueued[s] = StateHeap::kNoKey;
visited[s] = true;
if (less(limit, Times(idistance[s], fst->Final(s)))) {
fst->SetFinal(s, Weight::Zero());
}
for (MutableArcIterator<MutableFst<Arc>> aiter(fst, s); !aiter.Done();
aiter.Next()) {
auto arc = aiter.Value(); // Copy intended.
if (!opts.filter(arc)) continue;
const auto weight = Times(Times(idistance[s], arc.weight),
arc.nextstate < fdistance->size() ?
(*fdistance)[arc.nextstate] : Weight::Zero());
if (less(limit, weight)) {
arc.nextstate = dead[0];
aiter.SetValue(arc);
continue;
}
if (less(Times(idistance[s], arc.weight), idistance[arc.nextstate])) {
idistance[arc.nextstate] = Times(idistance[s], arc.weight);
}
if (visited[arc.nextstate]) continue;
if ((opts.state_threshold != kNoStateId) &&
(num_visited >= opts.state_threshold)) {
continue;
}
if (enqueued[arc.nextstate] == StateHeap::kNoKey) {
enqueued[arc.nextstate] = heap.Insert(arc.nextstate);
++num_visited;
} else {
heap.Update(enqueued[arc.nextstate], arc.nextstate);
}
}
}
for (StateId i = 0; i < visited.size(); ++i) {
if (!visited[i]) dead.push_back(i);
}
fst->DeleteStates(dead);
}
template <class Arc, class ArcFilter,
typename std::enable_if<
(Arc::Weight::Properties() & kPath) != kPath>::type * = nullptr>
void Prune(MutableFst<Arc> *fst, const PruneOptions<Arc, ArcFilter> &) {
FSTERROR() << "Prune: Weight needs to have the path property: "
<< Arc::Weight::Type();
fst->SetProperties(kError, kError);
}
// Pruning algorithm: this version modifies its input and takes the
// pruning threshold as an argument. It deletes states and arcs in the
// FST that do not belong to a successful path whose weight is more
// than the weight of the shortest path Times() the provided weight
// threshold. When the state threshold is not kNoStateId, the output
// FST is further restricted to have no more than the number of states
// in opts.state_threshold. Weights must have the path property. The
// weight of any cycle needs to be bounded; i.e.,
//
// Plus(weight, Weight::One()) == Weight::One()
template <class Arc>
void Prune(MutableFst<Arc> *fst, typename Arc::Weight weight_threshold,
typename Arc::StateId state_threshold = kNoStateId,
float delta = kDelta) {
const PruneOptions<Arc, AnyArcFilter<Arc>> opts(
weight_threshold, state_threshold, AnyArcFilter<Arc>(), nullptr, delta);
Prune(fst, opts);
}
// Pruning algorithm: this version writes the pruned input FST to an
// output MutableFst and it takes an options class as an argument. The
// output FST contains states and arcs that belong to a successful
// path in the input FST whose weight is more than the weight of the
// shortest path Times() the provided weight threshold. When the state
// threshold is not kNoStateId, the output FST is further restricted
// to have no more than the number of states in
// opts.state_threshold. Weights have the path property. The weight
// of any cycle needs to be bounded; i.e.,
//
// Plus(weight, Weight::One()) == Weight::One()
template <class Arc, class ArcFilter,
typename std::enable_if<IsPath<typename Arc::Weight>::value>::type * =
nullptr>
void Prune(const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
const PruneOptions<Arc, ArcFilter> &opts) {
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
using StateHeap = Heap<StateId, internal::PruneCompare<StateId, Weight>>;
ofst->DeleteStates();
ofst->SetInputSymbols(ifst.InputSymbols());
ofst->SetOutputSymbols(ifst.OutputSymbols());
if (ifst.Start() == kNoStateId) return;
NaturalLess<Weight> less;
if (less(opts.weight_threshold, Weight::One()) ||
(opts.state_threshold == 0)) {
return;
}
std::vector<Weight> idistance;
std::vector<Weight> tmp;
if (!opts.distance) ShortestDistance(ifst, &tmp, true, opts.delta);
const auto *fdistance = opts.distance ? opts.distance : &tmp;
if ((fdistance->size() <= ifst.Start()) ||
((*fdistance)[ifst.Start()] == Weight::Zero())) {
return;
}
internal::PruneCompare<StateId, Weight> compare(idistance, *fdistance);
StateHeap heap(compare);
std::vector<StateId> copy;
std::vector<size_t> enqueued;
std::vector<bool> visited;
auto s = ifst.Start();
const auto limit = opts.threshold_initial ?
Times(opts.weight_threshold, (*fdistance)[s]) :
Times((*fdistance)[s], opts.weight_threshold);
while (copy.size() <= s) copy.push_back(kNoStateId);
copy[s] = ofst->AddState();
ofst->SetStart(copy[s]);
while (idistance.size() <= s) idistance.push_back(Weight::Zero());
idistance[s] = Weight::One();
while (enqueued.size() <= s) {
enqueued.push_back(StateHeap::kNoKey);
visited.push_back(false);
}
enqueued[s] = heap.Insert(s);
while (!heap.Empty()) {
s = heap.Top();
heap.Pop();
enqueued[s] = StateHeap::kNoKey;
visited[s] = true;
if (!less(limit, Times(idistance[s], ifst.Final(s)))) {
ofst->SetFinal(copy[s], ifst.Final(s));
}
for (ArcIterator<Fst<Arc>> aiter(ifst, s); !aiter.Done(); aiter.Next()) {
const auto &arc = aiter.Value();
if (!opts.filter(arc)) continue;
const auto weight = Times(Times(idistance[s], arc.weight),
arc.nextstate < fdistance->size() ?
(*fdistance)[arc.nextstate] : Weight::Zero());
if (less(limit, weight)) continue;
if ((opts.state_threshold != kNoStateId) &&
(ofst->NumStates() >= opts.state_threshold)) {
continue;
}
while (idistance.size() <= arc.nextstate) {
idistance.push_back(Weight::Zero());
}
if (less(Times(idistance[s], arc.weight), idistance[arc.nextstate])) {
idistance[arc.nextstate] = Times(idistance[s], arc.weight);
}
while (copy.size() <= arc.nextstate) copy.push_back(kNoStateId);
if (copy[arc.nextstate] == kNoStateId) {
copy[arc.nextstate] = ofst->AddState();
}
ofst->AddArc(copy[s], Arc(arc.ilabel, arc.olabel, arc.weight,
copy[arc.nextstate]));
while (enqueued.size() <= arc.nextstate) {
enqueued.push_back(StateHeap::kNoKey);
visited.push_back(false);
}
if (visited[arc.nextstate]) continue;
if (enqueued[arc.nextstate] == StateHeap::kNoKey) {
enqueued[arc.nextstate] = heap.Insert(arc.nextstate);
} else {
heap.Update(enqueued[arc.nextstate], arc.nextstate);
}
}
}
}
template <class Arc, class ArcFilter,
typename std::enable_if<!IsPath<typename Arc::Weight>::value>::type
* = nullptr>
void Prune(const Fst<Arc> &, MutableFst<Arc> *ofst,
const PruneOptions<Arc, ArcFilter> &) {
FSTERROR() << "Prune: Weight needs to have the path property: "
<< Arc::Weight::Type();
ofst->SetProperties(kError, kError);
}
// Pruning algorithm: this version writes the pruned input FST to an
// output MutableFst and simply takes the pruning threshold as an
// argument. The output FST contains states and arcs that belong to a
// successful path in the input FST whose weight is no more than the
// weight of the shortest path Times() the provided weight
// threshold. When the state threshold is not kNoStateId, the output
// FST is further restricted to have no more than the number of states
// in opts.state_threshold. Weights must have the path property. The
// weight of any cycle needs to be bounded; i.e.,
//
// Plus(weight, Weight::One()) = Weight::One();
template <class Arc>
void Prune(const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
typename Arc::Weight weight_threshold,
typename Arc::StateId state_threshold = kNoStateId,
float delta = kDelta) {
const PruneOptions<Arc, AnyArcFilter<Arc>> opts(
weight_threshold, state_threshold, AnyArcFilter<Arc>(), nullptr, delta);
Prune(ifst, ofst, opts);
}
} // namespace fst
#endif // FST_PRUNE_H_