chain-supervision.cc
45.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
// chain/chain-supervision.cc
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "chain/chain-supervision.h"
#include "lat/lattice-functions.h"
#include "util/text-utils.h"
#include "hmm/hmm-utils.h"
#include <numeric>
namespace kaldi {
namespace chain {
const int kSupervisionMaxStates = 200000; // we can later make this
// configurable if needed.
// attempts determinization (with limited max-states) and minimization;
// returns true on success
bool TryDeterminizeMinimize(int32 supervision_max_states,
fst::StdVectorFst *supervision_fst) {
if (supervision_fst->NumStates() >= supervision_max_states) {
KALDI_WARN << "Not attempting determinization as number of states "
<< "is too large " << supervision_fst->NumStates();
return false;
}
fst::DeterminizeOptions<fst::StdArc> opts;
opts.state_threshold = supervision_max_states;
fst::StdVectorFst fst_copy = *supervision_fst;
fst::Determinize(fst_copy, supervision_fst, opts);
// the - 1 here is just because I'm not sure if it stops just before the
// threshold.
if (supervision_fst->NumStates() >= opts.state_threshold - 1) {
KALDI_WARN << "Determinization stopped early after reaching "
<< supervision_fst->NumStates() << " states. Likely "
<< "this utterance has a very strange transcription.";
return false;
}
fst::Minimize(supervision_fst);
return true;
}
void ProtoSupervision::Write(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<ProtoSupervision>");
if (!binary) os << "\n";
int32 num_frames = allowed_phones.size();
WriteToken(os, binary, "<NumFrames>");
WriteBasicType(os, binary, num_frames);
if (!binary) os << "\n";
WriteToken(os, binary, "<AllowedPhones>");
if (!binary) os << "\n";
for (int32 i = 0; i < num_frames; i++)
WriteIntegerVector(os, binary, allowed_phones[i]);
if (!binary) os << "\n";
WriteFstKaldi(os, binary, fst);
WriteToken(os, binary, "</ProtoSupervision>");
if (!binary) os << "\n";
}
void SupervisionOptions::Check() const {
KALDI_ASSERT(left_tolerance >= 0 && right_tolerance >= 0 &&
frame_subsampling_factor > 0 &&
left_tolerance + right_tolerance + 1 >= frame_subsampling_factor);
KALDI_ASSERT(lm_scale >= 0.0 && lm_scale < 1.0);
}
bool AlignmentToProtoSupervision(const SupervisionOptions &opts,
const std::vector<int32> &phones,
const std::vector<int32> &durations,
ProtoSupervision *proto_supervision) {
opts.Check();
KALDI_ASSERT(phones.size() > 0 && phones.size() == durations.size());
std::vector<int32> labels(phones.size());
int32 num_frames = std::accumulate(durations.begin(), durations.end(), 0),
factor = opts.frame_subsampling_factor,
num_frames_subsampled = (num_frames + factor - 1) / factor;
proto_supervision->allowed_phones.clear();
proto_supervision->allowed_phones.resize(num_frames_subsampled);
proto_supervision->fst.DeleteStates();
if (num_frames_subsampled == 0)
return false;
int32 current_frame = 0, num_phones = phones.size();
for (int32 i = 0; i < num_phones; i++) {
int32 phone = phones[i], duration = durations[i];
KALDI_ASSERT(phone > 0 && duration > 0);
int32 t_start = std::max<int32>(0, (current_frame - opts.left_tolerance)),
t_end = std::min<int32>(num_frames,
(current_frame + duration + opts.right_tolerance)),
t_start_subsampled = (t_start + factor - 1) / factor,
t_end_subsampled = (t_end + factor - 1) / factor;
// note: if opts.Check() passed, the following assert should pass too.
KALDI_ASSERT(t_end_subsampled > t_start_subsampled &&
t_end_subsampled <= num_frames_subsampled);
for (int32 t_subsampled = t_start_subsampled;
t_subsampled < t_end_subsampled; t_subsampled++)
proto_supervision->allowed_phones[t_subsampled].push_back(phone);
current_frame += duration;
}
KALDI_ASSERT(current_frame == num_frames);
for (int32 t_subsampled = 0; t_subsampled < num_frames_subsampled;
t_subsampled++) {
KALDI_ASSERT(!proto_supervision->allowed_phones[t_subsampled].empty());
SortAndUniq(&(proto_supervision->allowed_phones[t_subsampled]));
}
fst::MakeLinearAcceptor(phones, &(proto_supervision->fst));
return true;
}
bool AlignmentToProtoSupervision(
const SupervisionOptions &opts,
const std::vector<std::pair<int32, int32> > &phones_durations,
ProtoSupervision *proto_supervision) {
KALDI_ASSERT(phones_durations.size() > 0);
std::vector<int32> phones(phones_durations.size()),
durations(phones_durations.size());
for (size_t size = phones_durations.size(), i = 0; i < size; i++) {
phones[i] = phones_durations[i].first;
durations[i] = phones_durations[i].second;
}
return AlignmentToProtoSupervision(opts, phones, durations,
proto_supervision);
}
bool ProtoSupervision::operator == (const ProtoSupervision &other) const {
return (allowed_phones == other.allowed_phones &&
fst::Equal(fst, other.fst));
}
bool PhoneLatticeToProtoSupervisionInternal(
const SupervisionOptions &opts,
const CompactLattice &lat,
ProtoSupervision *proto_supervision) {
opts.Check();
if (lat.NumStates() == 0) {
KALDI_WARN << "Empty lattice provided";
return false;
}
int32 num_states = lat.NumStates();
proto_supervision->fst.DeleteStates();
proto_supervision->fst.ReserveStates(num_states);
std::vector<int32> state_times;
int32 num_frames = CompactLatticeStateTimes(lat, &state_times),
factor = opts.frame_subsampling_factor,
num_frames_subsampled = (num_frames + factor - 1) / factor;
for (int32 state = 0; state < num_states; state++)
proto_supervision->fst.AddState();
proto_supervision->fst.SetStart(lat.Start());
proto_supervision->allowed_phones.clear();
proto_supervision->allowed_phones.resize(num_frames_subsampled);
for (int32 state = 0; state < num_states; state++) {
int32 state_time = state_times[state];
for (fst::ArcIterator<CompactLattice> aiter(lat, state); !aiter.Done();
aiter.Next()) {
const CompactLatticeArc &lat_arc = aiter.Value();
int32 next_state_time = state_time + lat_arc.weight.String().size();
int32 phone = lat_arc.ilabel; // It's an acceptor so ilabel == ollabel.
if (phone == 0) {
KALDI_WARN << "CompactLattice has epsilon arc. Unexpected.";
return false;
}
proto_supervision->fst.AddArc(state,
fst::StdArc(phone, phone,
fst::TropicalWeight(
lat_arc.weight.Weight().Value1()
* opts.lm_scale),
lat_arc.nextstate));
int32 t_begin = std::max<int32>(0, (state_time - opts.left_tolerance)),
t_end = std::min<int32>(num_frames,
(next_state_time + opts.right_tolerance)),
t_begin_subsampled = (t_begin + factor - 1)/ factor,
t_end_subsampled = (t_end + factor - 1)/ factor;
for (int32 t_subsampled = t_begin_subsampled;
t_subsampled < t_end_subsampled; t_subsampled++)
proto_supervision->allowed_phones[t_subsampled].push_back(phone);
}
if (lat.Final(state) != CompactLatticeWeight::Zero()) {
proto_supervision->fst.SetFinal(state, fst::TropicalWeight(
lat.Final(state).Weight().Value1() * opts.lm_scale));
if (state_times[state] != num_frames) {
KALDI_WARN << "Time of final state " << state << " in lattice is "
<< "not equal to number of frames " << num_frames
<< ". Are you sure the lattice is phone-aligned? "
<< "Rejecting it.";
return false;
}
}
}
for (int32 t_subsampled = 0; t_subsampled < num_frames_subsampled;
t_subsampled++) {
KALDI_ASSERT(!proto_supervision->allowed_phones[t_subsampled].empty());
SortAndUniq(&(proto_supervision->allowed_phones[t_subsampled]));
}
return true;
}
bool PhoneLatticeToProtoSupervision(const SupervisionOptions &opts,
const CompactLattice &lat,
ProtoSupervision *proto_supervision) {
if (!PhoneLatticeToProtoSupervisionInternal(opts, lat, proto_supervision))
return false;
if (opts.lm_scale != 0.0)
fst::Push(&(proto_supervision->fst),
fst::REWEIGHT_TO_INITIAL, fst::kDelta, true);
return true;
}
bool TimeEnforcerFst::GetArc(StateId s, Label ilabel, fst::StdArc* oarc) {
// the following call will do the range-check on 'ilabel'.
int32 phone = trans_model_.TransitionIdToPhone(ilabel);
KALDI_ASSERT(static_cast<size_t>(s) <= allowed_phones_.size());
if (static_cast<size_t>(s) == allowed_phones_.size()) {
// No arcs come from the final state.a
return false;
}
if (std::binary_search(allowed_phones_[s].begin(),
allowed_phones_[s].end(), phone)) {
oarc->ilabel = ilabel;
if (convert_to_pdfs_) {
// the olabel will be a pdf-id plus one, not a transition-id.
int32 pdf_id = trans_model_.TransitionIdToPdf(ilabel);
oarc->olabel = pdf_id + 1;
} else {
oarc->olabel = ilabel;
}
oarc->weight = fst::TropicalWeight::One();
oarc->nextstate = s + 1;
return true;
} else {
return false;
}
}
bool TrainingGraphToSupervisionE2e(
const fst::StdVectorFst &training_graph,
const TransitionModel &trans_model,
int32 num_frames,
Supervision *supervision) {
using fst::VectorFst;
using fst::StdArc;
using fst::StdVectorFst;
StdVectorFst trans2word_fst(training_graph);
fst::RemoveEpsLocal(&trans2word_fst);
fst::RmEpsilon(&trans2word_fst);
// first change labels to pdf-id + 1
int32 num_states = trans2word_fst.NumStates();
for (int32 state = 0; state < num_states; state++) {
for (fst::MutableArcIterator<StdVectorFst> aiter(&trans2word_fst, state);
!aiter.Done(); aiter.Next()) {
const StdArc &arc = aiter.Value();
if (arc.ilabel == 0) {
KALDI_WARN << "Utterance rejected due to eps on input label";
return false;
}
KALDI_ASSERT(arc.ilabel != 0);
StdArc arc2(arc);
arc2.ilabel = arc2.olabel = trans_model.TransitionIdToPdf(arc.ilabel) + 1;
aiter.SetValue(arc2);
}
}
supervision->e2e_fsts.clear();
supervision->e2e_fsts.resize(1);
supervision->e2e_fsts[0] = trans2word_fst;
supervision->weight = 1.0;
supervision->num_sequences = 1;
supervision->frames_per_sequence = num_frames;
supervision->label_dim = trans_model.NumPdfs();
return true;
}
bool ProtoSupervisionToSupervision(
const ContextDependencyInterface &ctx_dep,
const TransitionModel &trans_model,
const ProtoSupervision &proto_supervision,
bool convert_to_pdfs,
Supervision *supervision) {
using fst::VectorFst;
using fst::StdArc;
VectorFst<StdArc> phone_fst(proto_supervision.fst);
std::vector<int32> disambig_syms; // empty list of diambiguation symbols.
int32 subsequential_symbol = trans_model.GetPhones().back() + 1;
if (ctx_dep.CentralPosition() != ctx_dep.ContextWidth() - 1) {
// note: this function only adds the subseq symbol to the input of what was
// previously an acceptor, so we project, i.e. copy the ilabels to the
// olabels
AddSubsequentialLoop(subsequential_symbol, &phone_fst);
fst::Project(&phone_fst, fst::PROJECT_INPUT);
}
// inv_cfst will be expanded on the fly, as needed.
fst::InverseContextFst inv_cfst(subsequential_symbol,
trans_model.GetPhones(),
disambig_syms,
ctx_dep.ContextWidth(),
ctx_dep.CentralPosition());
VectorFst<StdArc> context_dep_fst;
ComposeDeterministicOnDemandInverse(phone_fst, &inv_cfst, &context_dep_fst);
// at this point, context_dep_fst will have indexes into
// 'inv_cfst.IlabelInfo()' as its input symbol (representing context-dependent
// phones), and phones on its output. We don't need the phones, so we'll
// project.
fst::Project(&context_dep_fst, fst::PROJECT_INPUT);
std::vector<int32> disambig_syms_h; // disambiguation symbols on input side of
// H -- will be empty, as there were no
// disambiguation symbols on the output.
HTransducerConfig h_cfg;
// We don't want to add any transition probabilities as they will be added
// when we compose with the denominator graph.
h_cfg.transition_scale = 0.0;
VectorFst<StdArc> *h_fst = GetHTransducer(inv_cfst.IlabelInfo(),
ctx_dep,
trans_model,
h_cfg,
&disambig_syms_h);
KALDI_ASSERT(disambig_syms_h.empty());
VectorFst<StdArc> transition_id_fst;
TableCompose(*h_fst, context_dep_fst, &transition_id_fst);
delete h_fst;
// We don't want to add any transition probabilities as they will be added
// when we compose with the denominator graph.
BaseFloat self_loop_scale = 0.0;
// You should always set reorder to true; for the current chain-model
// topologies, it will affect results if you are inconsistent about this.
bool reorder = true,
check_no_self_loops = true;
// add self-loops to the FST with transition-ids as its labels.
AddSelfLoops(trans_model, disambig_syms_h, self_loop_scale, reorder,
check_no_self_loops, &transition_id_fst);
// at this point transition_id_fst will have transition-ids as its ilabels and
// context-dependent phones (indexes into ILabelInfo()) as its olabels.
// Discard the context-dependent phones by projecting on the input, keeping
// only the transition-ids.
fst::Project(&transition_id_fst, fst::PROJECT_INPUT);
if (transition_id_fst.Properties(fst::kIEpsilons, true) != 0) {
// remove epsilons, if there are any.
fst::RmEpsilon(&transition_id_fst);
}
KALDI_ASSERT(transition_id_fst.NumStates() > 0);
// The last step is to enforce that phones can only appear on the frames they
// are 'allowed' to appear on. This will also convert the FST to have pdf-ids
// plus one as the labels
TimeEnforcerFst enforcer_fst(trans_model,
convert_to_pdfs,
proto_supervision.allowed_phones);
ComposeDeterministicOnDemand(transition_id_fst,
&enforcer_fst,
&(supervision->fst));
fst::Connect(&(supervision->fst));
if (convert_to_pdfs) {
// at this point supervision->fst will have pdf-ids plus one as the olabels,
// but still transition-ids as the ilabels. Copy olabels to ilabels.
fst::Project(&(supervision->fst), fst::PROJECT_OUTPUT);
}
KALDI_ASSERT(supervision->fst.Properties(fst::kIEpsilons, true) == 0);
if (supervision->fst.NumStates() == 0) {
KALDI_WARN << "Supervision FST is empty (too many phones for too few "
<< "frames?)";
// possibly there were too many phones for too few frames.
return false;
}
supervision->weight = 1.0;
supervision->num_sequences = 1;
supervision->frames_per_sequence = proto_supervision.allowed_phones.size();
if (convert_to_pdfs)
supervision->label_dim = trans_model.NumPdfs();
else
supervision->label_dim = trans_model.NumTransitionIds();
SortBreadthFirstSearch(&(supervision->fst));
return true;
}
SupervisionSplitter::SupervisionSplitter(
const Supervision &supervision):
supervision_(supervision),
frame_(supervision_.fst.NumStates(), -1) {
const fst::StdVectorFst &fst(supervision_.fst);
// The fst in struct Supervision is supposed to be epsilon-free and
// topologically sorted; this function relies on those properties to
// set up the frame_ vector (which maps each state in the
// FST to a frame-index 0 <= t < num_frames), and it checks them.
if (supervision_.num_sequences != 1) {
KALDI_WARN << "Splitting already-reattached sequence (only expected in "
<< "testing code)";
}
int32 num_frames = supervision_.frames_per_sequence *
supervision_.num_sequences;
int32 ans = ComputeFstStateTimes(fst, &frame_);
KALDI_ASSERT(ans == num_frames);
}
void SupervisionSplitter::GetFrameRange(int32 begin_frame, int32 num_frames,
Supervision *out_supervision) const {
int32 end_frame = begin_frame + num_frames;
// Note: end_frame is not included in the range of frames that the
// output supervision object covers; it's one past the end.
KALDI_ASSERT(num_frames > 0 && begin_frame >= 0 &&
begin_frame + num_frames <=
supervision_.num_sequences * supervision_.frames_per_sequence);
std::vector<int32>::const_iterator begin_iter =
std::lower_bound(frame_.begin(), frame_.end(), begin_frame),
end_iter = std::lower_bound(begin_iter, frame_.end(), end_frame);
KALDI_ASSERT(*begin_iter == begin_frame &&
(begin_iter == frame_.begin() || begin_iter[-1] < begin_frame));
// even if end_frame == supervision_.num_frames, there should be a state with
// that frame index.
KALDI_ASSERT(end_iter[-1] < end_frame &&
(end_iter < frame_.end() || *end_iter == end_frame));
int32 begin_state = begin_iter - frame_.begin(),
end_state = end_iter - frame_.begin();
CreateRangeFst(begin_frame, end_frame,
begin_state, end_state, &(out_supervision->fst));
KALDI_ASSERT(out_supervision->fst.NumStates() > 0);
KALDI_ASSERT(supervision_.num_sequences == 1);
out_supervision->num_sequences = 1;
out_supervision->weight = supervision_.weight;
out_supervision->frames_per_sequence = num_frames;
out_supervision->label_dim = supervision_.label_dim;
}
void SupervisionSplitter::CreateRangeFst(
int32 begin_frame, int32 end_frame,
int32 begin_state, int32 end_state,
fst::StdVectorFst *fst) const {
// There will be a special pre-start state that has epsilon transitions to all
// states whose frame equals begin_frame; we'll later do RmEpsilon to remove
// these. Next we will include all states begin_state <= s < end_state in the
// output FST, plus (if end_frame != supervision_.num_frames) a special final
// state. All transitions to states >= end_state will be turned into
// a transition to the special final state. There should be no final-probs
// on the states begin_state <= s < end_state.
KALDI_ASSERT(end_state > begin_state);
fst->DeleteStates();
fst->ReserveStates(end_state - begin_state + 2);
int32 start_state = fst->AddState();
fst->SetStart(start_state);
for (int32 i = begin_state; i < end_state; i++)
fst->AddState();
// Add the special final-state.
int32 final_state = fst->AddState();
fst->SetFinal(final_state, fst::TropicalWeight::One());
for (int32 state = begin_state; state < end_state; state++) {
int32 output_state = state - begin_state + 1;
if (frame_[state] == begin_frame) {
// we'd like to make this an initial state, but OpenFst doesn't allow
// multiple initial states. Instead we add an epsilon transition to it
// from our actual initial state; we'll later do RmEpsilon and
// determinize.
fst->AddArc(start_state,
fst::StdArc(0, 0, fst::TropicalWeight::One(),
output_state));
} else {
KALDI_ASSERT(frame_[state] < end_frame);
}
typedef fst::ArcIterator<fst::StdVectorFst> IterType;
for (IterType aiter(supervision_.fst, state); !aiter.Done(); aiter.Next()) {
const fst::StdArc &arc(aiter.Value());
int32 nextstate = arc.nextstate;
if (nextstate >= end_state) {
// A transition to any state outside the range becomes a transition to
// our special final-state.
fst->AddArc(output_state,
fst::StdArc(arc.ilabel, arc.olabel,
arc.weight, final_state));
} else {
int32 output_nextstate = arc.nextstate - begin_state + 1;
// note: arc.ilabel should equal arc.olabel and arc.weight should equal
// fst::TropicalWeight::One().
fst->AddArc(output_state,
fst::StdArc(arc.ilabel, arc.olabel,
arc.weight, output_nextstate));
}
}
}
}
// I couldn't figure out how to do this with OpenFST's native 'visitor' and
// queue mechanisms so I'm just coding this myself.
void SortBreadthFirstSearch(fst::StdVectorFst *fst) {
std::vector<int32> state_order(fst->NumStates(), -1);
std::vector<bool> seen(fst->NumStates(), false);
int32 start_state = fst->Start();
KALDI_ASSERT(start_state >= 0);
std::deque<int32> queue;
queue.push_back(start_state);
seen[start_state] = true;
int32 num_output = 0;
while (!queue.empty()) {
int32 state = queue.front();
state_order[state] = num_output++;
queue.pop_front();
for (fst::ArcIterator<fst::StdVectorFst> aiter(*fst, state);
!aiter.Done(); aiter.Next()) {
int32 nextstate = aiter.Value().nextstate;
if (!seen[nextstate]) {
seen[nextstate] = true;
queue.push_back(nextstate);
}
}
}
if (num_output != fst->NumStates())
KALDI_ERR << "Input to SortBreadthFirstSearch must be connected.";
fst::StateSort(fst, state_order);
}
void Supervision::Write(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<Supervision>");
WriteToken(os, binary, "<Weight>");
WriteBasicType(os, binary, weight);
WriteToken(os, binary, "<NumSequences>");
WriteBasicType(os, binary, num_sequences);
WriteToken(os, binary, "<FramesPerSeq>");
WriteBasicType(os, binary, frames_per_sequence);
WriteToken(os, binary, "<LabelDim>");
WriteBasicType(os, binary, label_dim);
KALDI_ASSERT(frames_per_sequence > 0 && label_dim > 0 &&
num_sequences > 0);
bool e2e = !e2e_fsts.empty();
WriteToken(os, binary, "<End2End>");
// the following is of course redundant, but it's for back compatibility
// reasons.
WriteBasicType(os, binary, e2e);
if (!e2e) {
if (binary == false) {
// In text mode, write the FST without any compactification.
WriteFstKaldi(os, binary, fst);
} else {
// Write using StdAcceptorCompactFst, making use of the fact that it's an
// acceptor.
fst::FstWriteOptions write_options("<unknown>");
fst::StdCompactAcceptorFst::WriteFst(
fst, fst::AcceptorCompactor<fst::StdArc>(), os,
write_options);
}
} else {
KALDI_ASSERT(e2e_fsts.size() == num_sequences);
WriteToken(os, binary, "<Fsts>");
for (int i = 0; i < num_sequences; i++) {
if (binary == false) {
// In text mode, write the FST without any compactification.
WriteFstKaldi(os, binary, e2e_fsts[i]);
} else {
// Write using StdAcceptorCompactFst, making use of the fact that it's an
// acceptor.
fst::FstWriteOptions write_options("<unknown>");
fst::StdCompactAcceptorFst::WriteFst(
e2e_fsts[i], fst::AcceptorCompactor<fst::StdArc>(), os,
write_options);
}
}
WriteToken(os, binary, "</Fsts>");
}
if (!alignment_pdfs.empty()) {
WriteToken(os, binary, "<AlignmentPdfs>");
WriteIntegerVector(os, binary, alignment_pdfs);
}
WriteToken(os, binary, "</Supervision>");
}
void Supervision::Swap(Supervision *other) {
std::swap(weight, other->weight);
std::swap(num_sequences, other->num_sequences);
std::swap(frames_per_sequence, other->frames_per_sequence);
std::swap(label_dim, other->label_dim);
std::swap(fst, other->fst);
std::swap(e2e_fsts, other->e2e_fsts);
std::swap(alignment_pdfs, other->alignment_pdfs);
}
void Supervision::Read(std::istream &is, bool binary) {
ExpectToken(is, binary, "<Supervision>");
ExpectToken(is, binary, "<Weight>");
ReadBasicType(is, binary, &weight);
ExpectToken(is, binary, "<NumSequences>");
ReadBasicType(is, binary, &num_sequences);
ExpectToken(is, binary, "<FramesPerSeq>");
ReadBasicType(is, binary, &frames_per_sequence);
ExpectToken(is, binary, "<LabelDim>");
ReadBasicType(is, binary, &label_dim);
bool e2e;
ExpectToken(is, binary, "<End2End>");
ReadBasicType(is, binary, &e2e);
if (!e2e) {
if (!binary) {
ReadFstKaldi(is, binary, &fst);
} else {
fst::StdCompactAcceptorFst *compact_fst =
fst::StdCompactAcceptorFst::Read(
is, fst::FstReadOptions(std::string("[unknown]")));
if (compact_fst == NULL)
KALDI_ERR << "Error reading compact FST from disk";
fst = *compact_fst;
delete compact_fst;
}
} else {
e2e_fsts.resize(num_sequences);
ExpectToken(is, binary, "<Fsts>");
for (int i = 0; i < num_sequences; i++) {
if (!binary) {
ReadFstKaldi(is, binary, &e2e_fsts[i]);
} else {
fst::StdCompactAcceptorFst *compact_fst =
fst::StdCompactAcceptorFst::Read(
is, fst::FstReadOptions(std::string("[unknown]")));
if (compact_fst == NULL)
KALDI_ERR << "Error reading compact FST from disk";
e2e_fsts[i] = *compact_fst;
delete compact_fst;
}
}
ExpectToken(is, binary, "</Fsts>");
}
if (PeekToken(is, binary) == 'A') {
ExpectToken(is, binary, "<AlignmentPdfs>");
ReadIntegerVector(is, binary, &alignment_pdfs);
} else {
alignment_pdfs.clear();
}
ExpectToken(is, binary, "</Supervision>");
}
int32 ComputeFstStateTimes(const fst::StdVectorFst &fst,
std::vector<int32> *state_times) {
if (fst.Start() != 0) // this is implied by our properties.
KALDI_ERR << "Expecting input FST start state to be zero";
int32 num_states = fst.NumStates();
int32 total_length = -1;
state_times->clear();
state_times->resize(num_states, -1);
(*state_times)[0] = 0;
for (int32 state = 0; state < num_states; state++) {
int32 next_state_time = (*state_times)[state] + 1;
if (next_state_time <= 0) // i.e. (*state_times)[state] < 0
KALDI_ERR << "Input FST does not have required properties.";
for (fst::ArcIterator<fst::StdVectorFst> aiter(fst, state);
!aiter.Done(); aiter.Next()) {
const fst::StdArc &arc = aiter.Value();
KALDI_ASSERT(arc.ilabel != 0);
int32 &next_state_ref = (*state_times)[arc.nextstate];
if (next_state_ref == -1)
next_state_ref = next_state_time;
else if (next_state_ref != next_state_time)
KALDI_ERR << "Input FST does not have required properties.";
}
if (fst.Final(state) != fst::TropicalWeight::Zero()) {
if (total_length == -1)
total_length = next_state_time - 1;
else if (total_length != next_state_time - 1)
KALDI_ERR << "Input FST does not have required properties.";
}
}
std::vector<int32>::iterator iter = state_times->begin(),
end = iter + (num_states - 1);
// check that the frame-indexes of states are monotonically non-decreasing, as
// they should be based on the top-sorting. We rely on this property to
// compute the frame ranges while splitting.
while (iter != end) {
int32 cur_t = *iter;
++iter;
int32 next_t = *iter;
KALDI_ASSERT(next_t >= cur_t);
}
if (total_length < 0)
KALDI_ERR << "Input FST does not have required properties.";
return total_length;
}
Supervision::Supervision(const Supervision &other):
weight(other.weight), num_sequences(other.num_sequences),
frames_per_sequence(other.frames_per_sequence),
label_dim(other.label_dim), fst(other.fst),
e2e_fsts(other.e2e_fsts), alignment_pdfs(other.alignment_pdfs) { }
// This static function is called by MergeSupervision if the supervisions
// are end2end. It simply puts all e2e FST's into 1 supervision.
void MergeSupervisionE2e(const std::vector<const Supervision*> &input,
Supervision *output_supervision) {
KALDI_ASSERT(!input.empty());
KALDI_ASSERT(input[0]->e2e_fsts.size() == 1);
*output_supervision = *(input[0]);
output_supervision->e2e_fsts.reserve(input.size());
int32 frames_per_sequence = output_supervision->frames_per_sequence,
num_seqs = input.size();
for (int32 i = 1; i < num_seqs; i++) {
output_supervision->num_sequences++;
KALDI_ASSERT(input[i]->e2e_fsts.size() == 1);
KALDI_ASSERT(input[i]->frames_per_sequence ==
frames_per_sequence);
output_supervision->e2e_fsts.push_back(input[i]->e2e_fsts[0]);
}
output_supervision->alignment_pdfs.clear();
// The program nnet3-chain-acc-lda-stats works on un-merged egs,
// and there is no need to support merging of 'alignment_pdfs'
}
void MergeSupervision(const std::vector<const Supervision*> &input,
Supervision *output_supervision) {
KALDI_ASSERT(!input.empty());
int32 label_dim = input[0]->label_dim,
num_inputs = input.size();
if (num_inputs == 1) {
*output_supervision = *(input[0]);
return;
}
if (!input[0]->e2e_fsts.empty()) {
MergeSupervisionE2e(input, output_supervision);
return;
}
for (int32 i = 1; i < num_inputs; i++) {
KALDI_ASSERT(input[i]->label_dim == label_dim &&
"Trying to append incompatible Supervision objects");
KALDI_ASSERT(input[i]->alignment_pdfs.empty());
}
*output_supervision = *(input[num_inputs-1]);
for (int32 i = num_inputs - 2; i >= 0; i--) {
const Supervision &src = *(input[i]);
if (output_supervision->weight == src.weight &&
output_supervision->frames_per_sequence ==
src.frames_per_sequence) {
// Combine with current output
// append src.fst to output_supervision->fst.
// the complexity here is O(V1 + E1)
fst::Concat(src.fst, &output_supervision->fst);
output_supervision->num_sequences++;
} else {
KALDI_ERR << "Mismatch weight or frames_per_sequence between inputs";
}
}
fst::StdVectorFst &out_fst = output_supervision->fst;
// The process of concatenation will have introduced epsilons.
fst::RmEpsilon(&out_fst);
SortBreadthFirstSearch(&out_fst);
}
// This static function is called by AddWeightToSupervisionFst if the supervision
// is end2end. It's similar to AddWeightToSupervisionFst, except we don't do
// TryDeterminizeMinimize as it's not necessary (the graphs are already small)
// and we don't do SortBreadthFirstSearch (the graph has self-loops so it can't
// be sorted).
bool AddWeightToSupervisionFstE2e(const fst::StdVectorFst &normalization_fst,
Supervision *supervision) {
KALDI_ASSERT(supervision->num_sequences == 1);
KALDI_ASSERT(supervision->e2e_fsts.size() == 1);
// Remove epsilons before composing. 'normalization_fst' has no epsilons so
// the composed result will be epsilon free.
fst::StdVectorFst supervision_fst_noeps(supervision->e2e_fsts[0]);
fst::RmEpsilon(&supervision_fst_noeps);
// Note: by default, 'Compose' will call 'Connect', so if the
// resulting FST is not connected, it will end up empty.
fst::StdVectorFst composed_fst;
fst::Compose(supervision_fst_noeps, normalization_fst,
&composed_fst);
if (composed_fst.NumStates() == 0)
return false;
// Projection should not be necessary, as both FSTs are acceptors.
supervision->e2e_fsts[0] = composed_fst;
KALDI_ASSERT(supervision->fst.Properties(fst::kAcceptor, true) == fst::kAcceptor);
KALDI_ASSERT(supervision->fst.Properties(fst::kIEpsilons, true) == 0);
return true;
}
bool AddWeightToSupervisionFst(const fst::StdVectorFst &normalization_fst,
Supervision *supervision) {
if (!supervision->e2e_fsts.empty())
return AddWeightToSupervisionFstE2e(normalization_fst, supervision);
// remove epsilons before composing. 'normalization_fst' has noepsilons so
// the composed result will be epsilon free.
fst::StdVectorFst supervision_fst_noeps(supervision->fst);
fst::RmEpsilon(&supervision_fst_noeps);
if (!TryDeterminizeMinimize(kSupervisionMaxStates,
&supervision_fst_noeps)) {
KALDI_WARN << "Failed to determinize supervision fst";
return false;
}
// note: by default, 'Compose' will call 'Connect', so if the
// resulting FST is not connected, it will end up empty.
fst::StdVectorFst composed_fst;
fst::Compose(supervision_fst_noeps, normalization_fst,
&composed_fst);
if (composed_fst.NumStates() == 0)
return false;
// projection should not be necessary, as both FSTs are acceptors.
// determinize and minimize to make it as compact as possible.
if (!TryDeterminizeMinimize(kSupervisionMaxStates,
&composed_fst)) {
KALDI_WARN << "Failed to determinize normalized supervision fst";
return false;
}
supervision->fst = composed_fst;
// Make sure the states are numbered in increasing order of time.
SortBreadthFirstSearch(&(supervision->fst));
KALDI_ASSERT(supervision->fst.Properties(fst::kAcceptor, true) == fst::kAcceptor);
KALDI_ASSERT(supervision->fst.Properties(fst::kIEpsilons, true) == 0);
return true;
}
void SplitIntoRanges(int32 num_frames,
int32 frames_per_range,
std::vector<int32> *range_starts) {
if (frames_per_range > num_frames) {
range_starts->clear();
return; // there is no room for even one range.
}
int32 num_ranges = num_frames / frames_per_range,
extra_frames = num_frames % frames_per_range;
// this is a kind of heuristic. If the number of frames we'd
// be skipping is less than 1/4 of the frames_per_range, then
// skip frames; otherwise, duplicate frames.
// it's important that this is <=, not <, so that if
// extra_frames == 0 and frames_per_range is < 4, we
// don't insert an extra range.
if (extra_frames <= frames_per_range / 4) {
// skip frames. we do this at start or end, or between ranges.
std::vector<int32> num_skips(num_ranges + 1, 0);
for (int32 i = 0; i < extra_frames; i++)
num_skips[RandInt(0, num_ranges)]++;
range_starts->resize(num_ranges);
int32 cur_start = num_skips[0];
for (int32 i = 0; i < num_ranges; i++) {
(*range_starts)[i] = cur_start;
cur_start += frames_per_range;
cur_start += num_skips[i + 1];
}
KALDI_ASSERT(cur_start == num_frames);
} else {
// duplicate frames.
num_ranges++;
int32 num_duplicated_frames = frames_per_range - extra_frames;
// the way we handle the 'extra_frames' frames of output is that we
// backtrack zero or more frames between outputting each pair of ranges, and
// the total of these backtracks equals 'extra_frames'.
std::vector<int32> num_backtracks(num_ranges, 0);
for (int32 i = 0; i < num_duplicated_frames; i++) {
// num_ranges - 2 below is not a bug. we only want to backtrack
// between ranges, not past the end of the last range (i.e. at
// position num_ranges - 1). we make the vector one longer to
// simplify the loop below.
num_backtracks[RandInt(0, num_ranges - 2)]++;
}
range_starts->resize(num_ranges);
int32 cur_start = 0;
for (int32 i = 0; i < num_ranges; i++) {
(*range_starts)[i] = cur_start;
cur_start += frames_per_range;
cur_start -= num_backtracks[i];
}
KALDI_ASSERT(cur_start == num_frames);
}
}
bool Supervision::operator == (const Supervision &other) const {
return weight == other.weight && num_sequences == other.num_sequences &&
frames_per_sequence == other.frames_per_sequence &&
label_dim == other.label_dim && fst::Equal(fst, other.fst);
}
void Supervision::Check(const TransitionModel &trans_mdl) const {
if (weight <= 0.0)
KALDI_ERR << "Weight should be positive.";
if (frames_per_sequence <= 0)
KALDI_ERR << "Invalid frames_per_sequence: " << frames_per_sequence;
if (num_sequences <= 0)
KALDI_ERR << "Invalid num_sequences: " << num_sequences;
if (!(label_dim == trans_mdl.NumPdfs() ||
label_dim == trans_mdl.NumTransitionIds()))
KALDI_ERR << "Invalid label-dim: " << label_dim
<< ", expected " << trans_mdl.NumPdfs()
<< " or " << trans_mdl.NumTransitionIds();
std::vector<int32> state_times;
if (frames_per_sequence * num_sequences !=
ComputeFstStateTimes(fst, &state_times))
KALDI_ERR << "Num-frames does not match fst.";
}
void GetWeightsForRanges(int32 range_length,
const std::vector<int32> &range_starts,
std::vector<Vector<BaseFloat> > *weights) {
KALDI_ASSERT(range_length > 0);
int32 num_ranges = range_starts.size();
weights->resize(num_ranges);
for (int32 i = 0; i < num_ranges; i++) {
(*weights)[i].Resize(range_length);
(*weights)[i].Set(1.0);
}
for (int32 i = 0; i + 1 < num_ranges; i++) {
int32 j = i + 1;
int32 i_start = range_starts[i], i_end = i_start + range_length,
j_start = range_starts[j];
KALDI_ASSERT(j_start > i_start);
if (i_end > j_start) {
Vector<BaseFloat> &i_weights = (*weights)[i], &j_weights = (*weights)[j];
int32 overlap_length = i_end - j_start;
// divide the overlapping piece of the 2 ranges into 3 regions of
// approximately equal size, called the left, middle and right region.
int32 left_length = overlap_length / 3,
middle_length = (overlap_length - left_length) / 2,
right_length = overlap_length - left_length - middle_length;
KALDI_ASSERT(left_length >= 0 && middle_length >= 0 && right_length >= 0 &&
left_length + middle_length + right_length == overlap_length);
// set the weight of the left region to be zero for the right (j) range.
for (int32 k = 0; k < left_length; k++)
j_weights(k) = 0.0;
// set the weight of the right region to be zero for the left (i) range.
for (int32 k = 0; k < right_length; k++)
i_weights(range_length - 1 - k) = 0.0;
// for the middle range, linearly interpolate between the 0's and 1's.
// note: we multiply with existing weights instead of set in order to get
// more accurate behavior in the unexpected case where things triply
// overlap.
for (int32 k = 0; k < middle_length; k++) {
BaseFloat weight = (0.5 + k) / middle_length;
j_weights(left_length + k) = weight;
i_weights(range_length - 1 - right_length - k) = weight;
}
}
}
}
bool ConvertSupervisionToUnconstrained(
const TransitionModel &trans_mdl,
Supervision *supervision) {
KALDI_ASSERT(supervision->label_dim == trans_mdl.NumTransitionIds() &&
supervision->fst.NumStates() > 0 &&
supervision->e2e_fsts.empty() &&
supervision->alignment_pdfs.empty());
// Remove epsilons that will have been introduced into supervision->fst by
// class SupervisionSplitter (they make it harder to identify arcs that are on
// the first frame).
fst::RmEpsilon(&(supervision->fst));
{ // Set supervision->alignment_pdfs to the label sequence on a randomly chosen
// path through supervision->fst. This is only needed for computing LDA
// stats in `nnet3-chain-acc-lda-stats`.
fst::UniformArcSelector<fst::StdArc> selector;
fst::RandGenOptions<fst::UniformArcSelector<fst::StdArc> > randgen_opts(
selector);
fst::StdVectorFst single_path_fst;
fst::RandGen(supervision->fst, &single_path_fst, randgen_opts);
fst::GetLinearSymbolSequence(single_path_fst, &(supervision->alignment_pdfs),
static_cast<std::vector<int32>*>(NULL),
static_cast<fst::StdArc::Weight*>(NULL));
if (static_cast<int32>(supervision->alignment_pdfs.size()) !=
supervision->frames_per_sequence) {
KALDI_ERR << "Length mismatch between FST and frames-per-sequence.";
}
for (int32 i = 0; i < supervision->frames_per_sequence; i++) {
supervision->alignment_pdfs[i] =
trans_mdl.TransitionIdToPdf(supervision->alignment_pdfs[i]);
}
}
{
int32 num_states = supervision->fst.NumStates(),
start_state = supervision->fst.Start(),
num_transition_ids = trans_mdl.NumTransitionIds();
for (int32 s = 0; s < num_states; s++) {
for (fst::MutableArcIterator<fst::StdVectorFst> aiter(
&(supervision->fst), s);
!aiter.Done(); aiter.Next()) {
fst::StdArc arc = aiter.Value();
// First replace all output labels with epsilon.
arc.olabel = 0;
int32 transition_id = arc.ilabel;
KALDI_ASSERT(transition_id <= num_transition_ids);
// Then remove all self-loop transitions except those on the 1st frame
// (which must come from the start state, since the FST was epsilon free).
// The reason for allowing them on the 1st frame, if they were already
// there, is because we want to allow phones to be cut in half on
// chunk boundaries. We don't have to do anything special on the
// last frame. (Note that the self-loops come after forward transitions,
// because these graphs are always built with reorder == true; if it was
// built with reorder == false, we'd have to treat the last, not first,
// frame specially.)
if (trans_mdl.IsSelfLoop(transition_id) && s != start_state)
arc.ilabel = 0;
aiter.SetValue(arc);
}
}
}
{
// We determinize using DeterminizeStar, which removes epsilons while
// determinizing. It can't fail because the FST is functional (all output
// paths are epsilons) and acyclic. [Note: by "functional" here we have a
// more natural definition of functional than Mohri likely uses in the
// context of determinization; we mean, functional after removing epsilons]
supervision->e2e_fsts.resize(1);
bool is_partial = fst::DeterminizeStar(supervision->fst,
&(supervision->e2e_fsts[0]));
if (is_partial) {
KALDI_WARN << "Partial FST generated when determinizing supervision; "
"abandoning this chunk.";
return false;
}
supervision->fst.DeleteStates();
fst::Minimize(&(supervision->e2e_fsts[0]));
if (supervision->e2e_fsts[0].NumStates() == 0) {
// this should not happen-- likely a code bug or mismatch of some kind.
KALDI_WARN << "Supervision FST became empty.";
return false;
}
}
{ // Add self-loops to the FST. (At this point we move it to
// supervision->e2e_fsts[0]).
// There are be no disambiguation symbols here.
std::vector<int32> disambig_syms;
// We're not adding transition probabilities; we rely on compsition with the
// normalization FST for that. (note: all transition probabilities are just
// 0.5 anyway, for the typical chain topology).
BaseFloat self_loop_scale = 0.0;
// 'reorder' must always be true for chain models.
bool reorder = true;
// The FST we're about to call AddSelfLoops() on will have self-loops, on
// the first frame, so disable the check that the FST was originally
// self-loop-free.
bool check_no_self_loops = false;
supervision->e2e_fsts.resize(1);
AddSelfLoops(trans_mdl, disambig_syms, self_loop_scale,
reorder, check_no_self_loops, &(supervision->e2e_fsts[0]));
}
{ // Convert transition-ids to pdf-ids+1 on the FST labels,
// and copy ilabels to olabels.
fst::StdVectorFst &e2e_fst = supervision->e2e_fsts[0];
int32 num_states = e2e_fst.NumStates();
for (int32 s = 0; s < num_states; s++) {
for (fst::MutableArcIterator<fst::StdVectorFst> aiter(&e2e_fst, s);
!aiter.Done(); aiter.Next()) {
fst::StdArc arc = aiter.Value();
// There will be a few zero ilabels at this point, due to how
// AddSelfLoops() works (it calls MakePrecedingInputSymbolsSame(), which
// adds epsilons). zero olabels.
if (arc.ilabel != 0) {
int32 pdf_id_plus_one = trans_mdl.TransitionIdToPdf(arc.ilabel) + 1;
arc.ilabel = pdf_id_plus_one;
arc.olabel = pdf_id_plus_one;
aiter.SetValue(arc);
}
}
}
supervision->label_dim = trans_mdl.NumPdfs();
}
{
// AddSelfLoops() adds epsilons, and we don't want these. Determinize-star
// (which removes epsilons) and minimize again.
fst::StdVectorFst temp_fst(supervision->e2e_fsts[0]);
bool is_partial = fst::DeterminizeStar(temp_fst,
&(supervision->e2e_fsts[0]));
if (is_partial) {
KALDI_WARN << "Partial FST generated when determinizing supervision; "
"abandoning this chunk.";
return false;
}
fst::Minimize(&(supervision->e2e_fsts[0]));
fst::Connect(&(supervision->e2e_fsts[0]));
if (supervision->e2e_fsts[0].NumStates() == 0) {
// this should not happen-- likely a code bug or mismatch of some kind.
KALDI_WARN << "Supervision FST became empty.";
return false;
}
}
return true;
}
} // namespace chain
} // namespace kaldi