chain-supervision.cc 45.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
// chain/chain-supervision.cc

// Copyright      2015   Johns Hopkins University (author: Daniel Povey)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include "chain/chain-supervision.h"
#include "lat/lattice-functions.h"
#include "util/text-utils.h"
#include "hmm/hmm-utils.h"
#include <numeric>

namespace kaldi {
namespace chain {

const int kSupervisionMaxStates = 200000;  // we can later make this
                                           // configurable if needed.

// attempts determinization (with limited max-states) and minimization;
// returns true on success
bool TryDeterminizeMinimize(int32 supervision_max_states,
                            fst::StdVectorFst *supervision_fst) {
  if (supervision_fst->NumStates() >= supervision_max_states) {
    KALDI_WARN << "Not attempting determinization as number of states "
               << "is too large " << supervision_fst->NumStates();
    return false;
  }
  fst::DeterminizeOptions<fst::StdArc> opts;
  opts.state_threshold = supervision_max_states;
  fst::StdVectorFst fst_copy = *supervision_fst;
  fst::Determinize(fst_copy, supervision_fst, opts);
  // the - 1 here is just because I'm not sure if it stops just before the
  // threshold.
  if (supervision_fst->NumStates() >= opts.state_threshold - 1) {
    KALDI_WARN << "Determinization stopped early after reaching "
               << supervision_fst->NumStates() << " states.  Likely "
               << "this utterance has a very strange transcription.";
    return false;
  }
  fst::Minimize(supervision_fst);
  return true;
}

void ProtoSupervision::Write(std::ostream &os, bool binary) const {
  WriteToken(os, binary, "<ProtoSupervision>");
  if (!binary) os << "\n";
  int32 num_frames = allowed_phones.size();
  WriteToken(os, binary, "<NumFrames>");
  WriteBasicType(os, binary, num_frames);
  if (!binary) os << "\n";
  WriteToken(os, binary, "<AllowedPhones>");
  if (!binary) os << "\n";
  for (int32 i = 0; i < num_frames; i++)
    WriteIntegerVector(os, binary, allowed_phones[i]);
  if (!binary) os << "\n";
  WriteFstKaldi(os, binary, fst);
  WriteToken(os, binary, "</ProtoSupervision>");
  if (!binary) os << "\n";
}

void SupervisionOptions::Check() const {
  KALDI_ASSERT(left_tolerance >= 0 && right_tolerance >= 0 &&
               frame_subsampling_factor > 0 &&
               left_tolerance + right_tolerance + 1 >= frame_subsampling_factor);

  KALDI_ASSERT(lm_scale >= 0.0 && lm_scale < 1.0);
}

bool AlignmentToProtoSupervision(const SupervisionOptions &opts,
                                 const std::vector<int32> &phones,
                                 const std::vector<int32> &durations,
                                 ProtoSupervision *proto_supervision) {
  opts.Check();
  KALDI_ASSERT(phones.size() > 0 && phones.size() == durations.size());
  std::vector<int32> labels(phones.size());
  int32 num_frames = std::accumulate(durations.begin(), durations.end(), 0),
      factor = opts.frame_subsampling_factor,
      num_frames_subsampled = (num_frames + factor - 1) / factor;
  proto_supervision->allowed_phones.clear();
  proto_supervision->allowed_phones.resize(num_frames_subsampled);
  proto_supervision->fst.DeleteStates();
  if (num_frames_subsampled == 0)
    return false;

  int32 current_frame = 0, num_phones = phones.size();
  for (int32 i = 0; i < num_phones; i++) {
    int32 phone = phones[i], duration = durations[i];
    KALDI_ASSERT(phone > 0 && duration > 0);
    int32 t_start = std::max<int32>(0, (current_frame - opts.left_tolerance)),
            t_end = std::min<int32>(num_frames,
                                    (current_frame + duration + opts.right_tolerance)),
       t_start_subsampled = (t_start + factor - 1) / factor,
       t_end_subsampled = (t_end + factor - 1) / factor;

    // note: if opts.Check() passed, the following assert should pass too.
    KALDI_ASSERT(t_end_subsampled > t_start_subsampled &&
                 t_end_subsampled <= num_frames_subsampled);
    for (int32 t_subsampled = t_start_subsampled;
         t_subsampled < t_end_subsampled; t_subsampled++)
      proto_supervision->allowed_phones[t_subsampled].push_back(phone);
    current_frame += duration;
  }
  KALDI_ASSERT(current_frame == num_frames);
  for (int32 t_subsampled = 0; t_subsampled < num_frames_subsampled;
       t_subsampled++) {
    KALDI_ASSERT(!proto_supervision->allowed_phones[t_subsampled].empty());
    SortAndUniq(&(proto_supervision->allowed_phones[t_subsampled]));
  }
  fst::MakeLinearAcceptor(phones, &(proto_supervision->fst));
  return true;
}

bool AlignmentToProtoSupervision(
    const SupervisionOptions &opts,
    const std::vector<std::pair<int32, int32> > &phones_durations,
    ProtoSupervision *proto_supervision) {
  KALDI_ASSERT(phones_durations.size() > 0);
  std::vector<int32> phones(phones_durations.size()),
      durations(phones_durations.size());
  for (size_t size = phones_durations.size(), i = 0; i < size; i++) {
    phones[i] = phones_durations[i].first;
    durations[i] = phones_durations[i].second;
  }
  return AlignmentToProtoSupervision(opts, phones, durations,
                                     proto_supervision);
}


bool ProtoSupervision::operator == (const ProtoSupervision &other) const {
  return (allowed_phones == other.allowed_phones &&
          fst::Equal(fst, other.fst));
}

bool PhoneLatticeToProtoSupervisionInternal(
    const SupervisionOptions &opts,
    const CompactLattice &lat,
    ProtoSupervision *proto_supervision) {
  opts.Check();
  if (lat.NumStates() == 0) {
    KALDI_WARN << "Empty lattice provided";
    return false;
  }
  int32 num_states = lat.NumStates();
  proto_supervision->fst.DeleteStates();
  proto_supervision->fst.ReserveStates(num_states);
  std::vector<int32> state_times;
  int32 num_frames = CompactLatticeStateTimes(lat, &state_times),
      factor = opts.frame_subsampling_factor,
    num_frames_subsampled = (num_frames + factor - 1) / factor;
  for (int32 state = 0; state < num_states; state++)
    proto_supervision->fst.AddState();
  proto_supervision->fst.SetStart(lat.Start());

  proto_supervision->allowed_phones.clear();
  proto_supervision->allowed_phones.resize(num_frames_subsampled);

  for (int32 state = 0; state < num_states; state++) {
    int32 state_time = state_times[state];
    for (fst::ArcIterator<CompactLattice> aiter(lat, state); !aiter.Done();
         aiter.Next()) {
      const CompactLatticeArc &lat_arc = aiter.Value();
      int32 next_state_time = state_time + lat_arc.weight.String().size();
      int32 phone = lat_arc.ilabel;  // It's an acceptor so ilabel == ollabel.
      if (phone == 0) {
        KALDI_WARN << "CompactLattice has epsilon arc.  Unexpected.";
        return false;
      }
      proto_supervision->fst.AddArc(state,
        fst::StdArc(phone, phone,
                    fst::TropicalWeight(
                      lat_arc.weight.Weight().Value1()
                      * opts.lm_scale),
                    lat_arc.nextstate));

      int32 t_begin = std::max<int32>(0, (state_time - opts.left_tolerance)),
              t_end = std::min<int32>(num_frames,
                                      (next_state_time + opts.right_tolerance)),
              t_begin_subsampled = (t_begin + factor - 1)/ factor,
              t_end_subsampled = (t_end + factor - 1)/ factor;
    for (int32 t_subsampled = t_begin_subsampled;
         t_subsampled < t_end_subsampled; t_subsampled++)
      proto_supervision->allowed_phones[t_subsampled].push_back(phone);
    }
    if (lat.Final(state) != CompactLatticeWeight::Zero()) {
      proto_supervision->fst.SetFinal(state, fst::TropicalWeight(
            lat.Final(state).Weight().Value1() * opts.lm_scale));
      if (state_times[state] != num_frames) {
        KALDI_WARN << "Time of final state " << state << " in lattice is "
                   << "not equal to number of frames " << num_frames
                   << ".  Are you sure the lattice is phone-aligned? "
                   << "Rejecting it.";
        return false;
      }
    }
  }
  for (int32 t_subsampled = 0; t_subsampled < num_frames_subsampled;
       t_subsampled++) {
    KALDI_ASSERT(!proto_supervision->allowed_phones[t_subsampled].empty());
    SortAndUniq(&(proto_supervision->allowed_phones[t_subsampled]));
  }
  return true;
}

bool PhoneLatticeToProtoSupervision(const SupervisionOptions &opts,
                                    const CompactLattice &lat,
                                    ProtoSupervision *proto_supervision) {

  if (!PhoneLatticeToProtoSupervisionInternal(opts, lat, proto_supervision))
    return false;
  if (opts.lm_scale != 0.0)
    fst::Push(&(proto_supervision->fst),
              fst::REWEIGHT_TO_INITIAL, fst::kDelta, true);

  return true;
}

bool TimeEnforcerFst::GetArc(StateId s, Label ilabel, fst::StdArc* oarc) {
  // the following call will do the range-check on 'ilabel'.
  int32 phone = trans_model_.TransitionIdToPhone(ilabel);
  KALDI_ASSERT(static_cast<size_t>(s) <= allowed_phones_.size());
  if (static_cast<size_t>(s) == allowed_phones_.size()) {
    // No arcs come from the final state.a
    return false;
  }
  if (std::binary_search(allowed_phones_[s].begin(),
                         allowed_phones_[s].end(), phone)) {
    oarc->ilabel = ilabel;
    if (convert_to_pdfs_) {
      // the olabel will be a pdf-id plus one, not a transition-id.
      int32 pdf_id = trans_model_.TransitionIdToPdf(ilabel);
      oarc->olabel = pdf_id + 1;
    } else {
      oarc->olabel = ilabel;
    }
    oarc->weight = fst::TropicalWeight::One();
    oarc->nextstate = s + 1;
    return true;
  } else {
    return false;
  }
}

bool TrainingGraphToSupervisionE2e(
    const fst::StdVectorFst &training_graph,
    const TransitionModel &trans_model,
    int32 num_frames,
    Supervision *supervision) {
  using fst::VectorFst;
  using fst::StdArc;
  using fst::StdVectorFst;
  StdVectorFst trans2word_fst(training_graph);
  fst::RemoveEpsLocal(&trans2word_fst);
  fst::RmEpsilon(&trans2word_fst);
  // first change labels to pdf-id + 1
  int32 num_states = trans2word_fst.NumStates();
  for (int32 state = 0; state < num_states; state++) {
    for (fst::MutableArcIterator<StdVectorFst> aiter(&trans2word_fst, state);
         !aiter.Done(); aiter.Next()) {
      const StdArc &arc = aiter.Value();
      if (arc.ilabel == 0) {
        KALDI_WARN << "Utterance rejected due to eps on input label";
        return false;
      }
      KALDI_ASSERT(arc.ilabel != 0);
      StdArc arc2(arc);
      arc2.ilabel = arc2.olabel = trans_model.TransitionIdToPdf(arc.ilabel) + 1;
      aiter.SetValue(arc2);
    }
  }
  supervision->e2e_fsts.clear();
  supervision->e2e_fsts.resize(1);
  supervision->e2e_fsts[0] = trans2word_fst;
  supervision->weight = 1.0;
  supervision->num_sequences = 1;
  supervision->frames_per_sequence = num_frames;
  supervision->label_dim = trans_model.NumPdfs();
  return true;
}

bool ProtoSupervisionToSupervision(
    const ContextDependencyInterface &ctx_dep,
    const TransitionModel &trans_model,
    const ProtoSupervision &proto_supervision,
    bool convert_to_pdfs,
    Supervision *supervision) {
  using fst::VectorFst;
  using fst::StdArc;
  VectorFst<StdArc> phone_fst(proto_supervision.fst);
  std::vector<int32> disambig_syms;  // empty list of diambiguation symbols.
  int32 subsequential_symbol = trans_model.GetPhones().back() + 1;
  if (ctx_dep.CentralPosition() != ctx_dep.ContextWidth() - 1) {
    // note: this function only adds the subseq symbol to the input of what was
    // previously an acceptor, so we project, i.e. copy the ilabels to the
    // olabels
    AddSubsequentialLoop(subsequential_symbol, &phone_fst);
    fst::Project(&phone_fst, fst::PROJECT_INPUT);
  }

  // inv_cfst will be expanded on the fly, as needed.
  fst::InverseContextFst inv_cfst(subsequential_symbol,
                                  trans_model.GetPhones(),
                                  disambig_syms,
                                  ctx_dep.ContextWidth(),
                                  ctx_dep.CentralPosition());


  VectorFst<StdArc> context_dep_fst;
  ComposeDeterministicOnDemandInverse(phone_fst, &inv_cfst, &context_dep_fst);


  // at this point, context_dep_fst will have indexes into
  // 'inv_cfst.IlabelInfo()' as its input symbol (representing context-dependent
  // phones), and phones on its output.  We don't need the phones, so we'll
  // project.
  fst::Project(&context_dep_fst, fst::PROJECT_INPUT);

  std::vector<int32> disambig_syms_h; // disambiguation symbols on input side of
                                      // H -- will be empty, as there were no
                                      // disambiguation symbols on the output.

  HTransducerConfig h_cfg;

  // We don't want to add any transition probabilities as they will be added
  // when we compose with the denominator graph.
  h_cfg.transition_scale = 0.0;

  VectorFst<StdArc> *h_fst = GetHTransducer(inv_cfst.IlabelInfo(),
                                            ctx_dep,
                                            trans_model,
                                            h_cfg,
                                            &disambig_syms_h);
  KALDI_ASSERT(disambig_syms_h.empty());

  VectorFst<StdArc> transition_id_fst;
  TableCompose(*h_fst, context_dep_fst, &transition_id_fst);
  delete h_fst;

  // We don't want to add any transition probabilities as they will be added
  // when we compose with the denominator graph.
  BaseFloat self_loop_scale = 0.0;

  // You should always set reorder to true; for the current chain-model
  // topologies, it will affect results if you are inconsistent about this.
  bool reorder = true,
      check_no_self_loops = true;
  // add self-loops to the FST with transition-ids as its labels.
  AddSelfLoops(trans_model, disambig_syms_h, self_loop_scale, reorder,
               check_no_self_loops, &transition_id_fst);

  // at this point transition_id_fst will have transition-ids as its ilabels and
  // context-dependent phones (indexes into ILabelInfo()) as its olabels.
  // Discard the context-dependent phones by projecting on the input, keeping
  // only the transition-ids.
  fst::Project(&transition_id_fst, fst::PROJECT_INPUT);
  if (transition_id_fst.Properties(fst::kIEpsilons, true) != 0) {
    // remove epsilons, if there are any.
    fst::RmEpsilon(&transition_id_fst);
  }
  KALDI_ASSERT(transition_id_fst.NumStates() > 0);

  // The last step is to enforce that phones can only appear on the frames they
  // are 'allowed' to appear on.  This will also convert the FST to have pdf-ids
  // plus one as the labels
  TimeEnforcerFst enforcer_fst(trans_model,
                               convert_to_pdfs,
                               proto_supervision.allowed_phones);
  ComposeDeterministicOnDemand(transition_id_fst,
                               &enforcer_fst,
                               &(supervision->fst));
  fst::Connect(&(supervision->fst));

  if (convert_to_pdfs) {
    // at this point supervision->fst will have pdf-ids plus one as the olabels,
    // but still transition-ids as the ilabels.  Copy olabels to ilabels.
    fst::Project(&(supervision->fst), fst::PROJECT_OUTPUT);
  }

  KALDI_ASSERT(supervision->fst.Properties(fst::kIEpsilons, true) == 0);
  if (supervision->fst.NumStates() == 0) {
    KALDI_WARN << "Supervision FST is empty (too many phones for too few "
               << "frames?)";
    // possibly there were too many phones for too few frames.
    return false;
  }

  supervision->weight = 1.0;
  supervision->num_sequences = 1;
  supervision->frames_per_sequence = proto_supervision.allowed_phones.size();
  if (convert_to_pdfs)
    supervision->label_dim = trans_model.NumPdfs();
  else
    supervision->label_dim = trans_model.NumTransitionIds();
  SortBreadthFirstSearch(&(supervision->fst));
  return true;
}


SupervisionSplitter::SupervisionSplitter(
    const Supervision &supervision):
    supervision_(supervision),
    frame_(supervision_.fst.NumStates(), -1) {
  const fst::StdVectorFst &fst(supervision_.fst);
  // The fst in struct Supervision is supposed to be epsilon-free and
  // topologically sorted; this function relies on those properties to
  // set up the frame_ vector (which maps each state in the
  // FST to a frame-index 0 <= t < num_frames), and it checks them.
  if (supervision_.num_sequences != 1) {
    KALDI_WARN << "Splitting already-reattached sequence (only expected in "
               << "testing code)";
  }
  int32 num_frames = supervision_.frames_per_sequence *
                     supervision_.num_sequences;
  int32 ans = ComputeFstStateTimes(fst, &frame_);
  KALDI_ASSERT(ans == num_frames);
}

void SupervisionSplitter::GetFrameRange(int32 begin_frame, int32 num_frames,
                                        Supervision *out_supervision) const {
  int32 end_frame = begin_frame + num_frames;
  // Note: end_frame is not included in the range of frames that the
  // output supervision object covers; it's one past the end.
  KALDI_ASSERT(num_frames > 0 && begin_frame >= 0 &&
               begin_frame + num_frames <=
               supervision_.num_sequences * supervision_.frames_per_sequence);
  std::vector<int32>::const_iterator begin_iter =
      std::lower_bound(frame_.begin(), frame_.end(), begin_frame),
      end_iter = std::lower_bound(begin_iter, frame_.end(), end_frame);
  KALDI_ASSERT(*begin_iter == begin_frame &&
               (begin_iter == frame_.begin() || begin_iter[-1] < begin_frame));
  // even if end_frame == supervision_.num_frames, there should be a state with
  // that frame index.
  KALDI_ASSERT(end_iter[-1] < end_frame &&
               (end_iter < frame_.end() || *end_iter == end_frame));
  int32 begin_state = begin_iter - frame_.begin(),
      end_state = end_iter - frame_.begin();

  CreateRangeFst(begin_frame, end_frame,
                 begin_state, end_state, &(out_supervision->fst));

  KALDI_ASSERT(out_supervision->fst.NumStates() > 0);
  KALDI_ASSERT(supervision_.num_sequences == 1);
  out_supervision->num_sequences = 1;
  out_supervision->weight = supervision_.weight;
  out_supervision->frames_per_sequence = num_frames;
  out_supervision->label_dim = supervision_.label_dim;
}

void SupervisionSplitter::CreateRangeFst(
    int32 begin_frame, int32 end_frame,
    int32 begin_state, int32 end_state,
    fst::StdVectorFst *fst) const {
  // There will be a special pre-start state that has epsilon transitions to all
  // states whose frame equals begin_frame; we'll later do RmEpsilon to remove
  // these.  Next we will include all states begin_state <= s < end_state in the
  // output FST, plus (if end_frame != supervision_.num_frames) a special final
  // state.  All transitions to states >= end_state will be turned into
  // a transition to the special final state.  There should be no final-probs
  // on the states begin_state <= s < end_state.
  KALDI_ASSERT(end_state > begin_state);
  fst->DeleteStates();
  fst->ReserveStates(end_state - begin_state + 2);
  int32 start_state = fst->AddState();
  fst->SetStart(start_state);
  for (int32 i = begin_state; i < end_state; i++)
    fst->AddState();
  // Add the special final-state.
  int32 final_state = fst->AddState();
  fst->SetFinal(final_state, fst::TropicalWeight::One());
  for (int32 state = begin_state; state < end_state; state++) {
    int32 output_state = state - begin_state + 1;
    if (frame_[state] == begin_frame) {
      // we'd like to make this an initial state, but OpenFst doesn't allow
      // multiple initial states.  Instead we add an epsilon transition to it
      // from our actual initial state; we'll later do RmEpsilon and
      // determinize.
      fst->AddArc(start_state,
                  fst::StdArc(0, 0, fst::TropicalWeight::One(),
                              output_state));
    } else {
      KALDI_ASSERT(frame_[state] < end_frame);
    }
    typedef fst::ArcIterator<fst::StdVectorFst> IterType;
    for (IterType aiter(supervision_.fst, state); !aiter.Done(); aiter.Next()) {
      const fst::StdArc &arc(aiter.Value());
      int32 nextstate = arc.nextstate;
      if (nextstate >= end_state) {
        // A transition to any state outside the range becomes a transition to
        // our special final-state.
        fst->AddArc(output_state,
                    fst::StdArc(arc.ilabel, arc.olabel,
                                arc.weight, final_state));
      } else {
        int32 output_nextstate = arc.nextstate - begin_state + 1;
        // note: arc.ilabel should equal arc.olabel and arc.weight should equal
        // fst::TropicalWeight::One().
        fst->AddArc(output_state,
                    fst::StdArc(arc.ilabel, arc.olabel,
                                arc.weight, output_nextstate));
      }
    }
  }
}


// I couldn't figure out how to do this with OpenFST's native 'visitor' and
// queue mechanisms so I'm just coding this myself.
void SortBreadthFirstSearch(fst::StdVectorFst *fst) {
  std::vector<int32> state_order(fst->NumStates(), -1);
  std::vector<bool> seen(fst->NumStates(), false);
  int32 start_state = fst->Start();
  KALDI_ASSERT(start_state >= 0);
  std::deque<int32> queue;
  queue.push_back(start_state);
  seen[start_state] = true;
  int32 num_output = 0;
  while (!queue.empty()) {
    int32 state = queue.front();
    state_order[state] = num_output++;
    queue.pop_front();
    for (fst::ArcIterator<fst::StdVectorFst> aiter(*fst, state);
         !aiter.Done(); aiter.Next()) {
      int32 nextstate = aiter.Value().nextstate;
      if (!seen[nextstate]) {
        seen[nextstate] = true;
        queue.push_back(nextstate);
      }
    }
  }
  if (num_output != fst->NumStates())
    KALDI_ERR << "Input to SortBreadthFirstSearch must be connected.";
  fst::StateSort(fst, state_order);
}



void Supervision::Write(std::ostream &os, bool binary) const {
  WriteToken(os, binary, "<Supervision>");
  WriteToken(os, binary, "<Weight>");
  WriteBasicType(os, binary, weight);
  WriteToken(os, binary, "<NumSequences>");
  WriteBasicType(os, binary, num_sequences);
  WriteToken(os, binary, "<FramesPerSeq>");
  WriteBasicType(os, binary, frames_per_sequence);
  WriteToken(os, binary, "<LabelDim>");
  WriteBasicType(os, binary, label_dim);
  KALDI_ASSERT(frames_per_sequence > 0 && label_dim > 0 &&
               num_sequences > 0);
  bool e2e = !e2e_fsts.empty();
  WriteToken(os, binary, "<End2End>");
  // the following is of course redundant, but it's for back compatibility
  // reasons.
  WriteBasicType(os, binary, e2e);
  if (!e2e) {
    if (binary == false) {
      // In text mode, write the FST without any compactification.
      WriteFstKaldi(os, binary, fst);
    } else {
      // Write using StdAcceptorCompactFst, making use of the fact that it's an
      // acceptor.
      fst::FstWriteOptions write_options("<unknown>");
      fst::StdCompactAcceptorFst::WriteFst(
          fst, fst::AcceptorCompactor<fst::StdArc>(), os,
          write_options);
    }
  } else {
    KALDI_ASSERT(e2e_fsts.size() == num_sequences);
    WriteToken(os, binary, "<Fsts>");
    for (int i = 0; i < num_sequences; i++) {
      if (binary == false) {
        // In text mode, write the FST without any compactification.
        WriteFstKaldi(os, binary, e2e_fsts[i]);
      } else {
        // Write using StdAcceptorCompactFst, making use of the fact that it's an
        // acceptor.
        fst::FstWriteOptions write_options("<unknown>");
        fst::StdCompactAcceptorFst::WriteFst(
            e2e_fsts[i], fst::AcceptorCompactor<fst::StdArc>(), os,
            write_options);
      }
    }
    WriteToken(os, binary, "</Fsts>");
  }
  if (!alignment_pdfs.empty()) {
    WriteToken(os, binary, "<AlignmentPdfs>");
    WriteIntegerVector(os, binary, alignment_pdfs);
  }
  WriteToken(os, binary, "</Supervision>");
}

void Supervision::Swap(Supervision *other) {
  std::swap(weight, other->weight);
  std::swap(num_sequences, other->num_sequences);
  std::swap(frames_per_sequence, other->frames_per_sequence);
  std::swap(label_dim, other->label_dim);
  std::swap(fst, other->fst);
  std::swap(e2e_fsts, other->e2e_fsts);
  std::swap(alignment_pdfs, other->alignment_pdfs);
}

void Supervision::Read(std::istream &is, bool binary) {
  ExpectToken(is, binary, "<Supervision>");
  ExpectToken(is, binary, "<Weight>");
  ReadBasicType(is, binary, &weight);
  ExpectToken(is, binary, "<NumSequences>");
  ReadBasicType(is, binary, &num_sequences);
  ExpectToken(is, binary, "<FramesPerSeq>");
  ReadBasicType(is, binary, &frames_per_sequence);
  ExpectToken(is, binary, "<LabelDim>");
  ReadBasicType(is, binary, &label_dim);
  bool e2e;
  ExpectToken(is, binary, "<End2End>");
  ReadBasicType(is, binary, &e2e);
  if (!e2e) {
    if (!binary) {
      ReadFstKaldi(is, binary, &fst);
    } else {
      fst::StdCompactAcceptorFst *compact_fst =
          fst::StdCompactAcceptorFst::Read(
              is, fst::FstReadOptions(std::string("[unknown]")));
      if (compact_fst == NULL)
        KALDI_ERR << "Error reading compact FST from disk";
      fst = *compact_fst;
      delete compact_fst;
    }
  } else {
    e2e_fsts.resize(num_sequences);
    ExpectToken(is, binary, "<Fsts>");
    for (int i = 0; i < num_sequences; i++) {
      if (!binary) {
        ReadFstKaldi(is, binary, &e2e_fsts[i]);
      } else {
        fst::StdCompactAcceptorFst *compact_fst =
            fst::StdCompactAcceptorFst::Read(
                is, fst::FstReadOptions(std::string("[unknown]")));
        if (compact_fst == NULL)
          KALDI_ERR << "Error reading compact FST from disk";
        e2e_fsts[i] = *compact_fst;
        delete compact_fst;
      }
    }
    ExpectToken(is, binary, "</Fsts>");
  }
  if (PeekToken(is, binary) == 'A') {
    ExpectToken(is, binary, "<AlignmentPdfs>");
    ReadIntegerVector(is, binary, &alignment_pdfs);
  } else {
    alignment_pdfs.clear();
  }
  ExpectToken(is, binary, "</Supervision>");
}

int32 ComputeFstStateTimes(const fst::StdVectorFst &fst,
                           std::vector<int32> *state_times) {
  if (fst.Start() != 0)  // this is implied by our properties.
    KALDI_ERR << "Expecting input FST start state to be zero";
  int32 num_states = fst.NumStates();
  int32 total_length = -1;
  state_times->clear();
  state_times->resize(num_states, -1);
  (*state_times)[0] = 0;
  for (int32 state = 0; state < num_states; state++) {
    int32 next_state_time = (*state_times)[state] + 1;
    if (next_state_time <= 0)  // i.e. (*state_times)[state] < 0
      KALDI_ERR << "Input FST does not have required properties.";
    for (fst::ArcIterator<fst::StdVectorFst> aiter(fst, state);
         !aiter.Done(); aiter.Next()) {
      const fst::StdArc &arc = aiter.Value();
      KALDI_ASSERT(arc.ilabel != 0);
      int32 &next_state_ref = (*state_times)[arc.nextstate];
      if (next_state_ref == -1)
        next_state_ref = next_state_time;
      else if (next_state_ref != next_state_time)
        KALDI_ERR << "Input FST does not have required properties.";
    }
    if (fst.Final(state) != fst::TropicalWeight::Zero()) {
      if (total_length == -1)
        total_length = next_state_time - 1;
      else if (total_length != next_state_time - 1)
        KALDI_ERR << "Input FST does not have required properties.";
    }
  }
  std::vector<int32>::iterator iter = state_times->begin(),
      end = iter + (num_states - 1);
  // check that the frame-indexes of states are monotonically non-decreasing, as
  // they should be based on the top-sorting.  We rely on this property to
  // compute the frame ranges while splitting.
  while (iter != end) {
    int32 cur_t = *iter;
    ++iter;
    int32 next_t = *iter;
    KALDI_ASSERT(next_t >= cur_t);
  }
  if (total_length < 0)
    KALDI_ERR << "Input FST does not have required properties.";
  return total_length;
}

Supervision::Supervision(const Supervision &other):
    weight(other.weight), num_sequences(other.num_sequences),
    frames_per_sequence(other.frames_per_sequence),
    label_dim(other.label_dim), fst(other.fst),
    e2e_fsts(other.e2e_fsts), alignment_pdfs(other.alignment_pdfs) { }


// This static function is called by MergeSupervision if the supervisions
// are end2end. It simply puts all e2e FST's into 1 supervision.
void MergeSupervisionE2e(const std::vector<const Supervision*> &input,
                          Supervision *output_supervision) {
  KALDI_ASSERT(!input.empty());
  KALDI_ASSERT(input[0]->e2e_fsts.size() == 1);
  *output_supervision = *(input[0]);
  output_supervision->e2e_fsts.reserve(input.size());
  int32 frames_per_sequence = output_supervision->frames_per_sequence,
      num_seqs = input.size();
  for (int32 i = 1; i < num_seqs; i++) {
    output_supervision->num_sequences++;
    KALDI_ASSERT(input[i]->e2e_fsts.size() == 1);
    KALDI_ASSERT(input[i]->frames_per_sequence ==
                 frames_per_sequence);
    output_supervision->e2e_fsts.push_back(input[i]->e2e_fsts[0]);
  }
  output_supervision->alignment_pdfs.clear();
  // The program nnet3-chain-acc-lda-stats works on un-merged egs,
  // and there is no need to support merging of 'alignment_pdfs'
}

void MergeSupervision(const std::vector<const Supervision*> &input,
                      Supervision *output_supervision) {
  KALDI_ASSERT(!input.empty());
  int32 label_dim = input[0]->label_dim,
      num_inputs = input.size();
  if (num_inputs == 1) {
    *output_supervision = *(input[0]);
    return;
  }
  if (!input[0]->e2e_fsts.empty()) {
    MergeSupervisionE2e(input, output_supervision);
    return;
  }

  for (int32 i = 1; i < num_inputs; i++) {
    KALDI_ASSERT(input[i]->label_dim == label_dim &&
                 "Trying to append incompatible Supervision objects");
    KALDI_ASSERT(input[i]->alignment_pdfs.empty());
  }
  *output_supervision = *(input[num_inputs-1]);
  for (int32 i = num_inputs - 2; i >= 0; i--) {
    const Supervision &src = *(input[i]);
    if (output_supervision->weight == src.weight &&
        output_supervision->frames_per_sequence ==
        src.frames_per_sequence) {
      // Combine with current output
      // append src.fst to output_supervision->fst.
      // the complexity here is O(V1 + E1)
      fst::Concat(src.fst, &output_supervision->fst);
      output_supervision->num_sequences++;
    } else {
      KALDI_ERR << "Mismatch weight or frames_per_sequence  between inputs";
    }

  }
  fst::StdVectorFst &out_fst = output_supervision->fst;
  // The process of concatenation will have introduced epsilons.
  fst::RmEpsilon(&out_fst);
  SortBreadthFirstSearch(&out_fst);
}

// This static function is called by AddWeightToSupervisionFst if the supervision
// is end2end. It's similar to AddWeightToSupervisionFst, except we don't do
// TryDeterminizeMinimize as it's not necessary (the graphs are already small)
// and we don't do SortBreadthFirstSearch (the graph has self-loops so it can't
// be sorted).
bool AddWeightToSupervisionFstE2e(const fst::StdVectorFst &normalization_fst,
                                  Supervision *supervision) {
    KALDI_ASSERT(supervision->num_sequences == 1);
    KALDI_ASSERT(supervision->e2e_fsts.size() == 1);
    // Remove epsilons before composing.  'normalization_fst' has no epsilons so
    // the composed result will be epsilon free.
    fst::StdVectorFst supervision_fst_noeps(supervision->e2e_fsts[0]);
    fst::RmEpsilon(&supervision_fst_noeps);

    // Note: by default, 'Compose' will call 'Connect', so if the
    // resulting FST is not connected, it will end up empty.
    fst::StdVectorFst composed_fst;
    fst::Compose(supervision_fst_noeps, normalization_fst,
                 &composed_fst);
    if (composed_fst.NumStates() == 0)
      return false;
    // Projection should not be necessary, as both FSTs are acceptors.

    supervision->e2e_fsts[0] = composed_fst;
    KALDI_ASSERT(supervision->fst.Properties(fst::kAcceptor, true) == fst::kAcceptor);
    KALDI_ASSERT(supervision->fst.Properties(fst::kIEpsilons, true) == 0);
    return true;
}

bool AddWeightToSupervisionFst(const fst::StdVectorFst &normalization_fst,
                               Supervision *supervision) {
  if (!supervision->e2e_fsts.empty())
    return AddWeightToSupervisionFstE2e(normalization_fst, supervision);

  // remove epsilons before composing.  'normalization_fst' has noepsilons so
  // the composed result will be epsilon free.
  fst::StdVectorFst supervision_fst_noeps(supervision->fst);
  fst::RmEpsilon(&supervision_fst_noeps);
  if (!TryDeterminizeMinimize(kSupervisionMaxStates,
                              &supervision_fst_noeps)) {
    KALDI_WARN << "Failed to determinize supervision fst";
    return false;
  }

  // note: by default, 'Compose' will call 'Connect', so if the
  // resulting FST is not connected, it will end up empty.
  fst::StdVectorFst composed_fst;
  fst::Compose(supervision_fst_noeps, normalization_fst,
               &composed_fst);
  if (composed_fst.NumStates() == 0)
    return false;
  // projection should not be necessary, as both FSTs are acceptors.
  // determinize and minimize to make it as compact as possible.

  if (!TryDeterminizeMinimize(kSupervisionMaxStates,
                              &composed_fst)) {
    KALDI_WARN << "Failed to determinize normalized supervision fst";
    return false;
  }
  supervision->fst = composed_fst;

  // Make sure the states are numbered in increasing order of time.
  SortBreadthFirstSearch(&(supervision->fst));
  KALDI_ASSERT(supervision->fst.Properties(fst::kAcceptor, true) == fst::kAcceptor);
  KALDI_ASSERT(supervision->fst.Properties(fst::kIEpsilons, true) == 0);
  return true;
}

void SplitIntoRanges(int32 num_frames,
                     int32 frames_per_range,
                     std::vector<int32> *range_starts) {
  if (frames_per_range > num_frames) {
    range_starts->clear();
    return;  // there is no room for even one range.
  }
  int32 num_ranges = num_frames  / frames_per_range,
      extra_frames = num_frames % frames_per_range;
  // this is a kind of heuristic.  If the number of frames we'd
  // be skipping is less than 1/4 of the frames_per_range, then
  // skip frames; otherwise, duplicate frames.
  // it's important that this is <=, not <, so that if
  // extra_frames == 0 and frames_per_range is < 4, we
  // don't insert an extra range.
  if (extra_frames <= frames_per_range / 4) {
    // skip frames.  we do this at start or end, or between ranges.
    std::vector<int32> num_skips(num_ranges + 1, 0);
    for (int32 i = 0; i < extra_frames; i++)
      num_skips[RandInt(0, num_ranges)]++;
    range_starts->resize(num_ranges);
    int32 cur_start = num_skips[0];
    for (int32 i = 0; i < num_ranges; i++) {
      (*range_starts)[i] = cur_start;
      cur_start += frames_per_range;
      cur_start += num_skips[i + 1];
    }
    KALDI_ASSERT(cur_start == num_frames);
  } else {
    // duplicate frames.
    num_ranges++;
    int32 num_duplicated_frames = frames_per_range - extra_frames;
    // the way we handle the 'extra_frames' frames of output is that we
    // backtrack zero or more frames between outputting each pair of ranges, and
    // the total of these backtracks equals 'extra_frames'.
    std::vector<int32> num_backtracks(num_ranges, 0);
    for (int32 i = 0; i < num_duplicated_frames; i++) {
      // num_ranges - 2 below is not a bug.  we only want to backtrack
      // between ranges, not past the end of the last range (i.e. at
      // position num_ranges - 1).  we make the vector one longer to
      // simplify the loop below.
      num_backtracks[RandInt(0, num_ranges - 2)]++;
    }
    range_starts->resize(num_ranges);
    int32 cur_start = 0;
    for (int32 i = 0; i < num_ranges; i++) {
      (*range_starts)[i] = cur_start;
      cur_start += frames_per_range;
      cur_start -= num_backtracks[i];
    }
    KALDI_ASSERT(cur_start == num_frames);
  }
}

bool Supervision::operator == (const Supervision &other) const {
  return weight == other.weight && num_sequences == other.num_sequences &&
      frames_per_sequence == other.frames_per_sequence &&
      label_dim == other.label_dim && fst::Equal(fst, other.fst);
}

void Supervision::Check(const TransitionModel &trans_mdl) const {
  if (weight <= 0.0)
    KALDI_ERR << "Weight should be positive.";
  if (frames_per_sequence <= 0)
    KALDI_ERR << "Invalid frames_per_sequence: " << frames_per_sequence;
  if (num_sequences <= 0)
    KALDI_ERR << "Invalid num_sequences: " << num_sequences;
  if (!(label_dim == trans_mdl.NumPdfs() ||
        label_dim == trans_mdl.NumTransitionIds()))
    KALDI_ERR << "Invalid label-dim: " << label_dim
              << ", expected " << trans_mdl.NumPdfs()
              << " or " << trans_mdl.NumTransitionIds();
  std::vector<int32> state_times;
  if (frames_per_sequence * num_sequences !=
      ComputeFstStateTimes(fst, &state_times))
    KALDI_ERR << "Num-frames does not match fst.";
}

void GetWeightsForRanges(int32 range_length,
                         const std::vector<int32> &range_starts,
                         std::vector<Vector<BaseFloat> > *weights) {
  KALDI_ASSERT(range_length > 0);
  int32 num_ranges = range_starts.size();
  weights->resize(num_ranges);
  for (int32 i = 0; i < num_ranges; i++) {
    (*weights)[i].Resize(range_length);
    (*weights)[i].Set(1.0);
  }
  for (int32 i = 0; i + 1 < num_ranges; i++) {
    int32 j = i + 1;
    int32 i_start = range_starts[i], i_end = i_start + range_length,
          j_start = range_starts[j];
    KALDI_ASSERT(j_start > i_start);
    if (i_end > j_start) {
      Vector<BaseFloat> &i_weights = (*weights)[i], &j_weights = (*weights)[j];

      int32 overlap_length = i_end - j_start;
      // divide the overlapping piece of the 2 ranges into 3 regions of
      // approximately equal size, called the left, middle and right region.
      int32 left_length = overlap_length / 3,
          middle_length = (overlap_length - left_length) / 2,
           right_length = overlap_length - left_length - middle_length;
      KALDI_ASSERT(left_length >= 0 && middle_length >= 0 && right_length >= 0 &&
                   left_length + middle_length + right_length == overlap_length);
      // set the weight of the left region to be zero for the right (j) range.
      for (int32 k = 0; k < left_length; k++)
        j_weights(k) = 0.0;
      // set the weight of the right region to be zero for the left (i) range.
      for (int32 k = 0; k < right_length; k++)
        i_weights(range_length - 1 - k) = 0.0;
      // for the middle range, linearly interpolate between the 0's and 1's.
      // note: we multiply with existing weights instead of set in order to get
      // more accurate behavior in the unexpected case where things triply
      // overlap.
      for (int32 k = 0; k < middle_length; k++) {
        BaseFloat weight = (0.5 + k) / middle_length;
        j_weights(left_length + k) = weight;
        i_weights(range_length - 1 - right_length - k) = weight;
      }
    }
  }
}

bool ConvertSupervisionToUnconstrained(
    const TransitionModel &trans_mdl,
    Supervision *supervision) {
  KALDI_ASSERT(supervision->label_dim == trans_mdl.NumTransitionIds() &&
               supervision->fst.NumStates() > 0 &&
               supervision->e2e_fsts.empty() &&
               supervision->alignment_pdfs.empty());

  // Remove epsilons that will have been introduced into supervision->fst by
  // class SupervisionSplitter (they make it harder to identify arcs that are on
  // the first frame).
  fst::RmEpsilon(&(supervision->fst));

  { // Set supervision->alignment_pdfs to the label sequence on a randomly chosen
    // path through supervision->fst.  This is only needed for computing LDA
    // stats in `nnet3-chain-acc-lda-stats`.
    fst::UniformArcSelector<fst::StdArc> selector;
    fst::RandGenOptions<fst::UniformArcSelector<fst::StdArc> > randgen_opts(
        selector);
    fst::StdVectorFst single_path_fst;
    fst::RandGen(supervision->fst, &single_path_fst, randgen_opts);
    fst::GetLinearSymbolSequence(single_path_fst, &(supervision->alignment_pdfs),
                                 static_cast<std::vector<int32>*>(NULL),
                                 static_cast<fst::StdArc::Weight*>(NULL));

    if (static_cast<int32>(supervision->alignment_pdfs.size()) !=
        supervision->frames_per_sequence) {
      KALDI_ERR << "Length mismatch between FST and frames-per-sequence.";
    }
    for (int32 i = 0; i < supervision->frames_per_sequence; i++) {
      supervision->alignment_pdfs[i] =
          trans_mdl.TransitionIdToPdf(supervision->alignment_pdfs[i]);
    }
  }


  {
    int32 num_states = supervision->fst.NumStates(),
        start_state = supervision->fst.Start(),
        num_transition_ids = trans_mdl.NumTransitionIds();
    for (int32 s = 0; s < num_states; s++) {
      for (fst::MutableArcIterator<fst::StdVectorFst> aiter(
               &(supervision->fst), s);
           !aiter.Done();  aiter.Next()) {
        fst::StdArc arc = aiter.Value();
        // First replace all output labels with epsilon.
        arc.olabel = 0;
        int32 transition_id = arc.ilabel;
        KALDI_ASSERT(transition_id <= num_transition_ids);
        // Then remove all self-loop transitions except those on the 1st frame
        // (which must come from the start state, since the FST was epsilon free).
        // The reason for allowing them on the 1st frame, if they were already
        // there, is because we want to allow phones to be cut in half on
        // chunk boundaries.  We don't have to do anything special on the
        // last frame.  (Note that the self-loops come after forward transitions,
        // because these graphs are always built with reorder == true; if it was
        // built with reorder == false, we'd have to treat the last, not first,
        // frame specially.)
        if (trans_mdl.IsSelfLoop(transition_id) && s != start_state)
          arc.ilabel = 0;
        aiter.SetValue(arc);
      }
    }
  }

  {
    // We determinize using DeterminizeStar, which removes epsilons while
    // determinizing.  It can't fail because the FST is functional (all output
    // paths are epsilons) and acyclic.  [Note: by "functional" here we have a
    // more natural definition of functional than Mohri likely uses in the
    // context of determinization; we mean, functional after removing epsilons]
    supervision->e2e_fsts.resize(1);
    bool is_partial = fst::DeterminizeStar(supervision->fst,
                                           &(supervision->e2e_fsts[0]));
    if (is_partial) {
      KALDI_WARN << "Partial FST generated when determinizing supervision; "
          "abandoning this chunk.";
      return false;
    }
    supervision->fst.DeleteStates();
    fst::Minimize(&(supervision->e2e_fsts[0]));
    if (supervision->e2e_fsts[0].NumStates() == 0) {
      // this should not happen-- likely a code bug or mismatch of some kind.
      KALDI_WARN << "Supervision FST became empty.";
      return false;
    }
  }

  {  // Add self-loops to the FST.  (At this point we move it to
    // supervision->e2e_fsts[0]).

    // There are be no disambiguation symbols here.
    std::vector<int32> disambig_syms;
    // We're not adding transition probabilities; we rely on compsition with the
    // normalization FST for that.  (note: all transition probabilities are just
    // 0.5 anyway, for the typical chain topology).
    BaseFloat self_loop_scale = 0.0;
    // 'reorder' must always be true for chain models.
    bool reorder = true;
    // The FST we're about to call AddSelfLoops() on will have self-loops, on
    // the first frame, so disable the check that the FST was originally
    // self-loop-free.
    bool check_no_self_loops = false;
    supervision->e2e_fsts.resize(1);
    AddSelfLoops(trans_mdl, disambig_syms, self_loop_scale,
                 reorder, check_no_self_loops, &(supervision->e2e_fsts[0]));
  }

  { // Convert transition-ids to pdf-ids+1 on the FST labels,
    // and copy ilabels to olabels.
    fst::StdVectorFst &e2e_fst = supervision->e2e_fsts[0];
    int32 num_states = e2e_fst.NumStates();
    for (int32 s = 0; s < num_states; s++) {
      for (fst::MutableArcIterator<fst::StdVectorFst> aiter(&e2e_fst, s);
           !aiter.Done();  aiter.Next()) {
        fst::StdArc arc = aiter.Value();
        // There will be a few zero ilabels at this point, due to how
        // AddSelfLoops() works (it calls MakePrecedingInputSymbolsSame(), which
        // adds epsilons).  zero olabels.
        if (arc.ilabel != 0) {
          int32 pdf_id_plus_one = trans_mdl.TransitionIdToPdf(arc.ilabel) + 1;
          arc.ilabel = pdf_id_plus_one;
          arc.olabel = pdf_id_plus_one;
          aiter.SetValue(arc);
        }
      }
    }
    supervision->label_dim = trans_mdl.NumPdfs();
  }

  {
    // AddSelfLoops() adds epsilons, and we don't want these.  Determinize-star
    // (which removes epsilons) and minimize again.
    fst::StdVectorFst temp_fst(supervision->e2e_fsts[0]);
    bool is_partial = fst::DeterminizeStar(temp_fst,
                                           &(supervision->e2e_fsts[0]));
    if (is_partial) {
      KALDI_WARN << "Partial FST generated when determinizing supervision; "
          "abandoning this chunk.";
      return false;
    }
    fst::Minimize(&(supervision->e2e_fsts[0]));
    fst::Connect(&(supervision->e2e_fsts[0]));
    if (supervision->e2e_fsts[0].NumStates() == 0) {
      // this should not happen-- likely a code bug or mismatch of some kind.
      KALDI_WARN << "Supervision FST became empty.";
      return false;
    }
  }
  return true;
}


}  // namespace chain
}  // namespace kaldi