run_nnet2_ensemble.sh
5.21 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/bin/bash
# This is the "multi-splice" version of the online-nnet2 training script.
# It's currently the best recipe.
# You'll notice that we splice over successively larger windows as we go deeper
# into the network.
. ./cmd.sh
stage=0
train_stage=-10
use_gpu=true
dir=exp/nnet2_online/nnet_ms_ensemble
set -e
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if $use_gpu; then
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed. Otherwise, call this script with --use-gpu false
EOF
fi
parallel_opts="--gpu 1 --config conf/no_k20.conf --allow-k20 false"
#that config is like the default config in the text of queue.pl, but adding the following lines.
#default allow_k20=true
#option allow_k20=true
#option allow_k20=false -l 'hostname=!g01&!g02&!b06'
num_threads=1
minibatch_size=512
# the _a is in case I want to change the parameters.
else
# Use 4 nnet jobs just like run_4d_gpu.sh so the results should be
# almost the same, but this may be a little bit slow.
num_threads=16
minibatch_size=128
parallel_opts="--num-threads $num_threads"
fi
# do the common parts of the script.
local/online/run_nnet2_common.sh --stage $stage
if [ $stage -le 7 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{3,4,5,6}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
fi
# The size of the system is kept rather small
# this is because we want it to be small enough that we could plausibly run it
# in real-time.
steps/nnet2/train_multisplice_ensemble.sh --stage $train_stage \
--num-epochs 8 --num-jobs-initial 3 --num-jobs-final 18 \
--num-hidden-layers 6 --splice-indexes "layer0/-2:-1:0:1:2 layer1/-1:2 layer3/-3:3 layer4/-7:2" \
--feat-type raw \
--online-ivector-dir exp/nnet2_online/ivectors_train_hires \
--cmvn-opts "--norm-means=false --norm-vars=false" \
--num-threads "$num_threads" \
--minibatch-size "$minibatch_size" \
--parallel-opts "$parallel_opts" \
--io-opts "--max-jobs-run 18" \
--initial-effective-lrate 0.0015 --final-effective-lrate 0.00015 \
--cmd "$decode_cmd" \
--pnorm-input-dim 4500 \
--pnorm-output-dim 450 \
--mix-up 12000 \
data/train_hires data/lang exp/tri3 $dir || exit 1;
fi
if [ $stage -le 8 ]; then
# dump iVectors for the testing data.
for decode_set in dev test; do
num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj $num_jobs \
data/${decode_set}_hires exp/nnet2_online/extractor exp/nnet2_online/ivectors_${decode_set}_hires || exit 1;
done
fi
if [ $stage -le 9 ]; then
# this does offline decoding that should give about the same results as the
# real online decoding (the one with --per-utt true)
for decode_set in dev test; do
num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
steps/nnet2/decode.sh --nj $num_jobs --cmd "$decode_cmd" --config conf/decode.config \
--online-ivector-dir exp/nnet2_online/ivectors_${decode_set}_hires \
exp/tri3/graph data/${decode_set}_hires $dir/decode_${decode_set} || exit 1;
done
fi
if [ $stage -le 10 ]; then
# If this setup used PLP features, we'd have to give the option --feature-type plp
# to the script below.
steps/online/nnet2/prepare_online_decoding.sh --mfcc-config conf/mfcc_hires.conf \
data/lang exp/nnet2_online/extractor "$dir" ${dir}_online || exit 1;
fi
wait;
if [ $stage -le 11 ]; then
# do the actual online decoding with iVectors, carrying info forward from
# previous utterances of the same speaker.
for decode_set in dev test; do
num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj $num_jobs \
exp/tri3/graph data/${decode_set}_hires ${dir}_online/decode_${decode_set} || exit 1;
done
fi
if [ $stage -le 12 ]; then
# this version of the decoding treats each utterance separately
# without carrying forward speaker information.
for decode_set in dev test; do
num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj $num_jobs \
--per-utt true exp/tri3/graph data/${decode_set}_hires ${dir}_online/decode_${decode_set}_utt || exit 1;
done
fi
if [ $stage -le 13 ]; then
# this version of the decoding treats each utterance separately
# without carrying forward speaker information, but looks to the end
# of the utterance while computing the iVector (--online false)
for decode_set in dev test; do
num_jobs=`cat data/${decode_set}_hires/utt2spk|cut -d' ' -f2|sort -u|wc -l`
steps/online/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj $num_jobs \
--per-utt true --online false exp/tri3/graph data/${decode_set}_hires \
${dir}_online/decode_${decode_set}_utt_offline || exit 1;
done
fi
wait;
exit 0;