shortest-path.h 22.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions to find shortest paths in an FST.

#ifndef FST_SHORTEST_PATH_H_
#define FST_SHORTEST_PATH_H_

#include <functional>
#include <type_traits>
#include <utility>
#include <vector>

#include <fst/log.h>

#include <fst/cache.h>
#include <fst/determinize.h>
#include <fst/queue.h>
#include <fst/shortest-distance.h>
#include <fst/test-properties.h>


namespace fst {

template <class Arc, class Queue, class ArcFilter>
struct ShortestPathOptions
    : public ShortestDistanceOptions<Arc, Queue, ArcFilter> {
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  int32 nshortest;    // Returns n-shortest paths.
  bool unique;        // Only returns paths with distinct input strings.
  bool has_distance;  // Distance vector already contains the
                      // shortest distance from the initial state.
  bool first_path;    // Single shortest path stops after finding the first
                      // path to a final state; that path is the shortest path
                      // only when:
                      // (1) using the ShortestFirstQueue with all the weights
                      // in the FST being between One() and Zero() according to
                      // NaturalLess or when
                      // (2) using the NaturalAStarQueue with an admissible
                      // and consistent estimate.
  Weight weight_threshold;  // Pruning weight threshold.
  StateId state_threshold;  // Pruning state threshold.

  ShortestPathOptions(Queue *queue, ArcFilter filter, int32 nshortest = 1,
                      bool unique = false, bool has_distance = false,
                      float delta = kShortestDelta, bool first_path = false,
                      Weight weight_threshold = Weight::Zero(),
                      StateId state_threshold = kNoStateId)
      : ShortestDistanceOptions<Arc, Queue, ArcFilter>(queue, filter,
                                                       kNoStateId, delta),
        nshortest(nshortest),
        unique(unique),
        has_distance(has_distance),
        first_path(first_path),
        weight_threshold(std::move(weight_threshold)),
        state_threshold(state_threshold) {}
};

namespace internal {

constexpr size_t kNoArc = -1;

// Helper function for SingleShortestPath building the shortest path as a left-
// to-right machine backwards from the best final state. It takes the input
// FST passed to SingleShortestPath and the parent vector and f_parent returned
// by that function, and builds the result into the provided output mutable FS
// This is not normally called by users; see ShortestPath instead.
template <class Arc>
void SingleShortestPathBacktrace(
    const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
    const std::vector<std::pair<typename Arc::StateId, size_t>> &parent,
    typename Arc::StateId f_parent) {
  using StateId = typename Arc::StateId;
  ofst->DeleteStates();
  ofst->SetInputSymbols(ifst.InputSymbols());
  ofst->SetOutputSymbols(ifst.OutputSymbols());
  StateId s_p = kNoStateId;
  StateId d_p = kNoStateId;
  for (StateId state = f_parent, d = kNoStateId; state != kNoStateId;
       d = state, state = parent[state].first) {
    d_p = s_p;
    s_p = ofst->AddState();
    if (d == kNoStateId) {
      ofst->SetFinal(s_p, ifst.Final(f_parent));
    } else {
      ArcIterator<Fst<Arc>> aiter(ifst, state);
      aiter.Seek(parent[d].second);
      auto arc = aiter.Value();
      arc.nextstate = d_p;
      ofst->AddArc(s_p, arc);
    }
  }
  ofst->SetStart(s_p);
  if (ifst.Properties(kError, false)) ofst->SetProperties(kError, kError);
  ofst->SetProperties(
      ShortestPathProperties(ofst->Properties(kFstProperties, false), true),
      kFstProperties);
}

// Helper function for SingleShortestPath building a tree of shortest paths to
// every final state in the input FST. It takes the input FST and parent values
// computed by SingleShortestPath and builds into the output mutable FST the
// subtree of ifst that consists only of the best paths to all final states.
// This is not normally called by users; see ShortestPath instead.
template <class Arc>
void SingleShortestTree(
    const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
    const std::vector<std::pair<typename Arc::StateId, size_t>> &parent) {
  ofst->DeleteStates();
  ofst->SetInputSymbols(ifst.InputSymbols());
  ofst->SetOutputSymbols(ifst.OutputSymbols());
  ofst->SetStart(ifst.Start());
  for (StateIterator<Fst<Arc>> siter(ifst); !siter.Done(); siter.Next()) {
    ofst->AddState();
    ofst->SetFinal(siter.Value(), ifst.Final(siter.Value()));
  }
  for (const auto &pair : parent) {
    if (pair.first != kNoStateId && pair.second != kNoArc) {
      ArcIterator<Fst<Arc>> aiter(ifst, pair.first);
      aiter.Seek(pair.second);
      ofst->AddArc(pair.first, aiter.Value());
    }
  }
  if (ifst.Properties(kError, false)) ofst->SetProperties(kError, kError);
  ofst->SetProperties(
      ShortestPathProperties(ofst->Properties(kFstProperties, false), true),
      kFstProperties);
}

// Implements the stopping criterion when ShortestPathOptions::first_path
// is set to true:
//   operator()(s, d, f) == true
//   iff every successful path through state 's' has a cost greater or equal
//   to 'f' under the assumption that 'd' is the shortest distance to state 's'.
// Correct when using the ShortestFirstQueue with all the weights in the FST
// being between One() and Zero() according to NaturalLess
template <typename S, typename W, typename Queue>
struct FirstPathSelect {
  FirstPathSelect(const Queue &) {}
  bool operator()(S s, W d, W f) const { return f == Plus(d, f); }
};

// Specialisation for A*.
// Correct when the estimate is admissible and consistent.
template <typename S, typename W, typename Estimate>
class FirstPathSelect<S, W, NaturalAStarQueue<S, W, Estimate>> {
 public:
  using Queue = NaturalAStarQueue<S, W, Estimate>;

  FirstPathSelect(const Queue &state_queue)
    : estimate_(state_queue.GetCompare().GetEstimate()) {}

  bool operator()(S s, W d, W f) const {
    return f == Plus(Times(d, estimate_(s)), f);
  }

 private:
  const Estimate &estimate_;
};

// Shortest-path algorithm. It builds the output mutable FST so that it contains
// the shortest path in the input FST; distance returns the shortest distances
// from the source state to each state in the input FST, and the options struct
// is
// used to specify options such as the queue discipline, the arc filter and
// delta. The super_final option is an output parameter indicating the final
// state, and the parent argument is used for the storage of the backtrace path
// for each state 1 to n, (i.e., the best previous state and the arc that
// transition to state n.) The shortest path is the lowest weight path w.r.t.
// the natural semiring order. The weights need to be right distributive and
// have the path (kPath) property. False is returned if an error is encountered.
//
// This is not normally called by users; see ShortestPath instead (with n = 1).
template <class Arc, class Queue, class ArcFilter>
bool SingleShortestPath(
    const Fst<Arc> &ifst, std::vector<typename Arc::Weight> *distance,
    const ShortestPathOptions<Arc, Queue, ArcFilter> &opts,
    typename Arc::StateId *f_parent,
    std::vector<std::pair<typename Arc::StateId, size_t>> *parent) {
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;
  static_assert(IsPath<Weight>::value, "Weight must have path property.");
  static_assert((Weight::Properties() & kRightSemiring) == kRightSemiring,
                "Weight must be right distributive.");
  parent->clear();
  *f_parent = kNoStateId;
  if (ifst.Start() == kNoStateId) return true;
  std::vector<bool> enqueued;
  auto state_queue = opts.state_queue;
  const auto source = (opts.source == kNoStateId) ? ifst.Start() : opts.source;
  bool final_seen = false;
  auto f_distance = Weight::Zero();
  distance->clear();
  state_queue->Clear();
  while (distance->size() < source) {
    distance->push_back(Weight::Zero());
    enqueued.push_back(false);
    parent->push_back(std::make_pair(kNoStateId, kNoArc));
  }
  distance->push_back(Weight::One());
  parent->push_back(std::make_pair(kNoStateId, kNoArc));
  state_queue->Enqueue(source);
  enqueued.push_back(true);
  while (!state_queue->Empty()) {
    const auto s = state_queue->Head();
    state_queue->Dequeue();
    enqueued[s] = false;
    const auto sd = (*distance)[s];
    // If we are using a shortest queue, no other path is going to be shorter
    // than f_distance at this point.
    using FirstPath = FirstPathSelect<StateId, Weight, Queue>;
    if (opts.first_path && final_seen &&
        FirstPath(*state_queue)(s, sd, f_distance)) {
      break;
    }
    if (ifst.Final(s) != Weight::Zero()) {
      const auto plus = Plus(f_distance, Times(sd, ifst.Final(s)));
      if (f_distance != plus) {
        f_distance = plus;
        *f_parent = s;
      }
      if (!f_distance.Member()) return false;
      final_seen = true;
    }
    for (ArcIterator<Fst<Arc>> aiter(ifst, s); !aiter.Done(); aiter.Next()) {
      const auto &arc = aiter.Value();
      while (distance->size() <= arc.nextstate) {
        distance->push_back(Weight::Zero());
        enqueued.push_back(false);
        parent->push_back(std::make_pair(kNoStateId, kNoArc));
      }
      auto &nd = (*distance)[arc.nextstate];
      const auto weight = Times(sd, arc.weight);
      if (nd != Plus(nd, weight)) {
        nd = Plus(nd, weight);
        if (!nd.Member()) return false;
        (*parent)[arc.nextstate] = std::make_pair(s, aiter.Position());
        if (!enqueued[arc.nextstate]) {
          state_queue->Enqueue(arc.nextstate);
          enqueued[arc.nextstate] = true;
        } else {
          state_queue->Update(arc.nextstate);
        }
      }
    }
  }
  return true;
}

template <class StateId, class Weight>
class ShortestPathCompare {
 public:
  ShortestPathCompare(const std::vector<std::pair<StateId, Weight>> &pairs,
                      const std::vector<Weight> &distance, StateId superfinal,
                      float delta)
      : pairs_(pairs),
        distance_(distance),
        superfinal_(superfinal),
        delta_(delta) {}

  bool operator()(const StateId x, const StateId y) const {
    const auto &px = pairs_[x];
    const auto &py = pairs_[y];
    const auto wx = Times(PWeight(px.first), px.second);
    const auto wy = Times(PWeight(py.first), py.second);
    // Penalize complete paths to ensure correct results with inexact weights.
    // This forms a strict weak order so long as ApproxEqual(a, b) =>
    // ApproxEqual(a, c) for all c s.t. less_(a, c) && less_(c, b).
    if (px.first == superfinal_ && py.first != superfinal_) {
      return less_(wy, wx) || ApproxEqual(wx, wy, delta_);
    } else if (py.first == superfinal_ && px.first != superfinal_) {
      return less_(wy, wx) && !ApproxEqual(wx, wy, delta_);
    } else {
      return less_(wy, wx);
    }
  }

 private:
  Weight PWeight(StateId state) const {
    return (state == superfinal_)
               ? Weight::One()
               : (state < distance_.size()) ? distance_[state] : Weight::Zero();
  }

  const std::vector<std::pair<StateId, Weight>> &pairs_;
  const std::vector<Weight> &distance_;
  const StateId superfinal_;
  const float delta_;
  NaturalLess<Weight> less_;
};

// N-Shortest-path algorithm: implements the core n-shortest path algorithm.
// The output is built reversed. See below for versions with more options and
// *not reversed*.
//
// The output mutable FST contains the REVERSE of n'shortest paths in the input
// FST; distance must contain the shortest distance from each state to a final
// state in the input FST; delta is the convergence delta.
//
// The n-shortest paths are the n-lowest weight paths w.r.t. the natural
// semiring order. The single path that can be read from the ith of at most n
// transitions leaving the initial state of the input FST is the ith shortest
// path. Disregarding the initial state and initial transitions, the
// n-shortest paths, in fact, form a tree rooted at the single final state.
//
// The weights need to be left and right distributive (kSemiring) and have the
// path (kPath) property.
//
// Arc weights must satisfy the property that the sum of the weights of one or
// more paths from some state S to T is never Zero(). In particular, arc weights
// are never Zero().
//
// For more information, see:
//
// Mohri, M, and Riley, M. 2002. An efficient algorithm for the n-best-strings
// problem. In Proc. ICSLP.
//
// The algorithm relies on the shortest-distance algorithm. There are some
// issues with the pseudo-code as written in the paper (viz., line 11).
//
// IMPLEMENTATION NOTE: The input FST can be a delayed FST and at any state in
// its expansion the values of distance vector need only be defined at that time
// for the states that are known to exist.
template <class Arc, class RevArc>
void NShortestPath(const Fst<RevArc> &ifst, MutableFst<Arc> *ofst,
                   const std::vector<typename Arc::Weight> &distance,
                   int32 nshortest, float delta = kShortestDelta,
                   typename Arc::Weight weight_threshold = Arc::Weight::Zero(),
                   typename Arc::StateId state_threshold = kNoStateId) {
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;
  using Pair = std::pair<StateId, Weight>;
  static_assert((Weight::Properties() & kPath) == kPath,
                "Weight must have path property.");
  static_assert((Weight::Properties() & kSemiring) == kSemiring,
                "Weight must be distributive.");
  if (nshortest <= 0) return;
  ofst->DeleteStates();
  ofst->SetInputSymbols(ifst.InputSymbols());
  ofst->SetOutputSymbols(ifst.OutputSymbols());
  // Each state in ofst corresponds to a path with weight w from the initial
  // state of ifst to a state s in ifst, that can be characterized by a pair
  // (s, w). The vector pairs maps each state in ofst to the corresponding
  // pair maps states in ofst to the corresponding pair (s, w).
  std::vector<Pair> pairs;
  // The supefinal state is denoted by kNoStateId. The distance from the
  // superfinal state to the final state is semiring One, so
  // `distance[kNoStateId]` is not needed.
  const ShortestPathCompare<StateId, Weight> compare(pairs, distance,
                                                     kNoStateId, delta);
  const NaturalLess<Weight> less;
  if (ifst.Start() == kNoStateId || distance.size() <= ifst.Start() ||
      distance[ifst.Start()] == Weight::Zero() ||
      less(weight_threshold, Weight::One()) || state_threshold == 0) {
    if (ifst.Properties(kError, false)) ofst->SetProperties(kError, kError);
    return;
  }
  ofst->SetStart(ofst->AddState());
  const auto final_state = ofst->AddState();
  ofst->SetFinal(final_state, Weight::One());
  while (pairs.size() <= final_state) {
    pairs.push_back(std::make_pair(kNoStateId, Weight::Zero()));
  }
  pairs[final_state] = std::make_pair(ifst.Start(), Weight::One());
  std::vector<StateId> heap;
  heap.push_back(final_state);
  const auto limit = Times(distance[ifst.Start()], weight_threshold);
  // r[s + 1], s state in fst, is the number of states in ofst which
  // corresponding pair contains s, i.e., it is number of paths computed so far
  // to s. Valid for s == kNoStateId (the superfinal state).
  std::vector<int> r;
  while (!heap.empty()) {
    std::pop_heap(heap.begin(), heap.end(), compare);
    const auto state = heap.back();
    const auto p = pairs[state];
    heap.pop_back();
    const auto d =
        (p.first == kNoStateId)
            ? Weight::One()
            : (p.first < distance.size()) ? distance[p.first] : Weight::Zero();
    if (less(limit, Times(d, p.second)) ||
        (state_threshold != kNoStateId &&
         ofst->NumStates() >= state_threshold)) {
      continue;
    }
    while (r.size() <= p.first + 1) r.push_back(0);
    ++r[p.first + 1];
    if (p.first == kNoStateId) {
      ofst->AddArc(ofst->Start(), Arc(0, 0, Weight::One(), state));
    }
    if ((p.first == kNoStateId) && (r[p.first + 1] == nshortest)) break;
    if (r[p.first + 1] > nshortest) continue;
    if (p.first == kNoStateId) continue;
    for (ArcIterator<Fst<RevArc>> aiter(ifst, p.first); !aiter.Done();
         aiter.Next()) {
      const auto &rarc = aiter.Value();
      Arc arc(rarc.ilabel, rarc.olabel, rarc.weight.Reverse(), rarc.nextstate);
      const auto weight = Times(p.second, arc.weight);
      const auto next = ofst->AddState();
      pairs.push_back(std::make_pair(arc.nextstate, weight));
      arc.nextstate = state;
      ofst->AddArc(next, arc);
      heap.push_back(next);
      std::push_heap(heap.begin(), heap.end(), compare);
    }
    const auto final_weight = ifst.Final(p.first).Reverse();
    if (final_weight != Weight::Zero()) {
      const auto weight = Times(p.second, final_weight);
      const auto next = ofst->AddState();
      pairs.push_back(std::make_pair(kNoStateId, weight));
      ofst->AddArc(next, Arc(0, 0, final_weight, state));
      heap.push_back(next);
      std::push_heap(heap.begin(), heap.end(), compare);
    }
  }
  Connect(ofst);
  if (ifst.Properties(kError, false)) ofst->SetProperties(kError, kError);
  ofst->SetProperties(
      ShortestPathProperties(ofst->Properties(kFstProperties, false)),
      kFstProperties);
}

}  // namespace internal

// N-Shortest-path algorithm: this version allows finer control via the options
// argument. See below for a simpler interface. The output mutable FST contains
// the n-shortest paths in the input FST; the distance argument is used to
// return the shortest distances from the source state to each state in the
// input FST, and the options struct is used to specify the number of paths to
// return, whether they need to have distinct input strings, the queue
// discipline, the arc filter and the convergence delta.
//
// The n-shortest paths are the n-lowest weight paths w.r.t. the natural
// semiring order. The single path that can be read from the ith of at most n
// transitions leaving the initial state of the output FST is the ith shortest
// path.
// Disregarding the initial state and initial transitions, The n-shortest paths,
// in fact, form a tree rooted at the single final state.
//
// The weights need to be right distributive and have the path (kPath) property.
// They need to be left distributive as well for nshortest > 1.
//
// For more information, see:
//
// Mohri, M, and Riley, M. 2002. An efficient algorithm for the n-best-strings
// problem. In Proc. ICSLP.
//
// The algorithm relies on the shortest-distance algorithm. There are some
// issues with the pseudo-code as written in the paper (viz., line 11).
template <class Arc, class Queue, class ArcFilter,
          typename std::enable_if<IsPath<typename Arc::Weight>::value>::type * =
              nullptr>
void ShortestPath(const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
                  std::vector<typename Arc::Weight> *distance,
                  const ShortestPathOptions<Arc, Queue, ArcFilter> &opts) {
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;
  using RevArc = ReverseArc<Arc>;
  if (opts.nshortest == 1) {
    std::vector<std::pair<StateId, size_t>> parent;
    StateId f_parent;
    if (internal::SingleShortestPath(ifst, distance, opts, &f_parent,
                                     &parent)) {
      internal::SingleShortestPathBacktrace(ifst, ofst, parent, f_parent);
    } else {
      ofst->SetProperties(kError, kError);
    }
    return;
  }
  if (opts.nshortest <= 0) return;
  if (!opts.has_distance) {
    ShortestDistance(ifst, distance, opts);
    if (distance->size() == 1 && !(*distance)[0].Member()) {
      ofst->SetProperties(kError, kError);
      return;
    }
  }
  // Algorithm works on the reverse of 'fst'; 'distance' is the distance to the
  // final state in 'rfst', 'ofst' is built as the reverse of the tree of
  // n-shortest path in 'rfst'.
  VectorFst<RevArc> rfst;
  Reverse(ifst, &rfst);
  auto d = Weight::Zero();
  for (ArcIterator<VectorFst<RevArc>> aiter(rfst, 0); !aiter.Done();
       aiter.Next()) {
    const auto &arc = aiter.Value();
    const auto state = arc.nextstate - 1;
    if (state < distance->size()) {
      d = Plus(d, Times(arc.weight.Reverse(), (*distance)[state]));
    }
  }
  // TODO(kbg): Avoid this expensive vector operation.
  distance->insert(distance->begin(), d);
  if (!opts.unique) {
    internal::NShortestPath(rfst, ofst, *distance, opts.nshortest, opts.delta,
                            opts.weight_threshold, opts.state_threshold);
  } else {
    std::vector<Weight> ddistance;
    DeterminizeFstOptions<RevArc> dopts(opts.delta);
    DeterminizeFst<RevArc> dfst(rfst, distance, &ddistance, dopts);
    internal::NShortestPath(dfst, ofst, ddistance, opts.nshortest, opts.delta,
                            opts.weight_threshold, opts.state_threshold);
  }
  // TODO(kbg): Avoid this expensive vector operation.
  distance->erase(distance->begin());
}

template <class Arc, class Queue, class ArcFilter,
          typename std::enable_if<!IsPath<typename Arc::Weight>::value>::type
              * = nullptr>
void ShortestPath(const Fst<Arc> &, MutableFst<Arc> *ofst,
                  std::vector<typename Arc::Weight> *,
                  const ShortestPathOptions<Arc, Queue, ArcFilter> &) {
  FSTERROR() << "ShortestPath: Weight needs to have the "
             << "path property and be distributive: " << Arc::Weight::Type();
  ofst->SetProperties(kError, kError);
}

// Shortest-path algorithm: simplified interface. See above for a version that
// allows finer control. The output mutable FST contains the n-shortest paths
// in the input FST. The queue discipline is automatically selected. When unique
// is true, only paths with distinct input label sequences are returned.
//
// The n-shortest paths are the n-lowest weight paths w.r.t. the natural
// semiring order. The single path that can be read from the ith of at most n
// transitions leaving the initial state of the output FST is the ith best path.
// The weights need to be right distributive and have the path (kPath) property.
template <class Arc>
void ShortestPath(const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
                  int32 nshortest = 1, bool unique = false,
                  bool first_path = false,
                  typename Arc::Weight weight_threshold = Arc::Weight::Zero(),
                  typename Arc::StateId state_threshold = kNoStateId,
                  float delta = kShortestDelta) {
  using StateId = typename Arc::StateId;
  std::vector<typename Arc::Weight> distance;
  AnyArcFilter<Arc> arc_filter;
  AutoQueue<StateId> state_queue(ifst, &distance, arc_filter);
  const ShortestPathOptions<Arc, AutoQueue<StateId>, AnyArcFilter<Arc>> opts(
      &state_queue, arc_filter, nshortest, unique, false, delta, first_path,
      weight_threshold, state_threshold);
  ShortestPath(ifst, ofst, &distance, opts);
}

}  // namespace fst

#endif  // FST_SHORTEST_PATH_H_