util.h
12.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// FST utility inline definitions.
#ifndef FST_UTIL_H_
#define FST_UTIL_H_
#include <iostream>
#include <iterator>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include <fst/compat.h>
#include <fst/types.h>
#include <fst/log.h>
#include <fstream>
#include <fst/flags.h>
// Utility for error handling.
DECLARE_bool(fst_error_fatal);
#define FSTERROR() \
(FLAGS_fst_error_fatal ? LOG(FATAL) : LOG(ERROR))
namespace fst {
// Utility for type I/O.
// Reads types from an input stream.
// Generic case.
template <class T,
typename std::enable_if<std::is_class<T>::value, T>::type* = nullptr>
inline std::istream &ReadType(std::istream &strm, T *t) {
return t->Read(strm);
}
// Numeric (boolean, integral, floating-point) case.
template <class T,
typename std::enable_if<std::is_arithmetic<T>::value, T>::type* = nullptr>
inline std::istream &ReadType(std::istream &strm, T *t) {
return strm.read(reinterpret_cast<char *>(t), sizeof(T)); \
}
// String case.
inline std::istream &ReadType(std::istream &strm, string *s) { // NOLINT
s->clear();
int32 ns = 0;
strm.read(reinterpret_cast<char *>(&ns), sizeof(ns));
for (int32 i = 0; i < ns; ++i) {
char c;
strm.read(&c, 1);
*s += c;
}
return strm;
}
// Declares types that can be read from an input stream.
template <class... T>
std::istream &ReadType(std::istream &strm, std::vector<T...> *c);
template <class... T>
std::istream &ReadType(std::istream &strm, std::list<T...> *c);
template <class... T>
std::istream &ReadType(std::istream &strm, std::set<T...> *c);
template <class... T>
std::istream &ReadType(std::istream &strm, std::map<T...> *c);
template <class... T>
std::istream &ReadType(std::istream &strm, std::unordered_map<T...> *c);
template <class... T>
std::istream &ReadType(std::istream &strm, std::unordered_set<T...> *c);
// Pair case.
template <typename S, typename T>
inline std::istream &ReadType(std::istream &strm, std::pair<S, T> *p) {
ReadType(strm, &p->first);
ReadType(strm, &p->second);
return strm;
}
template <typename S, typename T>
inline std::istream &ReadType(std::istream &strm, std::pair<const S, T> *p) {
ReadType(strm, const_cast<S *>(&p->first));
ReadType(strm, &p->second);
return strm;
}
namespace internal {
template <class C, class ReserveFn>
std::istream &ReadContainerType(std::istream &strm, C *c, ReserveFn reserve) {
c->clear();
int64 n = 0;
ReadType(strm, &n);
reserve(c, n);
auto insert = std::inserter(*c, c->begin());
for (int64 i = 0; i < n; ++i) {
typename C::value_type value;
ReadType(strm, &value);
*insert = value;
}
return strm;
}
} // namespace internal
template <class... T>
std::istream &ReadType(std::istream &strm, std::vector<T...> *c) {
return internal::ReadContainerType(
strm, c, [](decltype(c) v, int n) { v->reserve(n); });
}
template <class... T>
std::istream &ReadType(std::istream &strm, std::list<T...> *c) {
return internal::ReadContainerType(strm, c, [](decltype(c) v, int n) {});
}
template <class... T>
std::istream &ReadType(std::istream &strm, std::set<T...> *c) {
return internal::ReadContainerType(strm, c, [](decltype(c) v, int n) {});
}
template <class... T>
std::istream &ReadType(std::istream &strm, std::map<T...> *c) {
return internal::ReadContainerType(strm, c, [](decltype(c) v, int n) {});
}
template <class... T>
std::istream &ReadType(std::istream &strm, std::unordered_set<T...> *c) {
return internal::ReadContainerType(
strm, c, [](decltype(c) v, int n) { v->reserve(n); });
}
template <class... T>
std::istream &ReadType(std::istream &strm, std::unordered_map<T...> *c) {
return internal::ReadContainerType(
strm, c, [](decltype(c) v, int n) { v->reserve(n); });
}
// Writes types to an output stream.
// Generic case.
template <class T,
typename std::enable_if<std::is_class<T>::value, T>::type* = nullptr>
inline std::ostream &WriteType(std::ostream &strm, const T t) {
t.Write(strm);
return strm;
}
// Numeric (boolean, integral, floating-point) case.
template <class T,
typename std::enable_if<std::is_arithmetic<T>::value, T>::type* = nullptr>
inline std::ostream &WriteType(std::ostream &strm, const T t) {
return strm.write(reinterpret_cast<const char *>(&t), sizeof(T));
}
// String case.
inline std::ostream &WriteType(std::ostream &strm, const string &s) { // NOLINT
int32 ns = s.size();
strm.write(reinterpret_cast<const char *>(&ns), sizeof(ns));
return strm.write(s.data(), ns);
}
// Declares types that can be written to an output stream.
template <typename... T>
std::ostream &WriteType(std::ostream &strm, const std::vector<T...> &c);
template <typename... T>
std::ostream &WriteType(std::ostream &strm, const std::list<T...> &c);
template <typename... T>
std::ostream &WriteType(std::ostream &strm, const std::set<T...> &c);
template <typename... T>
std::ostream &WriteType(std::ostream &strm, const std::map<T...> &c);
template <typename... T>
std::ostream &WriteType(std::ostream &strm, const std::unordered_map<T...> &c);
template <typename... T>
std::ostream &WriteType(std::ostream &strm, const std::unordered_set<T...> &c);
// Pair case.
template <typename S, typename T>
inline std::ostream &WriteType(std::ostream &strm,
const std::pair<S, T> &p) { // NOLINT
WriteType(strm, p.first);
WriteType(strm, p.second);
return strm;
}
namespace internal {
template <class C>
std::ostream &WriteContainer(std::ostream &strm, const C &c) {
const int64 n = c.size();
WriteType(strm, n);
for (const auto &e : c) {
WriteType(strm, e);
}
return strm;
}
} // namespace internal
template <typename... T>
std::ostream &WriteType(std::ostream &strm, const std::vector<T...> &c) {
return internal::WriteContainer(strm, c);
}
template <typename... T>
std::ostream &WriteType(std::ostream &strm, const std::list<T...> &c) {
return internal::WriteContainer(strm, c);
}
template <typename... T>
std::ostream &WriteType(std::ostream &strm, const std::set<T...> &c) {
return internal::WriteContainer(strm, c);
}
template <typename... T>
std::ostream &WriteType(std::ostream &strm, const std::map<T...> &c) {
return internal::WriteContainer(strm, c);
}
template <typename... T>
std::ostream &WriteType(std::ostream &strm, const std::unordered_map<T...> &c) {
return internal::WriteContainer(strm, c);
}
template <typename... T>
std::ostream &WriteType(std::ostream &strm, const std::unordered_set<T...> &c) {
return internal::WriteContainer(strm, c);
}
// Utilities for converting between int64 or Weight and string.
int64 StrToInt64(const string &s, const string &src, size_t nline,
bool allow_negative, bool *error = nullptr);
template <typename Weight>
Weight StrToWeight(const string &s, const string &src, size_t nline) {
Weight w;
std::istringstream strm(s);
strm >> w;
if (!strm) {
FSTERROR() << "StrToWeight: Bad weight = \"" << s << "\", source = " << src
<< ", line = " << nline;
return Weight::NoWeight();
}
return w;
}
template <typename Weight>
void WeightToStr(Weight w, string *s) {
std::ostringstream strm;
strm.precision(9);
strm << w;
s->append(strm.str().data(), strm.str().size());
}
// Utilities for reading/writing integer pairs (typically labels)
// Modifies line using a vector of pointers to a buffer beginning with line.
void SplitString(char *line, const char *delim, std::vector<char *> *vec,
bool omit_empty_strings);
template <typename I>
bool ReadIntPairs(const string &filename, std::vector<std::pair<I, I>> *pairs,
bool allow_negative = false) {
std::ifstream strm(filename, std::ios_base::in);
if (!strm) {
LOG(ERROR) << "ReadIntPairs: Can't open file: " << filename;
return false;
}
const int kLineLen = 8096;
char line[kLineLen];
size_t nline = 0;
pairs->clear();
while (strm.getline(line, kLineLen)) {
++nline;
std::vector<char *> col;
SplitString(line, "\n\t ", &col, true);
// empty line or comment?
if (col.empty() || col[0][0] == '\0' || col[0][0] == '#') continue;
if (col.size() != 2) {
LOG(ERROR) << "ReadIntPairs: Bad number of columns, "
<< "file = " << filename << ", line = " << nline;
return false;
}
bool err;
I i1 = StrToInt64(col[0], filename, nline, allow_negative, &err);
if (err) return false;
I i2 = StrToInt64(col[1], filename, nline, allow_negative, &err);
if (err) return false;
pairs->push_back(std::make_pair(i1, i2));
}
return true;
}
template <typename I>
bool WriteIntPairs(const string &filename,
const std::vector<std::pair<I, I>> &pairs) {
std::ostream *strm = &std::cout;
if (!filename.empty()) {
strm = new std::ofstream(filename);
if (!*strm) {
LOG(ERROR) << "WriteIntPairs: Can't open file: " << filename;
return false;
}
}
for (ssize_t n = 0; n < pairs.size(); ++n) {
*strm << pairs[n].first << "\t" << pairs[n].second << "\n";
}
if (!*strm) {
LOG(ERROR) << "WriteIntPairs: Write failed: "
<< (filename.empty() ? "standard output" : filename);
return false;
}
if (strm != &std::cout) delete strm;
return true;
}
// Utilities for reading/writing label pairs.
template <typename Label>
bool ReadLabelPairs(const string &filename,
std::vector<std::pair<Label, Label>> *pairs,
bool allow_negative = false) {
return ReadIntPairs(filename, pairs, allow_negative);
}
template <typename Label>
bool WriteLabelPairs(const string &filename,
const std::vector<std::pair<Label, Label>> &pairs) {
return WriteIntPairs(filename, pairs);
}
// Utilities for converting a type name to a legal C symbol.
void ConvertToLegalCSymbol(string *s);
// Utilities for stream I/O.
bool AlignInput(std::istream &strm);
bool AlignOutput(std::ostream &strm);
// An associative container for which testing membership is faster than an STL
// set if members are restricted to an interval that excludes most non-members.
// A Key must have ==, !=, and < operators defined. Element NoKey should be a
// key that marks an uninitialized key and is otherwise unused. Find() returns
// an STL const_iterator to the match found, otherwise it equals End().
template <class Key, Key NoKey>
class CompactSet {
public:
using const_iterator = typename std::set<Key>::const_iterator;
CompactSet() : min_key_(NoKey), max_key_(NoKey) {}
CompactSet(const CompactSet<Key, NoKey> &compact_set)
: set_(compact_set.set_),
min_key_(compact_set.min_key_),
max_key_(compact_set.max_key_) {}
void Insert(Key key) {
set_.insert(key);
if (min_key_ == NoKey || key < min_key_) min_key_ = key;
if (max_key_ == NoKey || max_key_ < key) max_key_ = key;
}
void Erase(Key key) {
set_.erase(key);
if (set_.empty()) {
min_key_ = max_key_ = NoKey;
} else if (key == min_key_) {
++min_key_;
} else if (key == max_key_) {
--max_key_;
}
}
void Clear() {
set_.clear();
min_key_ = max_key_ = NoKey;
}
const_iterator Find(Key key) const {
if (min_key_ == NoKey || key < min_key_ || max_key_ < key) {
return set_.end();
} else {
return set_.find(key);
}
}
bool Member(Key key) const {
if (min_key_ == NoKey || key < min_key_ || max_key_ < key) {
return false; // out of range
} else if (min_key_ != NoKey && max_key_ + 1 == min_key_ + set_.size()) {
return true; // dense range
} else {
return set_.count(key);
}
}
const_iterator Begin() const { return set_.begin(); }
const_iterator End() const { return set_.end(); }
// All stored keys are greater than or equal to this value.
Key LowerBound() const { return min_key_; }
// All stored keys are less than or equal to this value.
Key UpperBound() const { return max_key_; }
private:
std::set<Key> set_;
Key min_key_;
Key max_key_;
void operator=(const CompactSet &) = delete;
};
} // namespace fst
#endif // FST_UTIL_H_