symbol-table.cc
11.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Classes to provide symbol-to-integer and integer-to-symbol mappings.
#include <fst/symbol-table.h>
#include <fst/flags.h>
#include <fst/log.h>
#include <fstream>
#include <fst/util.h>
DEFINE_bool(fst_compat_symbols, true,
"Require symbol tables to match when appropriate");
DEFINE_string(fst_field_separator, "\t ",
"Set of characters used as a separator between printed fields");
namespace fst {
// Maximum line length in textual symbols file.
static constexpr int kLineLen = 8096;
// Identifies stream data as a symbol table (and its endianity).
static constexpr int32 kSymbolTableMagicNumber = 2125658996;
SymbolTableTextOptions::SymbolTableTextOptions(bool allow_negative_labels)
: allow_negative_labels(allow_negative_labels),
fst_field_separator(FLAGS_fst_field_separator) {}
namespace internal {
SymbolTableImpl *SymbolTableImpl::ReadText(std::istream &strm,
const string &filename,
const SymbolTableTextOptions &opts) {
std::unique_ptr<SymbolTableImpl> impl(new SymbolTableImpl(filename));
int64 nline = 0;
char line[kLineLen];
while (!strm.getline(line, kLineLen).fail()) {
++nline;
std::vector<char *> col;
auto separator = opts.fst_field_separator + "\n";
SplitString(line, separator.c_str(), &col, true);
if (col.empty()) continue; // Empty line.
if (col.size() != 2) {
LOG(ERROR) << "SymbolTable::ReadText: Bad number of columns ("
<< col.size() << "), "
<< "file = " << filename << ", line = " << nline << ":<"
<< line << ">";
return nullptr;
}
const char *symbol = col[0];
const char *value = col[1];
char *p;
const auto key = strtoll(value, &p, 10);
if (p < value + strlen(value) || (!opts.allow_negative_labels && key < 0) ||
key == kNoSymbol) {
LOG(ERROR) << "SymbolTable::ReadText: Bad non-negative integer \""
<< value << "\", "
<< "file = " << filename << ", line = " << nline;
return nullptr;
}
impl->AddSymbol(symbol, key);
}
return impl.release();
}
void SymbolTableImpl::MaybeRecomputeCheckSum() const {
{
ReaderMutexLock check_sum_lock(&check_sum_mutex_);
if (check_sum_finalized_) return;
}
// We'll acquire an exclusive lock to recompute the checksums.
MutexLock check_sum_lock(&check_sum_mutex_);
if (check_sum_finalized_) { // Another thread (coming in around the same time
return; // might have done it already). So we recheck.
}
// Calculates the original label-agnostic checksum.
CheckSummer check_sum;
for (size_t i = 0; i < symbols_.size(); ++i) {
const auto &symbol = symbols_.GetSymbol(i);
check_sum.Update(symbol.data(), symbol.size());
check_sum.Update("", 1);
}
check_sum_string_ = check_sum.Digest();
// Calculates the safer, label-dependent checksum.
CheckSummer labeled_check_sum;
for (int64 i = 0; i < dense_key_limit_; ++i) {
std::ostringstream line;
line << symbols_.GetSymbol(i) << '\t' << i;
labeled_check_sum.Update(line.str().data(), line.str().size());
}
using citer = map<int64, int64>::const_iterator;
for (citer it = key_map_.begin(); it != key_map_.end(); ++it) {
// TODO(tombagby, 2013-11-22) This line maintains a bug that ignores
// negative labels in the checksum that too many tests rely on.
if (it->first < dense_key_limit_) continue;
std::ostringstream line;
line << symbols_.GetSymbol(it->second) << '\t' << it->first;
labeled_check_sum.Update(line.str().data(), line.str().size());
}
labeled_check_sum_string_ = labeled_check_sum.Digest();
check_sum_finalized_ = true;
}
int64 SymbolTableImpl::AddSymbol(const string &symbol, int64 key) {
if (key == kNoSymbol) return key;
const std::pair<int64, bool> &insert_key = symbols_.InsertOrFind(symbol);
if (!insert_key.second) {
auto key_already = GetNthKey(insert_key.first);
if (key_already == key) return key;
VLOG(1) << "SymbolTable::AddSymbol: symbol = " << symbol
<< " already in symbol_map_ with key = " << key_already
<< " but supplied new key = " << key << " (ignoring new key)";
return key_already;
}
if (key == (symbols_.size() - 1) && key == dense_key_limit_) {
++dense_key_limit_;
} else {
idx_key_.push_back(key);
key_map_[key] = symbols_.size() - 1;
}
if (key >= available_key_) available_key_ = key + 1;
check_sum_finalized_ = false;
return key;
}
// TODO(rybach): Consider a more efficient implementation which re-uses holes in
// the dense-key range or re-arranges the dense-key range from time to time.
void SymbolTableImpl::RemoveSymbol(const int64 key) {
auto idx = key;
if (key < 0 || key >= dense_key_limit_) {
auto iter = key_map_.find(key);
if (iter == key_map_.end()) return;
idx = iter->second;
key_map_.erase(iter);
}
if (idx < 0 || idx >= symbols_.size()) return;
symbols_.RemoveSymbol(idx);
// Removed one symbol, all indexes > idx are shifted by -1.
for (auto &k : key_map_) {
if (k.second > idx) --k.second;
}
if (key >= 0 && key < dense_key_limit_) {
// Removal puts a hole in the dense key range. Adjusts range to [0, key).
const auto new_dense_key_limit = key;
for (int64 i = key + 1; i < dense_key_limit_; ++i) {
key_map_[i] = i - 1;
}
// Moves existing values in idx_key to new place.
idx_key_.resize(symbols_.size() - new_dense_key_limit);
for (int64 i = symbols_.size(); i >= dense_key_limit_; --i) {
idx_key_[i - new_dense_key_limit - 1] = idx_key_[i - dense_key_limit_];
}
// Adds indexes for previously dense keys.
for (int64 i = new_dense_key_limit; i < dense_key_limit_ - 1; ++i) {
idx_key_[i - new_dense_key_limit] = i + 1;
}
dense_key_limit_ = new_dense_key_limit;
} else {
// Remove entry for removed index in idx_key.
for (int64 i = idx - dense_key_limit_; i < idx_key_.size() - 1; ++i) {
idx_key_[i] = idx_key_[i + 1];
}
idx_key_.pop_back();
}
if (key == available_key_ - 1) available_key_ = key;
}
SymbolTableImpl *SymbolTableImpl::Read(std::istream &strm,
const SymbolTableReadOptions &opts) {
int32 magic_number = 0;
ReadType(strm, &magic_number);
if (strm.fail()) {
LOG(ERROR) << "SymbolTable::Read: Read failed";
return nullptr;
}
string name;
ReadType(strm, &name);
std::unique_ptr<SymbolTableImpl> impl(new SymbolTableImpl(name));
ReadType(strm, &impl->available_key_);
int64 size;
ReadType(strm, &size);
if (strm.fail()) {
LOG(ERROR) << "SymbolTable::Read: Read failed";
return nullptr;
}
string symbol;
int64 key;
impl->check_sum_finalized_ = false;
for (int64 i = 0; i < size; ++i) {
ReadType(strm, &symbol);
ReadType(strm, &key);
if (strm.fail()) {
LOG(ERROR) << "SymbolTable::Read: Read failed";
return nullptr;
}
impl->AddSymbol(symbol, key);
}
return impl.release();
}
bool SymbolTableImpl::Write(std::ostream &strm) const {
WriteType(strm, kSymbolTableMagicNumber);
WriteType(strm, name_);
WriteType(strm, available_key_);
int64 size = symbols_.size();
WriteType(strm, size);
for (int64 i = 0; i < size; ++i) {
auto key = (i < dense_key_limit_) ? i : idx_key_[i - dense_key_limit_];
WriteType(strm, symbols_.GetSymbol(i));
WriteType(strm, key);
}
strm.flush();
if (strm.fail()) {
LOG(ERROR) << "SymbolTable::Write: Write failed";
return false;
}
return true;
}
} // namespace internal
void SymbolTable::AddTable(const SymbolTable &table) {
MutateCheck();
for (SymbolTableIterator iter(table); !iter.Done(); iter.Next()) {
impl_->AddSymbol(iter.Symbol());
}
}
bool SymbolTable::WriteText(std::ostream &strm,
const SymbolTableTextOptions &opts) const {
if (opts.fst_field_separator.empty()) {
LOG(ERROR) << "Missing required field separator";
return false;
}
bool once_only = false;
for (SymbolTableIterator iter(*this); !iter.Done(); iter.Next()) {
std::ostringstream line;
if (iter.Value() < 0 && !opts.allow_negative_labels && !once_only) {
LOG(WARNING) << "Negative symbol table entry when not allowed";
once_only = true;
}
line << iter.Symbol() << opts.fst_field_separator[0] << iter.Value()
<< '\n';
strm.write(line.str().data(), line.str().length());
}
return true;
}
namespace internal {
DenseSymbolMap::DenseSymbolMap()
: empty_(-1), buckets_(1 << 4), hash_mask_(buckets_.size() - 1) {
std::uninitialized_fill(buckets_.begin(), buckets_.end(), empty_);
}
DenseSymbolMap::DenseSymbolMap(const DenseSymbolMap &x)
: empty_(-1),
symbols_(x.symbols_.size()),
buckets_(x.buckets_),
hash_mask_(x.hash_mask_) {
for (size_t i = 0; i < symbols_.size(); ++i) {
const auto sz = strlen(x.symbols_[i]) + 1;
auto *cpy = new char[sz];
memcpy(cpy, x.symbols_[i], sz);
symbols_[i] = cpy;
}
}
DenseSymbolMap::~DenseSymbolMap() {
for (size_t i = 0; i < symbols_.size(); ++i) {
delete[] symbols_[i];
}
}
std::pair<int64, bool> DenseSymbolMap::InsertOrFind(const string &key) {
static constexpr float kMaxOccupancyRatio = 0.75; // Grows when 75% full.
if (symbols_.size() >= kMaxOccupancyRatio * buckets_.size()) {
Rehash(buckets_.size() * 2);
}
size_t idx = str_hash_(key) & hash_mask_;
while (buckets_[idx] != empty_) {
const auto stored_value = buckets_[idx];
if (!strcmp(symbols_[stored_value], key.c_str())) {
return {stored_value, false};
}
idx = (idx + 1) & hash_mask_;
}
auto next = symbols_.size();
buckets_[idx] = next;
symbols_.push_back(NewSymbol(key));
return {next, true};
}
int64 DenseSymbolMap::Find(const string &key) const {
size_t idx = str_hash_(key) & hash_mask_;
while (buckets_[idx] != empty_) {
const auto stored_value = buckets_[idx];
if (!strcmp(symbols_[stored_value], key.c_str())) {
return stored_value;
}
idx = (idx + 1) & hash_mask_;
}
return buckets_[idx];
}
void DenseSymbolMap::Rehash(size_t num_buckets) {
buckets_.resize(num_buckets);
hash_mask_ = buckets_.size() - 1;
std::uninitialized_fill(buckets_.begin(), buckets_.end(), empty_);
for (size_t i = 0; i < symbols_.size(); ++i) {
size_t idx = str_hash_(string(symbols_[i])) & hash_mask_;
while (buckets_[idx] != empty_) {
idx = (idx + 1) & hash_mask_;
}
buckets_[idx] = i;
}
}
const char *DenseSymbolMap::NewSymbol(const string &sym) {
auto num = sym.size() + 1;
auto newstr = new char[num];
memcpy(newstr, sym.c_str(), num);
return newstr;
}
void DenseSymbolMap::RemoveSymbol(size_t idx) {
delete[] symbols_[idx];
symbols_.erase(symbols_.begin() + idx);
Rehash(buckets_.size());
}
} // namespace internal
bool CompatSymbols(const SymbolTable *syms1, const SymbolTable *syms2,
bool warning) {
// Flag can explicitly override this check.
if (!FLAGS_fst_compat_symbols) return true;
if (syms1 && syms2 &&
(syms1->LabeledCheckSum() != syms2->LabeledCheckSum())) {
if (warning) {
LOG(WARNING) << "CompatSymbols: Symbol table checksums do not match. "
<< "Table sizes are " << syms1->NumSymbols() << " and "
<< syms2->NumSymbols();
}
return false;
} else {
return true;
}
}
void SymbolTableToString(const SymbolTable *table, string *result) {
std::ostringstream ostrm;
table->Write(ostrm);
*result = ostrm.str();
}
SymbolTable *StringToSymbolTable(const string &str) {
std::istringstream istrm(str);
return SymbolTable::Read(istrm, SymbolTableReadOptions());
}
} // namespace fst