nnet3-chain-copy-egs.cc 15.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
// chainbin/nnet3-chain-copy-egs.cc

// Copyright 2012-2015  Johns Hopkins University (author:  Daniel Povey)
//           2014-2017  Vimal Manohar
//                2016  Gaofeng Cheng
//                2017  Pegah Ghahremani
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "hmm/transition-model.h"
#include "nnet3/nnet-chain-example.h"

namespace kaldi {
namespace nnet3 {

// renames outputs named "output" to new_name
void RenameOutputs(const std::string &new_name, NnetChainExample *eg) {
  bool found_output = false;
  for (std::vector<NnetChainSupervision>::iterator it = eg->outputs.begin();
       it != eg->outputs.end(); ++it) {
    if (it->name == "output") {
      it->name = new_name;
      found_output = true;
    }
  }

  if (!found_output)
    KALDI_ERR << "No supervision with name 'output'"
              << "exists in eg.";
}

// scales the supervision for 'output' by a factor of "weight"
void ScaleSupervisionWeight(BaseFloat weight, NnetChainExample *eg) {
  if (weight == 1.0) return;

  bool found_output = false;
  for (std::vector<NnetChainSupervision>::iterator it = eg->outputs.begin();
       it != eg->outputs.end(); ++it) {
    if (it->name == "output") {
      it->supervision.weight *= weight;
      found_output = true;
    }
  }

  if (!found_output)
    KALDI_ERR << "No supervision with name 'output'"
              << "exists in eg.";
}

// returns an integer randomly drawn with expected value "expected_count"
// (will be either floor(expected_count) or ceil(expected_count)).
int32 GetCount(double expected_count) {
  KALDI_ASSERT(expected_count >= 0.0);
  int32 ans = floor(expected_count);
  expected_count -= ans;
  if (WithProb(expected_count))
    ans++;
  return ans;
}

/**
   This function filters the indexes (and associated feature rows) in a
   NnetExample, removing any index/row in an NnetIo named "input" with t <
   min_input_t or t > max_input_t and any index/row in an NnetIo named "output" with t <
   min_output_t or t > max_output_t.
   Will crash if filtering removes all Indexes of "input" or "output".
 */
void FilterExample(int32 min_input_t,
                   int32 max_input_t,
                   int32 min_output_t,
                   int32 max_output_t,
                   NnetChainExample *eg) {
  // process the <NnetIo> inputs
  for (size_t i = 0; i < eg->inputs.size(); i++) {
    int32 min_t, max_t;
    NnetIo &io = eg->inputs[i];
    if (io.name == "input") {
      min_t = min_input_t;
      max_t = max_input_t;
      
      const std::vector<Index> &indexes_in = io.indexes;
      std::vector<Index> indexes_out;
      indexes_out.reserve(indexes_in.size());
      int32 num_indexes = indexes_in.size(), num_kept = 0;
      KALDI_ASSERT(io.features.NumRows() == num_indexes);
      std::vector<bool> keep(num_indexes, false);
      std::vector<Index>::const_iterator iter_in = indexes_in.begin(),
                                          end_in = indexes_in.end();
      std::vector<bool>::iterator iter_out = keep.begin();
      for (; iter_in != end_in; ++iter_in, ++iter_out) {
        int32 t = iter_in->t;
        bool is_within_range = (t >= min_t && t <= max_t);
        *iter_out = is_within_range;
        if (is_within_range) {
          indexes_out.push_back(*iter_in);
          num_kept++;
        }
      }
      KALDI_ASSERT(iter_out == keep.end());
      if (num_kept == 0)
        KALDI_ERR << "FilterExample removed all indexes for '" << io.name << "'";
      io.indexes = indexes_out;

      GeneralMatrix features_out;
      FilterGeneralMatrixRows(io.features, keep, &features_out);
      io.features = features_out;
      KALDI_ASSERT(io.features.NumRows() == num_kept &&
                   indexes_out.size() == static_cast<size_t>(num_kept));
    }
  }
}


/** Returns true if the "eg" contains just a single example, meaning
    that all the "n" values in the indexes are zero, and the example
    has NnetIo members named both "input" and "output"

    Also computes the minimum and maximum "t" values in the "input" and
    "output" NnetIo members.
 */
bool ContainsSingleExample(const NnetChainExample &eg,
                           int32 *min_input_t,
                           int32 *max_input_t,
                           int32 *min_output_t,
                           int32 *max_output_t) {
  bool done_input = false, done_output = false;
  int32 num_indexes_input = eg.inputs.size();
  int32 num_indexes_output = eg.outputs.size();
  for (int32 i = 0; i < num_indexes_input; i++) {
    const NnetIo &input = eg.inputs[i];
    std::vector<Index>::const_iterator iter = input.indexes.begin(),
                                        end = input.indexes.end();
    // Should not have an empty input/output type.
    KALDI_ASSERT(!input.indexes.empty());
    if (input.name == "input") {
      int32 min_t = iter->t, max_t = iter->t;
      for (; iter != end; ++iter) {
        int32 this_t = iter->t;
        min_t = std::min(min_t, this_t);
        max_t = std::max(max_t, this_t);
        if (iter->n != 0) {
          KALDI_WARN << "Example does not contain just a single example; "
                     << "too late to do frame selection or reduce context.";
          return false;
        }
      }
      done_input = true;
      *min_input_t = min_t;
      *max_input_t = max_t;
    } else {
      for (; iter != end; ++iter) {
        if (iter->n != 0) {
          KALDI_WARN << "Example does not contain just a single example; "
                     << "too late to do frame selection or reduce context.";
          return false;
        }
      }
    }
  }

  for (int32 i = 0; i < num_indexes_output; i++) {
    const NnetChainSupervision &outputs = eg.outputs[i];
    std::vector<Index>::const_iterator iter = outputs.indexes.begin(),
                                        end = outputs.indexes.end();
    // Should not have an empty input/output type.
    KALDI_ASSERT(!outputs.indexes.empty());
    if (outputs.name == "output") {
      int32 min_t = iter->t, max_t = iter->t;
      for (; iter != end; ++iter) {
        int32 this_t = iter->t;
        min_t = std::min(min_t, this_t);
        max_t = std::max(max_t, this_t);
        if (iter->n != 0) {
          KALDI_WARN << "Example does not contain just a single example; "
                     << "too late to do frame selection or reduce context.";
          return false;
        }
      }
      done_output = true;
      *min_output_t = min_t;
      *max_output_t = max_t;
    } else {
      for (; iter != end; ++iter) {
        if (iter->n != 0) {
          KALDI_WARN << "Example does not contain just a single example; "
                     << "too late to do frame selection or reduce context.";
          return false;
        }
      }
    }
  }
  if (!done_input) {
    KALDI_WARN << "Example does not have any input named 'input'";
    return false;
  }
  if (!done_output) {
    KALDI_WARN << "Example does not have any output named 'output'";
    return false;
  }
  return true;
}

// calculate the frame_subsampling_factor
void CalculateFrameSubsamplingFactor(const NnetChainExample &eg,
                                     int32 *frame_subsampling_factor) {
  *frame_subsampling_factor = eg.outputs[0].indexes[1].t
                              - eg.outputs[0].indexes[0].t;
}

void ModifyChainExampleContext(int32 left_context,
                               int32 right_context,
                               const int32 frame_subsampling_factor,
                               NnetChainExample *eg) {
  static bool warned_left = false, warned_right = false;
  int32 min_input_t, max_input_t,
        min_output_t, max_output_t;
  if (!ContainsSingleExample(*eg, &min_input_t, &max_input_t,
                             &min_output_t, &max_output_t))
    KALDI_ERR << "Too late to perform frame selection/context reduction on "
              << "these examples (already merged?)";
  if (left_context != -1) {
    int32 observed_left_context = min_output_t - min_input_t;
    if (!warned_left && observed_left_context < left_context) {
      warned_left = true;
      KALDI_WARN << "You requested --left-context=" << left_context
                 << ", but example only has left-context of "
                 <<  observed_left_context
                 << " (will warn only once; this may be harmless if "
          "using any --*left-context-initial options)";
    }
    min_input_t = std::max(min_input_t, min_output_t - left_context);
  }
  if (right_context != -1) {
    int32 observed_right_context = max_input_t - max_output_t;

    if (right_context != -1) {
      if (!warned_right && observed_right_context < right_context) {
        warned_right = true;
        KALDI_WARN << "You requested --right-context=" << right_context
                  << ", but example only has right-context of "
                  << observed_right_context
                 << " (will warn only once; this may be harmless if "
            "using any --*right-context-final options.";
      }
      max_input_t = std::min(max_input_t, max_output_t + right_context);
    }
  }
  FilterExample(min_input_t, max_input_t,
                min_output_t, max_output_t,
                eg);
}  // ModifyChainExampleContext

}  // namespace nnet3
}  // namespace kaldi

int main(int argc, char *argv[]) {
  try {
    using namespace kaldi;
    using namespace kaldi::nnet3;
    typedef kaldi::int32 int32;
    typedef kaldi::int64 int64;

    const char *usage =
        "Copy examples for nnet3+chain network training, possibly changing the binary mode.\n"
        "Supports multiple wspecifiers, in which case it will write the examples\n"
        "round-robin to the outputs.\n"
        "\n"
        "Usage:  nnet3-chain-copy-egs [options] <egs-rspecifier> <egs-wspecifier1> [<egs-wspecifier2> ...]\n"
        "\n"
        "e.g.\n"
        "nnet3-chain-copy-egs ark:train.cegs ark,t:text.cegs\n"
        "or:\n"
        "nnet3-chain-copy-egs ark:train.cegs ark:1.cegs ark:2.cegs\n";

    bool random = false;
    int32 srand_seed = 0;
    int32 frame_shift = 0;
    int32 frame_subsampling_factor = -1;
    BaseFloat keep_proportion = 1.0;
    int32 left_context = -1, right_context = -1;
    std::string eg_weight_rspecifier, eg_output_name_rspecifier;

    ParseOptions po(usage);
    po.Register("random", &random, "If true, will write frames to output "
                "archives randomly, not round-robin.");
    po.Register("keep-proportion", &keep_proportion, "If <1.0, this program will "
                "randomly keep this proportion of the input samples.  If >1.0, it will "
                "in expectation copy a sample this many times.  It will copy it a number "
                "of times equal to floor(keep-proportion) or ceil(keep-proportion).");
    po.Register("srand", &srand_seed, "Seed for random number generator "
                "(only relevant if --random=true or --keep-proportion != 1.0)");
    po.Register("frame-shift", &frame_shift, "Allows you to shift time values "
                "in the supervision data (excluding iVector data) - useful in "
                "augmenting data.  Note, the outputs will remain at the closest "
                "exact multiples of the frame subsampling factor");
    po.Register("left-context", &left_context, "Can be used to truncate the "
                "feature left-context that we output.");
    po.Register("right-context", &right_context, "Can be used to truncate the "
                "feature right-context that we output.");
    po.Register("weights", &eg_weight_rspecifier,
                "Rspecifier indexed by the key of egs, providing a weight by "
                "which we will scale the supervision matrix for that eg. "
                "Used in multilingual training.");
    po.Register("outputs", &eg_output_name_rspecifier,
                "Rspecifier indexed by the key of egs, providing a string-valued "
                "output name, e.g. 'output-0'.  If provided, the NnetIo with "
                "name 'output' will be renamed to the provided name. Used in "
                "multilingual training.");
    po.Read(argc, argv);

    srand(srand_seed);

    if (po.NumArgs() < 2) {
      po.PrintUsage();
      exit(1);
    }

    std::string examples_rspecifier = po.GetArg(1);

    SequentialNnetChainExampleReader example_reader(examples_rspecifier);

    // In the normal case, these would not be used. These are only applicable
    // for multi-task or multilingual training.
    RandomAccessTokenReader output_name_reader(eg_output_name_rspecifier);
    RandomAccessBaseFloatReader egs_weight_reader(eg_weight_rspecifier);

    int32 num_outputs = po.NumArgs() - 1;
    std::vector<NnetChainExampleWriter*> example_writers(num_outputs);
    for (int32 i = 0; i < num_outputs; i++)
      example_writers[i] = new NnetChainExampleWriter(po.GetArg(i+2));

    std::vector<std::string> exclude_names;  // names we never shift times of;
                                            // not configurable for now.
    exclude_names.push_back(std::string("ivector"));

    int64 num_read = 0, num_written = 0, num_err = 0;
    for (; !example_reader.Done(); example_reader.Next(), num_read++) {
      const std::string &key = example_reader.Key();
      NnetChainExample &eg = example_reader.Value();
      if (frame_subsampling_factor == -1)
        CalculateFrameSubsamplingFactor(eg,
                                        &frame_subsampling_factor);
      // count is normally 1; could be 0, or possibly >1.
      int32 count = GetCount(keep_proportion);

      if (!eg_weight_rspecifier.empty()) {
        BaseFloat weight = 1.0;
        if (!egs_weight_reader.HasKey(key)) {
          KALDI_WARN << "No weight for example key " << key;
          num_err++;
          continue;
        }
        weight = egs_weight_reader.Value(key);
        ScaleSupervisionWeight(weight, &eg);
      }
      
      if (!eg_output_name_rspecifier.empty()) {
        if (!output_name_reader.HasKey(key)) {
          KALDI_WARN << "No new output-name for example key " << key;
          num_err++;
          continue;
        }
        std::string new_output_name = output_name_reader.Value(key);
        RenameOutputs(new_output_name, &eg);
      }
      
      if (frame_shift != 0)
        ShiftChainExampleTimes(frame_shift, exclude_names, &eg);
      if (left_context != -1 || right_context != -1)
        ModifyChainExampleContext(left_context, right_context,
                                  frame_subsampling_factor, &eg);
        
      for (int32 c = 0; c < count; c++) {
        int32 index = (random ? Rand() : num_written) % num_outputs;
        example_writers[index]->Write(key, eg);
        num_written++;
      }
    }
    for (int32 i = 0; i < num_outputs; i++)
      delete example_writers[i];
    KALDI_LOG << "Read " << num_read
              << " neural-network training examples, wrote " << num_written;
    return (num_written == 0 ? 1 : 0);
  } catch(const std::exception &e) {
    std::cerr << e.what() << '\n';
    return -1;
  }
}