shortest-path.h
22.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions to find shortest paths in an FST.
#ifndef FST_SHORTEST_PATH_H_
#define FST_SHORTEST_PATH_H_
#include <functional>
#include <type_traits>
#include <utility>
#include <vector>
#include <fst/log.h>
#include <fst/cache.h>
#include <fst/determinize.h>
#include <fst/queue.h>
#include <fst/shortest-distance.h>
#include <fst/test-properties.h>
namespace fst {
template <class Arc, class Queue, class ArcFilter>
struct ShortestPathOptions
: public ShortestDistanceOptions<Arc, Queue, ArcFilter> {
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
int32 nshortest; // Returns n-shortest paths.
bool unique; // Only returns paths with distinct input strings.
bool has_distance; // Distance vector already contains the
// shortest distance from the initial state.
bool first_path; // Single shortest path stops after finding the first
// path to a final state; that path is the shortest path
// only when:
// (1) using the ShortestFirstQueue with all the weights
// in the FST being between One() and Zero() according to
// NaturalLess or when
// (2) using the NaturalAStarQueue with an admissible
// and consistent estimate.
Weight weight_threshold; // Pruning weight threshold.
StateId state_threshold; // Pruning state threshold.
ShortestPathOptions(Queue *queue, ArcFilter filter, int32 nshortest = 1,
bool unique = false, bool has_distance = false,
float delta = kShortestDelta, bool first_path = false,
Weight weight_threshold = Weight::Zero(),
StateId state_threshold = kNoStateId)
: ShortestDistanceOptions<Arc, Queue, ArcFilter>(queue, filter,
kNoStateId, delta),
nshortest(nshortest),
unique(unique),
has_distance(has_distance),
first_path(first_path),
weight_threshold(std::move(weight_threshold)),
state_threshold(state_threshold) {}
};
namespace internal {
constexpr size_t kNoArc = -1;
// Helper function for SingleShortestPath building the shortest path as a left-
// to-right machine backwards from the best final state. It takes the input
// FST passed to SingleShortestPath and the parent vector and f_parent returned
// by that function, and builds the result into the provided output mutable FS
// This is not normally called by users; see ShortestPath instead.
template <class Arc>
void SingleShortestPathBacktrace(
const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
const std::vector<std::pair<typename Arc::StateId, size_t>> &parent,
typename Arc::StateId f_parent) {
using StateId = typename Arc::StateId;
ofst->DeleteStates();
ofst->SetInputSymbols(ifst.InputSymbols());
ofst->SetOutputSymbols(ifst.OutputSymbols());
StateId s_p = kNoStateId;
StateId d_p = kNoStateId;
for (StateId state = f_parent, d = kNoStateId; state != kNoStateId;
d = state, state = parent[state].first) {
d_p = s_p;
s_p = ofst->AddState();
if (d == kNoStateId) {
ofst->SetFinal(s_p, ifst.Final(f_parent));
} else {
ArcIterator<Fst<Arc>> aiter(ifst, state);
aiter.Seek(parent[d].second);
auto arc = aiter.Value();
arc.nextstate = d_p;
ofst->AddArc(s_p, arc);
}
}
ofst->SetStart(s_p);
if (ifst.Properties(kError, false)) ofst->SetProperties(kError, kError);
ofst->SetProperties(
ShortestPathProperties(ofst->Properties(kFstProperties, false), true),
kFstProperties);
}
// Helper function for SingleShortestPath building a tree of shortest paths to
// every final state in the input FST. It takes the input FST and parent values
// computed by SingleShortestPath and builds into the output mutable FST the
// subtree of ifst that consists only of the best paths to all final states.
// This is not normally called by users; see ShortestPath instead.
template <class Arc>
void SingleShortestTree(
const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
const std::vector<std::pair<typename Arc::StateId, size_t>> &parent) {
ofst->DeleteStates();
ofst->SetInputSymbols(ifst.InputSymbols());
ofst->SetOutputSymbols(ifst.OutputSymbols());
ofst->SetStart(ifst.Start());
for (StateIterator<Fst<Arc>> siter(ifst); !siter.Done(); siter.Next()) {
ofst->AddState();
ofst->SetFinal(siter.Value(), ifst.Final(siter.Value()));
}
for (const auto &pair : parent) {
if (pair.first != kNoStateId && pair.second != kNoArc) {
ArcIterator<Fst<Arc>> aiter(ifst, pair.first);
aiter.Seek(pair.second);
ofst->AddArc(pair.first, aiter.Value());
}
}
if (ifst.Properties(kError, false)) ofst->SetProperties(kError, kError);
ofst->SetProperties(
ShortestPathProperties(ofst->Properties(kFstProperties, false), true),
kFstProperties);
}
// Implements the stopping criterion when ShortestPathOptions::first_path
// is set to true:
// operator()(s, d, f) == true
// iff every successful path through state 's' has a cost greater or equal
// to 'f' under the assumption that 'd' is the shortest distance to state 's'.
// Correct when using the ShortestFirstQueue with all the weights in the FST
// being between One() and Zero() according to NaturalLess
template <typename S, typename W, typename Queue>
struct FirstPathSelect {
FirstPathSelect(const Queue &) {}
bool operator()(S s, W d, W f) const { return f == Plus(d, f); }
};
// Specialisation for A*.
// Correct when the estimate is admissible and consistent.
template <typename S, typename W, typename Estimate>
class FirstPathSelect<S, W, NaturalAStarQueue<S, W, Estimate>> {
public:
using Queue = NaturalAStarQueue<S, W, Estimate>;
FirstPathSelect(const Queue &state_queue)
: estimate_(state_queue.GetCompare().GetEstimate()) {}
bool operator()(S s, W d, W f) const {
return f == Plus(Times(d, estimate_(s)), f);
}
private:
const Estimate &estimate_;
};
// Shortest-path algorithm. It builds the output mutable FST so that it contains
// the shortest path in the input FST; distance returns the shortest distances
// from the source state to each state in the input FST, and the options struct
// is
// used to specify options such as the queue discipline, the arc filter and
// delta. The super_final option is an output parameter indicating the final
// state, and the parent argument is used for the storage of the backtrace path
// for each state 1 to n, (i.e., the best previous state and the arc that
// transition to state n.) The shortest path is the lowest weight path w.r.t.
// the natural semiring order. The weights need to be right distributive and
// have the path (kPath) property. False is returned if an error is encountered.
//
// This is not normally called by users; see ShortestPath instead (with n = 1).
template <class Arc, class Queue, class ArcFilter>
bool SingleShortestPath(
const Fst<Arc> &ifst, std::vector<typename Arc::Weight> *distance,
const ShortestPathOptions<Arc, Queue, ArcFilter> &opts,
typename Arc::StateId *f_parent,
std::vector<std::pair<typename Arc::StateId, size_t>> *parent) {
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
static_assert(IsPath<Weight>::value, "Weight must have path property.");
static_assert((Weight::Properties() & kRightSemiring) == kRightSemiring,
"Weight must be right distributive.");
parent->clear();
*f_parent = kNoStateId;
if (ifst.Start() == kNoStateId) return true;
std::vector<bool> enqueued;
auto state_queue = opts.state_queue;
const auto source = (opts.source == kNoStateId) ? ifst.Start() : opts.source;
bool final_seen = false;
auto f_distance = Weight::Zero();
distance->clear();
state_queue->Clear();
while (distance->size() < source) {
distance->push_back(Weight::Zero());
enqueued.push_back(false);
parent->push_back(std::make_pair(kNoStateId, kNoArc));
}
distance->push_back(Weight::One());
parent->push_back(std::make_pair(kNoStateId, kNoArc));
state_queue->Enqueue(source);
enqueued.push_back(true);
while (!state_queue->Empty()) {
const auto s = state_queue->Head();
state_queue->Dequeue();
enqueued[s] = false;
const auto sd = (*distance)[s];
// If we are using a shortest queue, no other path is going to be shorter
// than f_distance at this point.
using FirstPath = FirstPathSelect<StateId, Weight, Queue>;
if (opts.first_path && final_seen &&
FirstPath(*state_queue)(s, sd, f_distance)) {
break;
}
if (ifst.Final(s) != Weight::Zero()) {
const auto plus = Plus(f_distance, Times(sd, ifst.Final(s)));
if (f_distance != plus) {
f_distance = plus;
*f_parent = s;
}
if (!f_distance.Member()) return false;
final_seen = true;
}
for (ArcIterator<Fst<Arc>> aiter(ifst, s); !aiter.Done(); aiter.Next()) {
const auto &arc = aiter.Value();
while (distance->size() <= arc.nextstate) {
distance->push_back(Weight::Zero());
enqueued.push_back(false);
parent->push_back(std::make_pair(kNoStateId, kNoArc));
}
auto &nd = (*distance)[arc.nextstate];
const auto weight = Times(sd, arc.weight);
if (nd != Plus(nd, weight)) {
nd = Plus(nd, weight);
if (!nd.Member()) return false;
(*parent)[arc.nextstate] = std::make_pair(s, aiter.Position());
if (!enqueued[arc.nextstate]) {
state_queue->Enqueue(arc.nextstate);
enqueued[arc.nextstate] = true;
} else {
state_queue->Update(arc.nextstate);
}
}
}
}
return true;
}
template <class StateId, class Weight>
class ShortestPathCompare {
public:
ShortestPathCompare(const std::vector<std::pair<StateId, Weight>> &pairs,
const std::vector<Weight> &distance, StateId superfinal,
float delta)
: pairs_(pairs),
distance_(distance),
superfinal_(superfinal),
delta_(delta) {}
bool operator()(const StateId x, const StateId y) const {
const auto &px = pairs_[x];
const auto &py = pairs_[y];
const auto wx = Times(PWeight(px.first), px.second);
const auto wy = Times(PWeight(py.first), py.second);
// Penalize complete paths to ensure correct results with inexact weights.
// This forms a strict weak order so long as ApproxEqual(a, b) =>
// ApproxEqual(a, c) for all c s.t. less_(a, c) && less_(c, b).
if (px.first == superfinal_ && py.first != superfinal_) {
return less_(wy, wx) || ApproxEqual(wx, wy, delta_);
} else if (py.first == superfinal_ && px.first != superfinal_) {
return less_(wy, wx) && !ApproxEqual(wx, wy, delta_);
} else {
return less_(wy, wx);
}
}
private:
Weight PWeight(StateId state) const {
return (state == superfinal_)
? Weight::One()
: (state < distance_.size()) ? distance_[state] : Weight::Zero();
}
const std::vector<std::pair<StateId, Weight>> &pairs_;
const std::vector<Weight> &distance_;
const StateId superfinal_;
const float delta_;
NaturalLess<Weight> less_;
};
// N-Shortest-path algorithm: implements the core n-shortest path algorithm.
// The output is built reversed. See below for versions with more options and
// *not reversed*.
//
// The output mutable FST contains the REVERSE of n'shortest paths in the input
// FST; distance must contain the shortest distance from each state to a final
// state in the input FST; delta is the convergence delta.
//
// The n-shortest paths are the n-lowest weight paths w.r.t. the natural
// semiring order. The single path that can be read from the ith of at most n
// transitions leaving the initial state of the input FST is the ith shortest
// path. Disregarding the initial state and initial transitions, the
// n-shortest paths, in fact, form a tree rooted at the single final state.
//
// The weights need to be left and right distributive (kSemiring) and have the
// path (kPath) property.
//
// Arc weights must satisfy the property that the sum of the weights of one or
// more paths from some state S to T is never Zero(). In particular, arc weights
// are never Zero().
//
// For more information, see:
//
// Mohri, M, and Riley, M. 2002. An efficient algorithm for the n-best-strings
// problem. In Proc. ICSLP.
//
// The algorithm relies on the shortest-distance algorithm. There are some
// issues with the pseudo-code as written in the paper (viz., line 11).
//
// IMPLEMENTATION NOTE: The input FST can be a delayed FST and at any state in
// its expansion the values of distance vector need only be defined at that time
// for the states that are known to exist.
template <class Arc, class RevArc>
void NShortestPath(const Fst<RevArc> &ifst, MutableFst<Arc> *ofst,
const std::vector<typename Arc::Weight> &distance,
int32 nshortest, float delta = kShortestDelta,
typename Arc::Weight weight_threshold = Arc::Weight::Zero(),
typename Arc::StateId state_threshold = kNoStateId) {
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
using Pair = std::pair<StateId, Weight>;
static_assert((Weight::Properties() & kPath) == kPath,
"Weight must have path property.");
static_assert((Weight::Properties() & kSemiring) == kSemiring,
"Weight must be distributive.");
if (nshortest <= 0) return;
ofst->DeleteStates();
ofst->SetInputSymbols(ifst.InputSymbols());
ofst->SetOutputSymbols(ifst.OutputSymbols());
// Each state in ofst corresponds to a path with weight w from the initial
// state of ifst to a state s in ifst, that can be characterized by a pair
// (s, w). The vector pairs maps each state in ofst to the corresponding
// pair maps states in ofst to the corresponding pair (s, w).
std::vector<Pair> pairs;
// The supefinal state is denoted by kNoStateId. The distance from the
// superfinal state to the final state is semiring One, so
// `distance[kNoStateId]` is not needed.
const ShortestPathCompare<StateId, Weight> compare(pairs, distance,
kNoStateId, delta);
const NaturalLess<Weight> less;
if (ifst.Start() == kNoStateId || distance.size() <= ifst.Start() ||
distance[ifst.Start()] == Weight::Zero() ||
less(weight_threshold, Weight::One()) || state_threshold == 0) {
if (ifst.Properties(kError, false)) ofst->SetProperties(kError, kError);
return;
}
ofst->SetStart(ofst->AddState());
const auto final_state = ofst->AddState();
ofst->SetFinal(final_state, Weight::One());
while (pairs.size() <= final_state) {
pairs.push_back(std::make_pair(kNoStateId, Weight::Zero()));
}
pairs[final_state] = std::make_pair(ifst.Start(), Weight::One());
std::vector<StateId> heap;
heap.push_back(final_state);
const auto limit = Times(distance[ifst.Start()], weight_threshold);
// r[s + 1], s state in fst, is the number of states in ofst which
// corresponding pair contains s, i.e., it is number of paths computed so far
// to s. Valid for s == kNoStateId (the superfinal state).
std::vector<int> r;
while (!heap.empty()) {
std::pop_heap(heap.begin(), heap.end(), compare);
const auto state = heap.back();
const auto p = pairs[state];
heap.pop_back();
const auto d =
(p.first == kNoStateId)
? Weight::One()
: (p.first < distance.size()) ? distance[p.first] : Weight::Zero();
if (less(limit, Times(d, p.second)) ||
(state_threshold != kNoStateId &&
ofst->NumStates() >= state_threshold)) {
continue;
}
while (r.size() <= p.first + 1) r.push_back(0);
++r[p.first + 1];
if (p.first == kNoStateId) {
ofst->AddArc(ofst->Start(), Arc(0, 0, Weight::One(), state));
}
if ((p.first == kNoStateId) && (r[p.first + 1] == nshortest)) break;
if (r[p.first + 1] > nshortest) continue;
if (p.first == kNoStateId) continue;
for (ArcIterator<Fst<RevArc>> aiter(ifst, p.first); !aiter.Done();
aiter.Next()) {
const auto &rarc = aiter.Value();
Arc arc(rarc.ilabel, rarc.olabel, rarc.weight.Reverse(), rarc.nextstate);
const auto weight = Times(p.second, arc.weight);
const auto next = ofst->AddState();
pairs.push_back(std::make_pair(arc.nextstate, weight));
arc.nextstate = state;
ofst->AddArc(next, arc);
heap.push_back(next);
std::push_heap(heap.begin(), heap.end(), compare);
}
const auto final_weight = ifst.Final(p.first).Reverse();
if (final_weight != Weight::Zero()) {
const auto weight = Times(p.second, final_weight);
const auto next = ofst->AddState();
pairs.push_back(std::make_pair(kNoStateId, weight));
ofst->AddArc(next, Arc(0, 0, final_weight, state));
heap.push_back(next);
std::push_heap(heap.begin(), heap.end(), compare);
}
}
Connect(ofst);
if (ifst.Properties(kError, false)) ofst->SetProperties(kError, kError);
ofst->SetProperties(
ShortestPathProperties(ofst->Properties(kFstProperties, false)),
kFstProperties);
}
} // namespace internal
// N-Shortest-path algorithm: this version allows finer control via the options
// argument. See below for a simpler interface. The output mutable FST contains
// the n-shortest paths in the input FST; the distance argument is used to
// return the shortest distances from the source state to each state in the
// input FST, and the options struct is used to specify the number of paths to
// return, whether they need to have distinct input strings, the queue
// discipline, the arc filter and the convergence delta.
//
// The n-shortest paths are the n-lowest weight paths w.r.t. the natural
// semiring order. The single path that can be read from the ith of at most n
// transitions leaving the initial state of the output FST is the ith shortest
// path.
// Disregarding the initial state and initial transitions, The n-shortest paths,
// in fact, form a tree rooted at the single final state.
//
// The weights need to be right distributive and have the path (kPath) property.
// They need to be left distributive as well for nshortest > 1.
//
// For more information, see:
//
// Mohri, M, and Riley, M. 2002. An efficient algorithm for the n-best-strings
// problem. In Proc. ICSLP.
//
// The algorithm relies on the shortest-distance algorithm. There are some
// issues with the pseudo-code as written in the paper (viz., line 11).
template <class Arc, class Queue, class ArcFilter,
typename std::enable_if<IsPath<typename Arc::Weight>::value>::type * =
nullptr>
void ShortestPath(const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
std::vector<typename Arc::Weight> *distance,
const ShortestPathOptions<Arc, Queue, ArcFilter> &opts) {
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
using RevArc = ReverseArc<Arc>;
if (opts.nshortest == 1) {
std::vector<std::pair<StateId, size_t>> parent;
StateId f_parent;
if (internal::SingleShortestPath(ifst, distance, opts, &f_parent,
&parent)) {
internal::SingleShortestPathBacktrace(ifst, ofst, parent, f_parent);
} else {
ofst->SetProperties(kError, kError);
}
return;
}
if (opts.nshortest <= 0) return;
if (!opts.has_distance) {
ShortestDistance(ifst, distance, opts);
if (distance->size() == 1 && !(*distance)[0].Member()) {
ofst->SetProperties(kError, kError);
return;
}
}
// Algorithm works on the reverse of 'fst'; 'distance' is the distance to the
// final state in 'rfst', 'ofst' is built as the reverse of the tree of
// n-shortest path in 'rfst'.
VectorFst<RevArc> rfst;
Reverse(ifst, &rfst);
auto d = Weight::Zero();
for (ArcIterator<VectorFst<RevArc>> aiter(rfst, 0); !aiter.Done();
aiter.Next()) {
const auto &arc = aiter.Value();
const auto state = arc.nextstate - 1;
if (state < distance->size()) {
d = Plus(d, Times(arc.weight.Reverse(), (*distance)[state]));
}
}
// TODO(kbg): Avoid this expensive vector operation.
distance->insert(distance->begin(), d);
if (!opts.unique) {
internal::NShortestPath(rfst, ofst, *distance, opts.nshortest, opts.delta,
opts.weight_threshold, opts.state_threshold);
} else {
std::vector<Weight> ddistance;
DeterminizeFstOptions<RevArc> dopts(opts.delta);
DeterminizeFst<RevArc> dfst(rfst, distance, &ddistance, dopts);
internal::NShortestPath(dfst, ofst, ddistance, opts.nshortest, opts.delta,
opts.weight_threshold, opts.state_threshold);
}
// TODO(kbg): Avoid this expensive vector operation.
distance->erase(distance->begin());
}
template <class Arc, class Queue, class ArcFilter,
typename std::enable_if<!IsPath<typename Arc::Weight>::value>::type
* = nullptr>
void ShortestPath(const Fst<Arc> &, MutableFst<Arc> *ofst,
std::vector<typename Arc::Weight> *,
const ShortestPathOptions<Arc, Queue, ArcFilter> &) {
FSTERROR() << "ShortestPath: Weight needs to have the "
<< "path property and be distributive: " << Arc::Weight::Type();
ofst->SetProperties(kError, kError);
}
// Shortest-path algorithm: simplified interface. See above for a version that
// allows finer control. The output mutable FST contains the n-shortest paths
// in the input FST. The queue discipline is automatically selected. When unique
// is true, only paths with distinct input label sequences are returned.
//
// The n-shortest paths are the n-lowest weight paths w.r.t. the natural
// semiring order. The single path that can be read from the ith of at most n
// transitions leaving the initial state of the output FST is the ith best path.
// The weights need to be right distributive and have the path (kPath) property.
template <class Arc>
void ShortestPath(const Fst<Arc> &ifst, MutableFst<Arc> *ofst,
int32 nshortest = 1, bool unique = false,
bool first_path = false,
typename Arc::Weight weight_threshold = Arc::Weight::Zero(),
typename Arc::StateId state_threshold = kNoStateId,
float delta = kShortestDelta) {
using StateId = typename Arc::StateId;
std::vector<typename Arc::Weight> distance;
AnyArcFilter<Arc> arc_filter;
AutoQueue<StateId> state_queue(ifst, &distance, arc_filter);
const ShortestPathOptions<Arc, AutoQueue<StateId>, AnyArcFilter<Arc>> opts(
&state_queue, arc_filter, nshortest, unique, false, delta, first_path,
weight_threshold, state_threshold);
ShortestPath(ifst, ofst, &distance, opts);
}
} // namespace fst
#endif // FST_SHORTEST_PATH_H_