nnet3-chain-compute-post.cc
10.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// nnet3bin/nnet3-chain-compute-post.cc
// Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey)
// 2015 Vimal Manohar
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "nnet3/nnet-am-decodable-simple.h"
#include "base/timer.h"
#include "nnet3/nnet-utils.h"
#include "chain/chain-denominator.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace kaldi::nnet3;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
const char *usage =
"Compute posteriors from 'denominator FST' of chain model and optionally "
"map them to phones.\n"
"\n"
"Usage: nnet3-chain-compute-post [options] <nnet-in> <den-fst> <features-rspecifier> <matrix-wspecifier>\n"
" e.g.: nnet3-chain-compute-post --transform-mat=transform.mat final.raw den.fst scp:feats.scp ark:nnet_prediction.ark\n"
"See also: nnet3-compute\n"
"See steps/nnet3/chain/get_phone_post.sh for example of usage.\n"
"Note: this program makes *extremely inefficient* use of the GPU.\n"
"You are advised to run this on CPU until it's improved.\n";
ParseOptions po(usage);
Timer timer;
BaseFloat leaky_hmm_coefficient = 0.1;
NnetSimpleComputationOptions opts;
opts.acoustic_scale = 1.0; // by default do no acoustic scaling.
std::string use_gpu = "yes";
std::string transform_mat_rxfilename;
std::string ivector_rspecifier,
online_ivector_rspecifier,
utt2spk_rspecifier;
int32 online_ivector_period = 0;
opts.Register(&po);
po.Register("ivectors", &ivector_rspecifier, "Rspecifier for "
"iVectors as vectors (i.e. not estimated online); per utterance "
"by default, or per speaker if you provide the --utt2spk option.");
po.Register("utt2spk", &utt2spk_rspecifier, "Rspecifier for "
"utt2spk option used to get ivectors per speaker");
po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier for "
"iVectors estimated online, as matrices. If you supply this,"
" you must set the --online-ivector-period option.");
po.Register("online-ivector-period", &online_ivector_period, "Number of frames "
"between iVectors in matrices supplied to the --online-ivectors "
"option");
po.Register("use-gpu", &use_gpu,
"yes|no|optional|wait, only has effect if compiled with CUDA");
po.Register("leaky-hmm-coefficient", &leaky_hmm_coefficient, "'Leaky HMM' "
"coefficient: smaller values will tend to lead to more "
"confident posteriors. 0.1 is what we normally use in "
"training.");
po.Register("transform-mat", &transform_mat_rxfilename, "Location to read "
"the matrix to transform posteriors to phones. Matrix is "
"of dimension num-phones by num-pdfs.");
po.Read(argc, argv);
if (po.NumArgs() != 4) {
po.PrintUsage();
exit(1);
}
#if HAVE_CUDA==1
CuDevice::Instantiate().SelectGpuId(use_gpu);
#endif
std::string nnet_rxfilename = po.GetArg(1),
den_fst_rxfilename = po.GetArg(2),
feature_rspecifier = po.GetArg(3),
matrix_wspecifier = po.GetArg(4);
Nnet nnet;
ReadKaldiObject(nnet_rxfilename, &nnet);
SetBatchnormTestMode(true, &nnet);
SetDropoutTestMode(true, &nnet);
CollapseModel(CollapseModelConfig(), &nnet);
RandomAccessBaseFloatMatrixReader online_ivector_reader(
online_ivector_rspecifier);
RandomAccessBaseFloatVectorReaderMapped ivector_reader(
ivector_rspecifier, utt2spk_rspecifier);
CachingOptimizingCompiler compiler(nnet, opts.optimize_config);
chain::ChainTrainingOptions chain_opts;
// the only option that actually gets used here is
// opts_.leaky_hmm_coefficient, and that's the only one we expose on the
// command line.
chain_opts.leaky_hmm_coefficient = leaky_hmm_coefficient;
fst::StdVectorFst den_fst;
ReadFstKaldi(den_fst_rxfilename, &den_fst);
int32 num_pdfs = nnet.OutputDim("output");
if (num_pdfs < 0) {
KALDI_ERR << "Neural net '" << nnet_rxfilename
<< "' has no output named 'output'";
}
chain::DenominatorGraph den_graph(den_fst, num_pdfs);
CuSparseMatrix<BaseFloat> transform_sparse_mat;
if (!transform_mat_rxfilename.empty()) {
Matrix<BaseFloat> transform_mat;
ReadKaldiObject(transform_mat_rxfilename, &transform_mat);
if (transform_mat.NumCols() != num_pdfs)
KALDI_ERR << "transform-mat from " << transform_mat_rxfilename
<< " has " << transform_mat.NumCols() << " cols, expected "
<< num_pdfs;
SparseMatrix<BaseFloat> temp_sparse_mat(transform_mat);
// the following is just a shallow swap if we're on CPU. This program
// actually won't actually work very fast on GPU, but doing it this way
// will make it easier to modify it later if we really want efficient
// operation on GPU.
transform_sparse_mat.Swap(&temp_sparse_mat);
}
BaseFloatMatrixWriter matrix_writer(matrix_wspecifier);
int32 num_success = 0, num_fail = 0;
int64 tot_input_frames = 0, tot_output_frames = 0;
double tot_forward_prob = 0.0;
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
for (; !feature_reader.Done(); feature_reader.Next()) {
std::string utt = feature_reader.Key();
const Matrix<BaseFloat> &features (feature_reader.Value());
if (features.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << utt;
num_fail++;
continue;
}
const Matrix<BaseFloat> *online_ivectors = NULL;
const Vector<BaseFloat> *ivector = NULL;
if (!ivector_rspecifier.empty()) {
if (!ivector_reader.HasKey(utt)) {
KALDI_WARN << "No iVector available for utterance " << utt;
num_fail++;
continue;
} else {
ivector = &ivector_reader.Value(utt);
}
}
if (!online_ivector_rspecifier.empty()) {
if (!online_ivector_reader.HasKey(utt)) {
KALDI_WARN << "No online iVector available for utterance " << utt;
num_fail++;
continue;
} else {
online_ivectors = &online_ivector_reader.Value(utt);
}
}
Vector<BaseFloat> priors; // empty vector, we don't need priors here.
DecodableNnetSimple nnet_computer(
opts, nnet, priors,
features, &compiler,
ivector, online_ivectors,
online_ivector_period);
Matrix<BaseFloat> matrix(nnet_computer.NumFrames(),
nnet_computer.OutputDim());
for (int32 t = 0; t < nnet_computer.NumFrames(); t++) {
SubVector<BaseFloat> row(matrix, t);
nnet_computer.GetOutputForFrame(t, &row);
}
// Of course it makes no sense to copy to GPU and then back again.
// But anyway this program woudn't work very well if we actually ran
// with --use-gpu=yes. In the CPU case the following is just a shallow
// swap.
CuMatrix<BaseFloat> gpu_nnet_output;
gpu_nnet_output.Swap(&matrix);
chain::DenominatorComputation den_computation(
chain_opts, den_graph,
1, // num_sequences,
gpu_nnet_output);
int32 num_frames = gpu_nnet_output.NumRows();
BaseFloat forward_prob = den_computation.Forward();
CuMatrix<BaseFloat> posteriors(num_frames, num_pdfs);
BaseFloat scale = 1.0;
bool ok = den_computation.Backward(scale, &posteriors);
KALDI_VLOG(1) << "For utterance " << utt << ", log-prob per frame was "
<< (forward_prob / num_frames) << " over "
<< num_frames << " frames.";
if (!ok || !(forward_prob - forward_prob == 0)) { // if or NaN
KALDI_WARN << "Something went wrong for utterance " << utt
<< "; forward-prob = " << forward_prob
<< ", num-frames = " << num_frames;
num_fail++;
continue;
}
num_success++;
tot_input_frames += features.NumRows();
tot_output_frames += num_frames;
tot_forward_prob += forward_prob;
// Write out the posteriors.
if (transform_mat_rxfilename.empty()) {
// write out posteriors over pdfs.
Matrix<BaseFloat> posteriors_cpu;
posteriors.Swap(&posteriors_cpu);
matrix_writer.Write(utt, posteriors_cpu);
} else {
// write out posteriors over (most likely) phones.
int32 num_phones = transform_sparse_mat.NumRows();
CuMatrix<BaseFloat> phone_post(num_frames, num_phones);
phone_post.AddMatSmat(1.0, posteriors,
transform_sparse_mat, kTrans, 0.0);
Matrix<BaseFloat> phone_post_cpu;
phone_post.Swap(&phone_post_cpu);
// write out posteriors over phones.
matrix_writer.Write(utt, phone_post_cpu);
if (GetVerboseLevel() >= 1 || RandInt(0,99)==0) {
BaseFloat sum = posteriors.Sum();
if (((sum / num_frames) - 1.0) > 0.01) {
KALDI_WARN << "Expected sum of posteriors " << sum
<< " to be close to num-frames " << num_frames;
}
}
}
}
#if HAVE_CUDA==1
CuDevice::Instantiate().PrintProfile();
#endif
double elapsed = timer.Elapsed();
KALDI_LOG << "Time taken "<< elapsed
<< "s: real-time factor assuming 100 input frames/sec is "
<< (elapsed*100.0/tot_input_frames);
KALDI_LOG << "Done " << num_success << " utterances, failed for "
<< num_fail;
KALDI_LOG << "Overall log-prob per (output) frame was "
<< (tot_forward_prob / tot_output_frames)
<< " over " << tot_output_frames << " frames.";
if (num_success != 0) return 0;
else return 1;
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}