run.sh
9.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/bin/bash
#
# Based mostly on the WSJ/Librispeech recipe.
# The training/testing database is described in http://www.openslr.org/40/
# This corpus consists of 51hrs korean speech with cleaned automatic transcripts:
#
# Copyright 2018 Atlas Guide (Author : Lucas Jo)
# 2018 Gridspace Inc. (Author: Wonkyum Lee)
#
# Apache 2.0
#
# Check list before start
# 1. required software: Morfessor-2.0.1 (see tools/extras/install_morfessor.sh)
stage=0
db_dir=./db
nj=16
chain_train=true
decode=true # set false if you don't want to decode each GMM model
decode_rescoring=true # set false if you don't want to rescore with large language model
test_set="test_clean"
. ./cmd.sh
. ./path.sh
. utils/parse_options.sh # e.g. this parses the --stage option if supplied.
# you might not want to do this for interactive shells.
set -e
if [ $stage -le 0 ]; then
# download the data.
local/download_and_untar.sh $db_dir
fi
if [ $stage -le 1 ]; then
# format the data as Kaldi data directories
for part in train_data_01 test_data_01; do
# use underscore-separated names in data directories.
local/data_prep.sh $db_dir $part
done
fi
if [ $stage -le 2 ]; then
# update segmentation of transcripts
for part in train_data_01 test_data_01; do
local/update_segmentation.sh data/$part data/local/lm
done
fi
if [ $stage -le 3 ]; then
# prepare dictionary and language model
local/prepare_dict.sh data/local/lm data/local/dict_nosp
utils/prepare_lang.sh data/local/dict_nosp \
"<UNK>" data/local/lang_tmp_nosp data/lang_nosp
fi
if [ $stage -le 4 ]; then
# build testing language model
local/format_lms.sh --src-dir data/lang_nosp data/local/lm
# re-scoring language model
if $decode_rescoring ; then
utils/build_const_arpa_lm.sh data/local/lm/zeroth.lm.tg.arpa.gz \
data/lang_nosp data/lang_nosp_test_tglarge
utils/build_const_arpa_lm.sh data/local/lm/zeroth.lm.fg.arpa.gz \
data/lang_nosp data/lang_nosp_test_fglarge
fi
fi
if [ $stage -le 5 ]; then
# Feature extraction (MFCC)
mfccdir=mfcc
for part in train_data_01 test_data_01; do
steps/make_mfcc.sh --cmd "$train_cmd" --nj $nj data/$part exp/make_mfcc/$part $mfccdir
steps/compute_cmvn_stats.sh data/$part exp/make_mfcc/$part $mfccdir
done
# ... and then combine data sets into one (for later extension)
utils/combine_data.sh \
data/train_clean data/train_data_01
utils/combine_data.sh \
data/test_clean data/test_data_01
# Make some small data subsets for early system-build stages.
utils/subset_data_dir.sh --shortest data/train_clean 2000 data/train_2kshort
utils/subset_data_dir.sh data/train_clean 5000 data/train_5k
utils/subset_data_dir.sh data/train_clean 10000 data/train_10k
fi
if [ $stage -le 6 ]; then
echo "$0: #### Monophone Training ###########"
# train a monophone system with 2k short utts
steps/train_mono.sh --boost-silence 1.25 --nj $nj --cmd "$train_cmd" \
data/train_2kshort data/lang_nosp exp/mono
if $decode; then
utils/mkgraph.sh data/lang_nosp_test_tgsmall exp/mono exp/mono/graph_nosp_tgsmall
nspk=$(wc -l <data/${test_set}/spk2utt)
steps/decode.sh --nj $nspk --cmd "$decode_cmd" \
exp/mono/graph_nosp_tgsmall data/${test_set} exp/mono/decode_nosp_tgsmall_${test_set}
if $decode_rescoring; then
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,tglarge} \
data/$test_set exp/mono/decode_nosp_{tgsmall,tglarge}_$test_set
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,fglarge} \
data/$test_set exp/mono/decode_nosp_{tgsmall,fglarge}_$test_set
fi
fi
fi
if [ $stage -le 7 ]; then
echo "$0: #### Triphone Training, delta + delta-delta ###########"
steps/align_si.sh --boost-silence 1.25 --nj $nj --cmd "$train_cmd" \
data/train_5k data/lang_nosp exp/mono exp/mono_ali_5k
# train a first delta + delta-delta triphone system on a subset of 5000 utterances
steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" \
2000 10000 data/train_5k data/lang_nosp exp/mono_ali_5k exp/tri1
if $decode; then
utils/mkgraph.sh data/lang_nosp_test_tgsmall exp/tri1 exp/tri1/graph_nosp_tgsmall
nspk=$(wc -l <data/${test_set}/spk2utt)
steps/decode.sh --nj $nspk --cmd "$decode_cmd" \
exp/tri1/graph_nosp_tgsmall data/${test_set} exp/tri1/decode_nosp_tgsmall_${test_set}
if $decode_rescoring; then
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,tglarge} \
data/$test_set exp/tri1/decode_nosp_{tgsmall,tglarge}_$test_set
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,fglarge} \
data/$test_set exp/tri1/decode_nosp_{tgsmall,fglarge}_$test_set
fi
fi
fi
if [ $stage -le 8 ]; then
echo "$0: #### Triphone Training, LDA+MLLT ###########"
steps/align_si.sh --nj $nj --cmd "$train_cmd" \
data/train_10k data/lang_nosp exp/tri1 exp/tri1_ali_10k
# train an LDA+MLLT system.
steps/train_lda_mllt.sh --cmd "$train_cmd" \
--splice-opts "--left-context=3 --right-context=3" 2500 15000 \
data/train_10k data/lang_nosp exp/tri1_ali_10k exp/tri2
if $decode; then
utils/mkgraph.sh data/lang_nosp_test_tgsmall exp/tri2 exp/tri2/graph_nosp_tgsmall
nspk=$(wc -l <data/${test_set}/spk2utt)
steps/decode.sh --nj $nspk --cmd "$decode_cmd" \
exp/tri2/graph_nosp_tgsmall data/${test_set} exp/tri2/decode_nosp_tgsmall_${test_set}
if $decode_rescoring; then
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,tglarge} \
data/$test_set exp/tri2/decode_nosp_{tgsmall,tglarge}_$test_set
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,fglarge} \
data/$test_set exp/tri2/decode_nosp_{tgsmall,fglarge}_$test_set
fi
fi
fi
if [ $stage -le 9 ]; then
echo "$0: #### Triphone Training, LDA+MLLT+SAT ###########"
# Align the entire train_clean using the tri2 model
steps/align_si.sh --nj $nj --cmd "$train_cmd" --use-graphs true \
data/train_clean data/lang_nosp exp/tri2 exp/tri2_ali_train_clean
# Train tri3, which is LDA+MLLT+SAT on the entire train_clean
steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \
data/train_clean data/lang_nosp exp/tri2_ali_train_clean exp/tri3
if $decode; then
utils/mkgraph.sh data/lang_nosp_test_tgsmall exp/tri3 exp/tri3/graph_nosp_tgsmall
nspk=$(wc -l <data/${test_set}/spk2utt)
steps/decode_fmllr.sh --nj $nspk --cmd "$decode_cmd" \
exp/tri3/graph_nosp_tgsmall data/${test_set} exp/tri3/decode_nosp_tgsmall_${test_set}
if $decode_rescoring; then
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,tglarge} \
data/$test_set exp/tri3/decode_nosp_{tgsmall,tglarge}_$test_set
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_nosp_test_{tgsmall,fglarge} \
data/$test_set exp/tri3/decode_nosp_{tgsmall,fglarge}_$test_set
fi
fi
fi
if [ $stage -le 10 ]; then
echo "$0: #### Re-computing pronunciation model using tri3 model ###########"
# Now we compute the pronunciation and silence probabilities from training data,
# and re-create the lang directory.
# silence transition probability ...
steps/get_prons.sh --cmd "$train_cmd" \
data/train_clean data/lang_nosp exp/tri3
utils/dict_dir_add_pronprobs.sh --max-normalize true \
data/local/dict_nosp \
exp/tri3/pron_counts_nowb.txt exp/tri3/sil_counts_nowb.txt \
exp/tri3/pron_bigram_counts_nowb.txt data/local/dict
utils/prepare_lang.sh data/local/dict \
"<UNK>" data/local/lang_tmp data/lang
local/format_lms.sh --src-dir data/lang data/local/lm
utils/build_const_arpa_lm.sh \
data/local/lm/zeroth.lm.tg.arpa.gz data/lang data/lang_test_tglarge
utils/build_const_arpa_lm.sh \
data/local/lm/zeroth.lm.fg.arpa.gz data/lang data/lang_test_fglarge
if $decode; then
utils/mkgraph.sh data/lang_test_tgsmall exp/tri3 exp/tri3/graph_tgsmall
nspk=$(wc -l <data/${test_set}/spk2utt)
steps/decode_fmllr.sh --nj $nspk --cmd "$decode_cmd" \
exp/tri3/graph_tgsmall data/${test_set} exp/tri3/decode_tgsmall_${test_set}
if $decode_rescoring; then
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
data/$test_set exp/tri3/decode_{tgsmall,tglarge}_$test_set
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
data/$test_set exp/tri3/decode_{tgsmall,fglarge}_$test_set
fi
fi
fi
if [ $stage -le 11 ]; then
echo "$0: #### SAT again on train_clean ###########"
# align the entire train_clean using the tri3 model
steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \
data/train_clean data/lang exp/tri3 exp/tri3_ali_train_clean
# train another LDA+MLLT+SAT system on the entire train_clean
steps/train_sat.sh --cmd "$train_cmd" 4200 40000 \
data/train_clean data/lang exp/tri3_ali_train_clean exp/tri4
if $decode; then
utils/mkgraph.sh data/lang_test_tgsmall exp/tri4 exp/tri4/graph_tgsmall
nspk=$(wc -l <data/${test_set}/spk2utt)
steps/decode_fmllr.sh --nj $nspk --cmd "$decode_cmd" \
exp/tri4/graph_tgsmall data/${test_set} exp/tri4/decode_tgsmall_${test_set}
if $decode_rescoring; then
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
data/$test_set exp/tri4/decode_{tgsmall,tglarge}_$test_set
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
data/$test_set exp/tri4/decode_{tgsmall,fglarge}_$test_set
fi
fi
fi
echo "$0: GMM trainig is Done"
if $chain_train; then
## Training Chain Acoustic model using clean data set
echo "$0: #### chain training ###########"
local/chain/run_tdnn.sh
fi
exit 0;