nnet3-chain-copy-egs.cc
15.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
// chainbin/nnet3-chain-copy-egs.cc
// Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey)
// 2014-2017 Vimal Manohar
// 2016 Gaofeng Cheng
// 2017 Pegah Ghahremani
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "hmm/transition-model.h"
#include "nnet3/nnet-chain-example.h"
namespace kaldi {
namespace nnet3 {
// renames outputs named "output" to new_name
void RenameOutputs(const std::string &new_name, NnetChainExample *eg) {
bool found_output = false;
for (std::vector<NnetChainSupervision>::iterator it = eg->outputs.begin();
it != eg->outputs.end(); ++it) {
if (it->name == "output") {
it->name = new_name;
found_output = true;
}
}
if (!found_output)
KALDI_ERR << "No supervision with name 'output'"
<< "exists in eg.";
}
// scales the supervision for 'output' by a factor of "weight"
void ScaleSupervisionWeight(BaseFloat weight, NnetChainExample *eg) {
if (weight == 1.0) return;
bool found_output = false;
for (std::vector<NnetChainSupervision>::iterator it = eg->outputs.begin();
it != eg->outputs.end(); ++it) {
if (it->name == "output") {
it->supervision.weight *= weight;
found_output = true;
}
}
if (!found_output)
KALDI_ERR << "No supervision with name 'output'"
<< "exists in eg.";
}
// returns an integer randomly drawn with expected value "expected_count"
// (will be either floor(expected_count) or ceil(expected_count)).
int32 GetCount(double expected_count) {
KALDI_ASSERT(expected_count >= 0.0);
int32 ans = floor(expected_count);
expected_count -= ans;
if (WithProb(expected_count))
ans++;
return ans;
}
/**
This function filters the indexes (and associated feature rows) in a
NnetExample, removing any index/row in an NnetIo named "input" with t <
min_input_t or t > max_input_t and any index/row in an NnetIo named "output" with t <
min_output_t or t > max_output_t.
Will crash if filtering removes all Indexes of "input" or "output".
*/
void FilterExample(int32 min_input_t,
int32 max_input_t,
int32 min_output_t,
int32 max_output_t,
NnetChainExample *eg) {
// process the <NnetIo> inputs
for (size_t i = 0; i < eg->inputs.size(); i++) {
int32 min_t, max_t;
NnetIo &io = eg->inputs[i];
if (io.name == "input") {
min_t = min_input_t;
max_t = max_input_t;
const std::vector<Index> &indexes_in = io.indexes;
std::vector<Index> indexes_out;
indexes_out.reserve(indexes_in.size());
int32 num_indexes = indexes_in.size(), num_kept = 0;
KALDI_ASSERT(io.features.NumRows() == num_indexes);
std::vector<bool> keep(num_indexes, false);
std::vector<Index>::const_iterator iter_in = indexes_in.begin(),
end_in = indexes_in.end();
std::vector<bool>::iterator iter_out = keep.begin();
for (; iter_in != end_in; ++iter_in, ++iter_out) {
int32 t = iter_in->t;
bool is_within_range = (t >= min_t && t <= max_t);
*iter_out = is_within_range;
if (is_within_range) {
indexes_out.push_back(*iter_in);
num_kept++;
}
}
KALDI_ASSERT(iter_out == keep.end());
if (num_kept == 0)
KALDI_ERR << "FilterExample removed all indexes for '" << io.name << "'";
io.indexes = indexes_out;
GeneralMatrix features_out;
FilterGeneralMatrixRows(io.features, keep, &features_out);
io.features = features_out;
KALDI_ASSERT(io.features.NumRows() == num_kept &&
indexes_out.size() == static_cast<size_t>(num_kept));
}
}
}
/** Returns true if the "eg" contains just a single example, meaning
that all the "n" values in the indexes are zero, and the example
has NnetIo members named both "input" and "output"
Also computes the minimum and maximum "t" values in the "input" and
"output" NnetIo members.
*/
bool ContainsSingleExample(const NnetChainExample &eg,
int32 *min_input_t,
int32 *max_input_t,
int32 *min_output_t,
int32 *max_output_t) {
bool done_input = false, done_output = false;
int32 num_indexes_input = eg.inputs.size();
int32 num_indexes_output = eg.outputs.size();
for (int32 i = 0; i < num_indexes_input; i++) {
const NnetIo &input = eg.inputs[i];
std::vector<Index>::const_iterator iter = input.indexes.begin(),
end = input.indexes.end();
// Should not have an empty input/output type.
KALDI_ASSERT(!input.indexes.empty());
if (input.name == "input") {
int32 min_t = iter->t, max_t = iter->t;
for (; iter != end; ++iter) {
int32 this_t = iter->t;
min_t = std::min(min_t, this_t);
max_t = std::max(max_t, this_t);
if (iter->n != 0) {
KALDI_WARN << "Example does not contain just a single example; "
<< "too late to do frame selection or reduce context.";
return false;
}
}
done_input = true;
*min_input_t = min_t;
*max_input_t = max_t;
} else {
for (; iter != end; ++iter) {
if (iter->n != 0) {
KALDI_WARN << "Example does not contain just a single example; "
<< "too late to do frame selection or reduce context.";
return false;
}
}
}
}
for (int32 i = 0; i < num_indexes_output; i++) {
const NnetChainSupervision &outputs = eg.outputs[i];
std::vector<Index>::const_iterator iter = outputs.indexes.begin(),
end = outputs.indexes.end();
// Should not have an empty input/output type.
KALDI_ASSERT(!outputs.indexes.empty());
if (outputs.name == "output") {
int32 min_t = iter->t, max_t = iter->t;
for (; iter != end; ++iter) {
int32 this_t = iter->t;
min_t = std::min(min_t, this_t);
max_t = std::max(max_t, this_t);
if (iter->n != 0) {
KALDI_WARN << "Example does not contain just a single example; "
<< "too late to do frame selection or reduce context.";
return false;
}
}
done_output = true;
*min_output_t = min_t;
*max_output_t = max_t;
} else {
for (; iter != end; ++iter) {
if (iter->n != 0) {
KALDI_WARN << "Example does not contain just a single example; "
<< "too late to do frame selection or reduce context.";
return false;
}
}
}
}
if (!done_input) {
KALDI_WARN << "Example does not have any input named 'input'";
return false;
}
if (!done_output) {
KALDI_WARN << "Example does not have any output named 'output'";
return false;
}
return true;
}
// calculate the frame_subsampling_factor
void CalculateFrameSubsamplingFactor(const NnetChainExample &eg,
int32 *frame_subsampling_factor) {
*frame_subsampling_factor = eg.outputs[0].indexes[1].t
- eg.outputs[0].indexes[0].t;
}
void ModifyChainExampleContext(int32 left_context,
int32 right_context,
const int32 frame_subsampling_factor,
NnetChainExample *eg) {
static bool warned_left = false, warned_right = false;
int32 min_input_t, max_input_t,
min_output_t, max_output_t;
if (!ContainsSingleExample(*eg, &min_input_t, &max_input_t,
&min_output_t, &max_output_t))
KALDI_ERR << "Too late to perform frame selection/context reduction on "
<< "these examples (already merged?)";
if (left_context != -1) {
int32 observed_left_context = min_output_t - min_input_t;
if (!warned_left && observed_left_context < left_context) {
warned_left = true;
KALDI_WARN << "You requested --left-context=" << left_context
<< ", but example only has left-context of "
<< observed_left_context
<< " (will warn only once; this may be harmless if "
"using any --*left-context-initial options)";
}
min_input_t = std::max(min_input_t, min_output_t - left_context);
}
if (right_context != -1) {
int32 observed_right_context = max_input_t - max_output_t;
if (right_context != -1) {
if (!warned_right && observed_right_context < right_context) {
warned_right = true;
KALDI_WARN << "You requested --right-context=" << right_context
<< ", but example only has right-context of "
<< observed_right_context
<< " (will warn only once; this may be harmless if "
"using any --*right-context-final options.";
}
max_input_t = std::min(max_input_t, max_output_t + right_context);
}
}
FilterExample(min_input_t, max_input_t,
min_output_t, max_output_t,
eg);
} // ModifyChainExampleContext
} // namespace nnet3
} // namespace kaldi
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace kaldi::nnet3;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
const char *usage =
"Copy examples for nnet3+chain network training, possibly changing the binary mode.\n"
"Supports multiple wspecifiers, in which case it will write the examples\n"
"round-robin to the outputs.\n"
"\n"
"Usage: nnet3-chain-copy-egs [options] <egs-rspecifier> <egs-wspecifier1> [<egs-wspecifier2> ...]\n"
"\n"
"e.g.\n"
"nnet3-chain-copy-egs ark:train.cegs ark,t:text.cegs\n"
"or:\n"
"nnet3-chain-copy-egs ark:train.cegs ark:1.cegs ark:2.cegs\n";
bool random = false;
int32 srand_seed = 0;
int32 frame_shift = 0;
int32 frame_subsampling_factor = -1;
BaseFloat keep_proportion = 1.0;
int32 left_context = -1, right_context = -1;
std::string eg_weight_rspecifier, eg_output_name_rspecifier;
ParseOptions po(usage);
po.Register("random", &random, "If true, will write frames to output "
"archives randomly, not round-robin.");
po.Register("keep-proportion", &keep_proportion, "If <1.0, this program will "
"randomly keep this proportion of the input samples. If >1.0, it will "
"in expectation copy a sample this many times. It will copy it a number "
"of times equal to floor(keep-proportion) or ceil(keep-proportion).");
po.Register("srand", &srand_seed, "Seed for random number generator "
"(only relevant if --random=true or --keep-proportion != 1.0)");
po.Register("frame-shift", &frame_shift, "Allows you to shift time values "
"in the supervision data (excluding iVector data) - useful in "
"augmenting data. Note, the outputs will remain at the closest "
"exact multiples of the frame subsampling factor");
po.Register("left-context", &left_context, "Can be used to truncate the "
"feature left-context that we output.");
po.Register("right-context", &right_context, "Can be used to truncate the "
"feature right-context that we output.");
po.Register("weights", &eg_weight_rspecifier,
"Rspecifier indexed by the key of egs, providing a weight by "
"which we will scale the supervision matrix for that eg. "
"Used in multilingual training.");
po.Register("outputs", &eg_output_name_rspecifier,
"Rspecifier indexed by the key of egs, providing a string-valued "
"output name, e.g. 'output-0'. If provided, the NnetIo with "
"name 'output' will be renamed to the provided name. Used in "
"multilingual training.");
po.Read(argc, argv);
srand(srand_seed);
if (po.NumArgs() < 2) {
po.PrintUsage();
exit(1);
}
std::string examples_rspecifier = po.GetArg(1);
SequentialNnetChainExampleReader example_reader(examples_rspecifier);
// In the normal case, these would not be used. These are only applicable
// for multi-task or multilingual training.
RandomAccessTokenReader output_name_reader(eg_output_name_rspecifier);
RandomAccessBaseFloatReader egs_weight_reader(eg_weight_rspecifier);
int32 num_outputs = po.NumArgs() - 1;
std::vector<NnetChainExampleWriter*> example_writers(num_outputs);
for (int32 i = 0; i < num_outputs; i++)
example_writers[i] = new NnetChainExampleWriter(po.GetArg(i+2));
std::vector<std::string> exclude_names; // names we never shift times of;
// not configurable for now.
exclude_names.push_back(std::string("ivector"));
int64 num_read = 0, num_written = 0, num_err = 0;
for (; !example_reader.Done(); example_reader.Next(), num_read++) {
const std::string &key = example_reader.Key();
NnetChainExample &eg = example_reader.Value();
if (frame_subsampling_factor == -1)
CalculateFrameSubsamplingFactor(eg,
&frame_subsampling_factor);
// count is normally 1; could be 0, or possibly >1.
int32 count = GetCount(keep_proportion);
if (!eg_weight_rspecifier.empty()) {
BaseFloat weight = 1.0;
if (!egs_weight_reader.HasKey(key)) {
KALDI_WARN << "No weight for example key " << key;
num_err++;
continue;
}
weight = egs_weight_reader.Value(key);
ScaleSupervisionWeight(weight, &eg);
}
if (!eg_output_name_rspecifier.empty()) {
if (!output_name_reader.HasKey(key)) {
KALDI_WARN << "No new output-name for example key " << key;
num_err++;
continue;
}
std::string new_output_name = output_name_reader.Value(key);
RenameOutputs(new_output_name, &eg);
}
if (frame_shift != 0)
ShiftChainExampleTimes(frame_shift, exclude_names, &eg);
if (left_context != -1 || right_context != -1)
ModifyChainExampleContext(left_context, right_context,
frame_subsampling_factor, &eg);
for (int32 c = 0; c < count; c++) {
int32 index = (random ? Rand() : num_written) % num_outputs;
example_writers[index]->Write(key, eg);
num_written++;
}
}
for (int32 i = 0; i < num_outputs; i++)
delete example_writers[i];
KALDI_LOG << "Read " << num_read
<< " neural-network training examples, wrote " << num_written;
return (num_written == 0 ? 1 : 0);
} catch(const std::exception &e) {
std::cerr << e.what() << '\n';
return -1;
}
}