batched-threaded-nnet3-cuda-pipeline.cc 32.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
// cudadecoder/batched-threaded-nnet3-cuda-pipeline.cc
//
// Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
// Hugo Braun, Justin Luitjens, Ryan Leary
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#define SLEEP_BACKOFF_NS 500
#define SLEEP_BACKOFF_S ((double)SLEEP_BACKOFF_NS / 1e9)
#if HAVE_CUDA == 1

#include "cudadecoder/batched-threaded-nnet3-cuda-pipeline.h"
#include <nvToolsExt.h>
#include "base/kaldi-utils.h"

namespace kaldi {
namespace cuda_decoder {

void BatchedThreadedNnet3CudaPipeline::Initialize(
    const fst::Fst<fst::StdArc> &decode_fst, const nnet3::AmNnetSimple &am_nnet,
    const TransitionModel &trans_model) {
  KALDI_LOG << "BatchedThreadedNnet3CudaPipeline Initialize with "
            << config_.num_control_threads << " control threads, "
            << config_.num_worker_threads << " worker threads"
            << " and batch size " << config_.max_batch_size;

  am_nnet_ = &am_nnet;
  trans_model_ = &trans_model;
  cuda_fst_.Initialize(decode_fst, trans_model_);

  feature_info_ = new OnlineNnet2FeaturePipelineInfo(config_.feature_opts);
  feature_info_->ivector_extractor_info.use_most_recent_ivector = true;
  feature_info_->ivector_extractor_info.greedy_ivector_extractor = true;

  // initialize threads and save their contexts so we can join them later
  thread_contexts_.resize(config_.num_control_threads);

  // create work queue
  pending_task_queue_ = new TaskState *[config_.max_pending_tasks + 1];
  tasks_front_ = 0;
  tasks_back_ = 0;

  // ensure all allocations/kernels above are complete before launching threads
  // in different streams.
  cudaStreamSynchronize(cudaStreamPerThread);

  // Create threadpool for CPU work
  work_pool_ = new ThreadPool(config_.num_worker_threads);

  exit_ = false;
  numStarted_ = 0;

  // start workers
  for (int i = 0; i < config_.num_control_threads; i++) {
    thread_contexts_[i] =
        std::thread(&BatchedThreadedNnet3CudaPipeline::ExecuteWorker, this, i);
  }

  // wait for threads to start to ensure allocation time isn't in the timings
  while (numStarted_ < config_.num_control_threads)
    kaldi::Sleep(SLEEP_BACKOFF_S);
}
void BatchedThreadedNnet3CudaPipeline::Finalize() {
  // Tell threads to exit and join them
  exit_ = true;

  for (int i = 0; i < config_.num_control_threads; i++) {
    thread_contexts_[i].join();
  }

  cuda_fst_.Finalize();

  delete feature_info_;
  delete work_pool_;
  delete[] pending_task_queue_;
}

// query a specific key to see if compute on it is complete
bool BatchedThreadedNnet3CudaPipeline::isFinished(const std::string &key) {
  bool finished;
  {
    std::lock_guard<std::mutex> lock(tasks_lookup_mutex_);
    auto it = tasks_lookup_.find(key);
    KALDI_ASSERT(it != tasks_lookup_.end());
    finished = it->second.finished;
  }
  return finished;
}

// remove an audio file from the decoding and clean up resources
void BatchedThreadedNnet3CudaPipeline::CloseDecodeHandle(
    const std::string &key) {
  TaskState *task;
  decltype(tasks_lookup_.end()) it;
  {
    std::lock_guard<std::mutex> lock(tasks_lookup_mutex_);
    it = tasks_lookup_.find(key);
    KALDI_ASSERT(it != tasks_lookup_.end());
    task = &it->second;
  }

  // wait for task to finish processing
  while (task->finished != true) kaldi::Sleep(SLEEP_BACKOFF_S);

  // Delete the group counter if necessary
  std::lock_guard<std::mutex> lk1(group_tasks_mutex_);
  if (group_tasks_not_done_[task->group] == 0)
    group_tasks_not_done_.erase(task->group);

  // remove it
  {
    std::lock_guard<std::mutex> lock(tasks_lookup_mutex_);
    std::string &group = task->group;
    auto p = tasks_group_lookup_.equal_range(group);
    bool found = false;
    for (auto it = p.first; it != p.second; ++it) {
      if (it->second == task) {
        tasks_group_lookup_.erase(it);
        found = true;
        break;
      }
    }
    KALDI_ASSERT(found);
    tasks_lookup_.erase(it);

    if (tasks_lookup_.empty()) tasks_lookup_cv_.notify_all();
  }
}

void BatchedThreadedNnet3CudaPipeline::WaitForAllTasks() {
  std::unique_lock<std::mutex> lk(group_tasks_mutex_);
  group_done_cv_.wait(lk, [this] { return all_group_tasks_not_done_ == 0; });
}

void BatchedThreadedNnet3CudaPipeline::WaitForGroup(const std::string &group) {
  std::unique_lock<std::mutex> lk(group_tasks_mutex_);
  group_done_cv_.wait(
      lk, [this, &group] { return group_tasks_not_done_[group] == 0; });
  // Safe to delete entry from the map now. If the user creates new task in that
  // group,
  // the entry will be created once more
  group_tasks_not_done_.erase(group);
}

bool BatchedThreadedNnet3CudaPipeline::IsGroupCompleted(
    const std::string &group) {
  std::unique_lock<std::mutex> lk(group_tasks_mutex_);
  return (group_tasks_not_done_[group] == 0);  // will unlock in destructor
}

std::string BatchedThreadedNnet3CudaPipeline::WaitForAnyGroup() {
  std::unique_lock<std::mutex> lk(group_tasks_mutex_);
  // Waiting for any group to be done.
  const string *group_done;
  auto predicate = [this, &group_done] {
    for (auto it : group_tasks_not_done_) {
      if (it.second == 0) {
        group_done = &it.first;
        return true;
      }
    }
    return false;
  };
  group_done_cv_.wait(lk, predicate);
  return *group_done;
}

bool BatchedThreadedNnet3CudaPipeline::IsAnyGroupCompleted(std::string *group) {
  std::lock_guard<std::mutex> lk(group_tasks_mutex_);
  for (auto it : group_tasks_not_done_) {
    if (it.second == 0) {
      *group = it.first;
      return true;
    }
  }
  return false;  // will unlock in destructor
}

void BatchedThreadedNnet3CudaPipeline::CloseAllDecodeHandlesForGroup(
    const std::string &group) {
  WaitForGroup(group);
  std::lock_guard<std::mutex> lk1(tasks_lookup_mutex_);
  auto p = tasks_group_lookup_.equal_range(group);
  for (auto it = p.first; it != p.second; ++it)
    tasks_lookup_.erase(it->second->key);
  tasks_group_lookup_.erase(p.first, p.second);
  std::lock_guard<std::mutex> lk2(group_tasks_mutex_);
  group_tasks_not_done_.erase(group);
}

void BatchedThreadedNnet3CudaPipeline::CloseAllDecodeHandles() {
  WaitForAllTasks();
  std::lock_guard<std::mutex> lk1(tasks_lookup_mutex_);
  tasks_lookup_.clear();
  tasks_group_lookup_.clear();
  std::lock_guard<std::mutex> lk2(group_tasks_mutex_);
  group_tasks_not_done_.clear();
}

int32 BatchedThreadedNnet3CudaPipeline::GetNumberOfTasksPending() {
  int size;
  {
    std::lock_guard<std::mutex> lk(group_tasks_mutex_);
    size = all_group_tasks_not_done_;
  }
  return size;
}

BatchedThreadedNnet3CudaPipeline::TaskState *
BatchedThreadedNnet3CudaPipeline::AddTask(const std::string &key,
                                          const std::string &group) {
  TaskState *task;
  {
    std::lock_guard<std::mutex> lock(tasks_lookup_mutex_);
    // ensure key is unique
    KALDI_ASSERT(tasks_lookup_.end() == tasks_lookup_.find(key));

    // Create a new task in lookup map
    task = &tasks_lookup_[key];
    tasks_group_lookup_.insert({group, task});
  }
  task->group = group;

  // Add the task to its group
  {
    std::lock_guard<std::mutex> lk(group_tasks_mutex_);
    ++all_group_tasks_not_done_;
    ++group_tasks_not_done_[task->group];
  }
  return task;
}

// Adds a decoding task to the decoder
void BatchedThreadedNnet3CudaPipeline::OpenDecodeHandle(
    const std::string &key, const WaveData &wave_data, const std::string &group,
    const std::function<void(CompactLattice &clat)> &callback) {
  TaskState *task = AddTask(key, group);
  task->callback = std::move(callback);
  task->Init(key, wave_data);

  if (config_.gpu_feature_extract) {
    // Feature extraction done on device
    AddTaskToPendingTaskQueue(task);
  } else {
    // Feature extraction done on host thread
    work_pool_->enqueue(THREAD_POOL_LOW_PRIORITY,
                        &BatchedThreadedNnet3CudaPipeline::ComputeOneFeatureCPU,
                        this, task);
  }
}

void BatchedThreadedNnet3CudaPipeline::OpenDecodeHandle(
    const std::string &key, const VectorBase<BaseFloat> &wave_data,
    float sample_rate, const std::string &group,
    const std::function<void(CompactLattice &clat)> &callback) {
  TaskState *task = AddTask(key, group);
  task->Init(key, wave_data, sample_rate);
  task->callback = std::move(callback);

  if (config_.gpu_feature_extract) {
    // Feature extraction done on device
    AddTaskToPendingTaskQueue(task);
  } else {
    // Feature extraction done on host thread
    work_pool_->enqueue(THREAD_POOL_LOW_PRIORITY,
                        &BatchedThreadedNnet3CudaPipeline::ComputeOneFeatureCPU,
                        this, task);
  }
}

bool BatchedThreadedNnet3CudaPipeline::GetRawLattice(const std::string &key,
                                                     Lattice *lat) {
  nvtxRangePushA("GetRawLattice");
  TaskState *task;
  {
    std::lock_guard<std::mutex> lock(tasks_lookup_mutex_);
    auto it = tasks_lookup_.find(key);
    KALDI_ASSERT(it != tasks_lookup_.end());
    task = &it->second;
  }

  // wait for task to finish.  This should happens automatically without
  // intervention from the master thread.
  while (task->finished == false) kaldi::Sleep(SLEEP_BACKOFF_S);

  // GetRawLattice on a determinized lattice is not supported (Per email from
  // DanP)
  KALDI_ASSERT(task->determinized == false);

  if (task->error) {
    nvtxRangePop();
    return false;
  }
  // Store off the lattice
  *lat = task->lat;
  nvtxRangePop();
  return true;
}

bool BatchedThreadedNnet3CudaPipeline::GetLattice(const std::string &key,
                                                  CompactLattice *clat) {
  nvtxRangePushA("GetLattice");
  TaskState *task;
  {
    std::lock_guard<std::mutex> lock(tasks_lookup_mutex_);

    auto it = tasks_lookup_.find(key);
    KALDI_ASSERT(it != tasks_lookup_.end());
    task = &it->second;
  }
  // wait for task to finish.  This should happens automatically without
  // intervention from the master thread.
  while (!task->finished) kaldi::Sleep(SLEEP_BACKOFF_S);

  if (task->error) {
    nvtxRangePop();
    return false;
  }

  // if user has not requested a determinized lattice from the decoder then we
  // must
  // determinize it here since it was done done already.
  if (!config_.determinize_lattice && !task->determinized) {
    // Determinzation was not done by worker threads so do it here
    DeterminizeOneLattice(task);
  }

  *clat = task->dlat;  // grab compact lattice
  nvtxRangePop();
  return true;
}

// Adds task to the PendingTaskQueue
void BatchedThreadedNnet3CudaPipeline::AddTaskToPendingTaskQueue(
    TaskState *task) {
  std::lock_guard<std::mutex> lk(tasks_add_mutex_);
  if (NumPendingTasks() == config_.max_pending_tasks) {
    // task queue is full launch a new thread to add this task and exit to make
    // room for other work
    work_pool_->enqueue(
        THREAD_POOL_LOW_PRIORITY,
        &BatchedThreadedNnet3CudaPipeline::AddTaskToPendingTaskQueue, this,
        task);
  } else {
    // there is room so let's add it
    // insert into pending task queue
    pending_task_queue_[tasks_back_] = task;
    // (int)tasks_back_);
    tasks_back_ = (tasks_back_ + 1) % (config_.max_pending_tasks + 1);
  }
}

// Attempts to fill the batch from the task queue.  May not fully fill the
// batch.
void BatchedThreadedNnet3CudaPipeline::AquireAdditionalTasks(
    CudaDecoder &cuda_decoder, ChannelState &channel_state,
    std::vector<TaskState *> &tasks) {
  std::vector<ChannelId> &channels = channel_state.channels;
  std::vector<ChannelId> &free_channels = channel_state.free_channels;

  int tasksRequested =
      std::min(free_channels.size(), config_.max_batch_size - channels.size());
  int tasksAssigned = 0;

  {
    // lock required because front might change from other
    // workers
    std::lock_guard<std::mutex> lock(tasks_mutex_);
    {
      // compute number of tasks to grab
      int tasksAvailable = NumPendingTasks();
      tasksAssigned = std::min(tasksAvailable, tasksRequested);

      // grab tasks
      for (int i = 0; i < tasksAssigned; i++) {
        // pending_task_queue_[tasks_front_]);
        tasks.push_back(pending_task_queue_[tasks_front_]);
        tasks_front_ = (tasks_front_ + 1) % (config_.max_pending_tasks + 1);
      }
    }
  }

  if (tasksAssigned > 0) {
    // for each assigned tasks we have to do a little bookkeeping

    // list of channels that need initialization
    std::vector<ChannelId> init_channels(tasksAssigned);

    for (int i = 0; i < tasksAssigned; i++) {
      // assign a free channel
      ChannelId channel;
      {
        std::lock_guard<std::mutex> lk(channel_state.free_channels_mutex);
        KALDI_ASSERT(free_channels.size() >
                     0);  // it should always be true (cf std::min above)
        channel = free_channels.back();
        free_channels.pop_back();
      }
      // add channel to processing list
      channels.push_back(channel);
      // add new channel to initialization list
      init_channels[i] = channel;
    }

    // Setup cuda_decoder channels
    cuda_decoder.InitDecoding(init_channels);
  }
}

// Computes NNET3 across the tasks[first,tasks.size())
void BatchedThreadedNnet3CudaPipeline::ComputeBatchNnet(
    nnet3::NnetBatchComputer &computer, int32 first,
    std::vector<TaskState *> &tasks) {
  nvtxRangePushA("ComputeBatchNnet");

  bool output_to_cpu = false;
  int32 online_ivector_period = 0;
  int max_pending_minibatches =
      0;  // zero means unlimited.  This API call should not block then.

  // list of nnet tasks for each batch
  std::vector<std::vector<nnet3::NnetInferenceTask>> nnet_tasks(tasks.size());

  // for all new batches enqueue up nnet work.
  for (int i = first; i < tasks.size(); i++) {
    TaskState &task = *tasks[i];
    std::shared_ptr<TaskData> &task_data = task.task_data;
    std::vector<nnet3::NnetInferenceTask> &ntasks = nnet_tasks[i];

    if (config_.gpu_feature_extract) {
      CuVector<BaseFloat> &ivector_features = task_data->ivector_features;
      CuMatrix<BaseFloat> &input_features = task_data->input_features;

      CuVector<BaseFloat> *ifeat = NULL;
      if (ivector_features.Dim() > 0) {
        ifeat = &ivector_features;
      }
      // create task list
      computer.SplitUtteranceIntoTasks(output_to_cpu, input_features, ifeat,
                                       NULL, online_ivector_period, &ntasks);
    } else {
      Vector<BaseFloat> &ivector_features = task_data->ivector_features_cpu;
      Matrix<BaseFloat> &input_features = task_data->input_features_cpu;

      Vector<BaseFloat> *ifeat = NULL;
      if (ivector_features.Dim() > 0) {
        ifeat = &ivector_features;
      }
      // create task list
      computer.SplitUtteranceIntoTasks(output_to_cpu, input_features, ifeat,
                                       NULL, online_ivector_period, &ntasks);
    }

    // Add tasks to computer
    for (size_t j = 0; j < ntasks.size(); j++) {
      computer.AcceptTask(&ntasks[j], max_pending_minibatches);
    }
  }

  // process all minibatches, we allow partial minibatches but this should only
  // occur on the last iteration
  bool allow_partial_minibatch = true;
  while (computer.Compute(allow_partial_minibatch))
    ;

  // Extract Posteriors
  for (int i = first; i < tasks.size(); i++) {
    TaskState &task = *tasks[i];
    std::shared_ptr<TaskData> &task_data = task.task_data;
    CuMatrix<BaseFloat> &posteriors = task_data->posteriors;
    MergeTaskOutput(nnet_tasks[i], &posteriors);

    // nnet output is no longer necessary as we have copied the output out
    nnet_tasks[i].resize(0);

    // featurs are no longer needed so free memory
    task_data->ivector_features.Resize(0);
    task_data->input_features.Resize(0, 0);
  }

  nvtxRangePop();
}

// Computes Features for a single decode instance.
void BatchedThreadedNnet3CudaPipeline::ComputeOneFeatureCPU(TaskState *task_) {
  nvtxRangePushA("ComputeOneFeatureCPU");
  TaskState &task = *task_;
  std::shared_ptr<TaskData> &task_data = task.task_data;
  Vector<BaseFloat> &ivector_features = task_data->ivector_features_cpu;
  Matrix<BaseFloat> &input_features = task_data->input_features_cpu;

  // create decoding state
  OnlineNnet2FeaturePipeline feature(*feature_info_);

  // Accept waveforms
  feature.AcceptWaveform(task_data->sample_frequency,
                         SubVector<BaseFloat>(*task_data->wave_samples, 0,
                                              task_data->wave_samples->Dim()));
  feature.InputFinished();
  // All frames should be ready here
  int32 numFrames = feature.NumFramesReady();
  // If we don't have anything to do, we must return now
  if (numFrames == 0) {
    task_->finished = true;
    return;
  }
  int32 input_dim = feature.InputFeature()->Dim();

  std::vector<int> frames(numFrames);
  // create list of frames
  for (int j = 0; j < numFrames; j++) frames[j] = j;

  // Copy Features
  input_features.Resize(numFrames, input_dim);
  feature.InputFeature()->GetFrames(frames, &input_features);

  // Ivectors are optional, if they were not provided skip this step
  if (feature.IvectorFeature() != NULL) {
    int32 ivector_dim = feature.IvectorFeature()->Dim();
    ivector_features.Resize(ivector_dim);

    // Copy Features
    feature.IvectorFeature()->GetFrame(numFrames - 1, &ivector_features);
  }

  AddTaskToPendingTaskQueue(task_);

  nvtxRangePop();
}

// Computes features across the tasks[first,tasks.size()
void BatchedThreadedNnet3CudaPipeline::ComputeBatchFeatures(
    int32 first, std::vector<TaskState *> &tasks,
    OnlineCudaFeaturePipeline &feature_pipeline) {
  KALDI_ASSERT(config_.gpu_feature_extract == true);
  nvtxRangePushA("CopyBatchWaves");
  // below we will pack waves into a single buffer for efficient transfer across
  // device

  // first count the total number of elements and create a single large vector
  int count = 0;
  for (int i = first; i < tasks.size(); i++) {
    count += tasks[i]->task_data->wave_samples->Dim();
  }

  // creating a thread local vector of pinned memory.
  // wave data will be stagged through this memory to get
  // more efficient non-blocking transfers to the device.
  thread_local Vector<BaseFloat> pinned_vector;

  if (pinned_vector.Dim() < count) {
    if (pinned_vector.Dim() != 0) {
      cudaHostUnregister(pinned_vector.Data());
    }
    // allocated array 2x size
    pinned_vector.Resize(count * 2, kUndefined);
    cudaHostRegister(pinned_vector.Data(),
                     pinned_vector.Dim() * sizeof(BaseFloat), 0);
  }

  // We will launch a thread for each task in order to get better host memory
  // bandwidth
  std::vector<std::future<void>> futures;  // for syncing

  // vector copy function for threading below.
  auto copy_vec = [](SubVector<BaseFloat> &dst,
                     const SubVector<BaseFloat> &src) {
    nvtxRangePushA("CopyVec");
    dst.CopyFromVec(src);
    nvtxRangePop();
  };

  // next launch threads to copy all waves for each task in parallel
  count = 0;
  for (int i = first; i < tasks.size(); i++) {
    std::shared_ptr<TaskData> &task_data = tasks[i]->task_data;
    SubVector<BaseFloat> wave(pinned_vector, count,
                              task_data->wave_samples->Dim());
    count += task_data->wave_samples->Dim();
    futures.push_back(
        work_pool_->enqueue(copy_vec, wave, *(task_data->wave_samples)));
  }

  // wait for waves to be copied into place
  for (int i = 0; i < futures.size(); i++) {
    futures[i].get();
  }

  CuVector<BaseFloat> cu_waves(count, kUndefined);
  // copy memory down asynchronously.  Vector copy functions are synchronous so
  // we do it manually.
  // It is important for this to happen asynchrously to help hide launch latency
  // of smaller kernels
  // that come in the future.
  cudaMemcpyAsync(cu_waves.Data(), pinned_vector.Data(),
                  cu_waves.Dim() * sizeof(BaseFloat), cudaMemcpyHostToDevice,
                  cudaStreamPerThread);
  nvtxRangePop();

  nvtxRangePushA("ComputeBatchFeatures");
  // extract features for each wave
  count = 0;
  for (int i = first; i < tasks.size(); i++) {
    TaskState &task = *tasks[i];
    std::shared_ptr<TaskData> &task_data = task.task_data;

    CuSubVector<BaseFloat> cu_wave(cu_waves, count,
                                   task_data->wave_samples->Dim());
    count += task_data->wave_samples->Dim();
    feature_pipeline.ComputeFeatures(cu_wave, task_data->sample_frequency,
                                     &task_data->input_features,
                                     &task_data->ivector_features);

    int32 numFrames = task_data->input_features.NumRows();

    if (numFrames == 0) {
      // Make this a warning for now.  Need to check how this is handled
      KALDI_WARN << "Warning empty audio file";
    }
  }
  nvtxRangePop();
}

// Allocates decodables for tasks in the range of tasks[first,tasks.size())
void BatchedThreadedNnet3CudaPipeline::AllocateDecodables(
    int32 first, std::vector<TaskState *> &tasks,
    std::vector<CudaDecodableInterface *> &decodables) {
  // Create mapped decodable here
  for (int i = first; i < tasks.size(); i++) {
    std::shared_ptr<TaskData> &task_data = tasks[i]->task_data;
    CuMatrix<BaseFloat> &posteriors = task_data->posteriors;
    decodables.push_back(
        new DecodableCuMatrixMapped(*trans_model_, posteriors, 0));
  }
}

// Removes all completed channels from the channel list.
// Also enqueues up work for post processing
void BatchedThreadedNnet3CudaPipeline::RemoveCompletedChannels(
    CudaDecoder &cuda_decoder, ChannelState &channel_state,
    std::vector<CudaDecodableInterface *> &decodables,
    std::vector<TaskState *> &tasks) {
  std::vector<ChannelId> &channels = channel_state.channels;
  std::vector<ChannelId> &completed_channels = channel_state.completed_channels;

  // Here we will reorder arrays to put finished decodes at the end
  int cur = 0;  // points to the current unchecked decode
  int back = tasks.size() - completed_channels.size() -
             1;  // points to the last unchecked decode

  // for each active channel
  // scan channels to find finished decodes
  // move finished decodes to the end
  for (int i = 0; i < channels.size(); i++) {
    ChannelId channel = channels[cur];
    int numDecoded = cuda_decoder.NumFramesDecoded(channel);
    int toDecode = decodables[cur]->NumFramesReady();

    if (toDecode == numDecoded) {  // if current task is completed
      // add channel to free and completed queues
      completed_channels.push_back(channel);

      // Rearrange queues,
      // move this element to end and end to this spot
      std::swap(tasks[cur], tasks[back]);
      std::swap(channels[cur], channels[back]);
      std::swap(decodables[cur], decodables[back]);

      // back is a completed decode so decrement it
      back--;
    } else {
      // not completed move to next task
      cur++;
    }  // end if completed[cur]
  }    // end for loop

  // removing finished channels from list
  channels.resize(cur);
}

// Post decode some channels will be complete
// For those channels we need to
//  free up the channel
//  get and determinize the lattice
//
void BatchedThreadedNnet3CudaPipeline::PostDecodeProcessing(
    CudaDecoder &cuda_decoder, ChannelState &channel_state,
    std::vector<CudaDecodableInterface *> &decodables,
    std::vector<TaskState *> &tasks) {
  std::vector<ChannelId> &channels = channel_state.channels;
  std::vector<ChannelId> &completed_channels = channel_state.completed_channels;

  /*
  // Generate lattices for GetRawLattice
  std::vector<Lattice *> lattices(completed_channels.size());
  for (int i = 0; i < completed_channels.size(); i++) {
    // reverse order of lattices to match channel order
    // tasks order was reversed when reordering to the back
    lattices[i] = &(tasks[tasks.size() - i - 1]->lat);
  }
  */

  // Prepare data for GetRawLattice
  cuda_decoder.PrepareForGetRawLattice(completed_channels, true);
  // clean up datastructures for completed tasks
  for (int i = channels.size(); i < tasks.size(); i++) {
    delete decodables[i];
  }

  // Calling GetRawLattice + Determinize (optional) on a CPU worker thread
  for (int i = channels.size(); i < tasks.size(); i++) {
    tasks[i]->ichannel = channels[i];
    work_pool_->enqueue(THREAD_POOL_NORMAL_PRIORITY,
                        &BatchedThreadedNnet3CudaPipeline::CompleteTask, this,
                        &cuda_decoder, &channel_state, tasks[i]);
  }

  tasks.resize(channels.size());
  decodables.resize(channels.size());
  completed_channels.resize(0);
}

void BatchedThreadedNnet3CudaPipeline::CompleteTask(CudaDecoder *cuda_decoder,
                                                    ChannelState *channel_state,
                                                    TaskState *task) {
  // Calling GetRawLattice for that channel. PrepareForGetRawLattice was already
  // called
  cuda_decoder->ConcurrentGetRawLatticeSingleChannel(task->ichannel,
                                                     &task->lat);
  // We are done using that channel. Putting it back into the free channels
  {
    std::lock_guard<std::mutex> lk(channel_state->free_channels_mutex);
    channel_state->free_channels.push_back(task->ichannel);
  }

  // If necessary, determinize the lattice
  if (config_.determinize_lattice) DeterminizeOneLattice(task);

  if (!config_.determinize_lattice) {
    ConvertLattice(task->lat, &task->dlat);
  }

  if (task->callback)  // if callable
    task->callback(task->dlat);

  task->finished = true;
  // Clear working data (raw input, posteriors, etc.)
  task->task_data.reset();

  {
    std::lock_guard<std::mutex> lk(group_tasks_mutex_);
    --all_group_tasks_not_done_;
    int32 left_in_group = --group_tasks_not_done_[task->group];
    //    std::cout << "left in group " << task->group << " " << left_in_group
    //    << std::endl;
    if (left_in_group == 0) group_done_cv_.notify_all();
  }
}

void BatchedThreadedNnet3CudaPipeline::DeterminizeOneLattice(TaskState *task) {
  nvtxRangePushA("DeterminizeOneLattice");
  // Note this destroys the original raw lattice
  DeterminizeLatticePhonePrunedWrapper(*trans_model_, &task->lat,
                                       config_.decoder_opts.lattice_beam,
                                       &(task->dlat), config_.det_opts);
  task->determinized = true;
  nvtxRangePop();
}

void BatchedThreadedNnet3CudaPipeline::ExecuteWorker(int threadId) {
  // Initialize this threads device
  CuDevice::Instantiate();

  KALDI_LOG << "CudaDecoder batch_size=" << config_.max_batch_size
            << " num_channels=" << config_.num_channels;
  // Data structures that are reusable across decodes but unique to each thread
  CudaDecoder cuda_decoder(cuda_fst_, config_.decoder_opts,
                           config_.max_batch_size, config_.num_channels);
  if (config_.num_decoder_copy_threads > 0)
    cuda_decoder.SetThreadPoolAndStartCPUWorkers(
        work_pool_, config_.num_decoder_copy_threads);
  nnet3::NnetBatchComputer computer(config_.compute_opts, am_nnet_->GetNnet(),
                                    am_nnet_->Priors());

  OnlineCudaFeaturePipeline feature_pipeline(config_.feature_opts);

  ChannelState channel_state;

  std::vector<TaskState *> tasks;  // The state for each decode
  std::vector<CudaDecodableInterface *> decodables;

  // Initialize reuseable data structures
  {
    channel_state.channels.reserve(config_.max_batch_size);
    channel_state.completed_channels.reserve(config_.max_batch_size);
    tasks.reserve(config_.max_batch_size);
    decodables.reserve(config_.max_batch_size);
    {
      std::lock_guard<std::mutex> lk(channel_state.free_channels_mutex);
      channel_state.free_channels.reserve(config_.num_channels);
      // add all channels to free channel list
      for (int i = 0; i < config_.num_channels; i++) {
        channel_state.free_channels.push_back(i);
      }
    }
  }

  numStarted_++;  // Tell master I have started

  // main control loop.  At each iteration a thread will see if it has been
  // asked to shut
  // down.  If it has it will exit.  This loop condition will only be processed
  // if all
  // other work assigned to this thread has been processed.
  while (!exit_) {
    // main processing loop.  At each iteration the thread will do the
    // following:
    // 1) Attempt to grab more work.
    // 2) Initialize any new work
    // do
    // 3) Process work in a batch
    // while(free lanes < drain_count)
    // 4) Postprocess any completed work
    do {
      // 1) attempt to fill the batch
      if (tasks_front_ != tasks_back_) {  // if work is available grab more work

        int start = tasks.size();  // Save the current assigned tasks size

        AquireAdditionalTasks(cuda_decoder, channel_state, tasks);

        // New tasks are now in the in tasks[start,tasks.size())
        if (start != tasks.size()) {  // if there are new tasks
          if (config_.gpu_feature_extract)
            ComputeBatchFeatures(start, tasks, feature_pipeline);
          ComputeBatchNnet(computer, start, tasks);
          AllocateDecodables(start, tasks, decodables);
        }
      }  // end if (tasks_front_!=tasks_back_)

      // check if there is no active work on this thread.
      // This can happen if another thread was assigned the work.
      if (tasks.size() == 0) {
        // Thread is spinning waiting for work.  Backoff.
        kaldi::Sleep(SLEEP_BACKOFF_S);
        break;
      }

      // try/catch to catch and report errors inside decoder.
      // errors can be recoverable or non-recoverable
      // unrecoverable errors will assert
      // recoverable errors will cancel the batch (output empty lattice)
      // and print a warning.
      // There should be no errors and this is just a sanity check
      try {
        // This is in a loop in case we want to drain the batch a little.
        // Draining the batch will cause initialization tasks to be batched.
        do {
          // 3) Process outstanding work in a batch
          // Advance decoding on all open channels
          cuda_decoder.AdvanceDecoding(channel_state.channels, decodables);

          // Adjust channel state for all completed decodes
          RemoveCompletedChannels(cuda_decoder, channel_state, decodables,
                                  tasks);
          // do loop repeates until we meet drain size or run out of work
        } while (config_.max_batch_size - channel_state.channels.size() <
                     config_.batch_drain_size &&
                 channel_state.channels.size() > 0);
        // 4) Post process work.  This reorders completed work to the end,
        // copies results outs, and cleans up data structures
        PostDecodeProcessing(cuda_decoder, channel_state, decodables, tasks);

      } catch (CudaDecoderException e) {
        // Code to catch errors.  Most errors are unrecoverable but a user can
        // mark them
        // recoverable which will cancel the entire batch but keep processing.
        if (!e.recoverable) {
          bool UNRECOVERABLE_EXCEPTION = false;
          KALDI_LOG << "Error unrecoverable cuda decoder error '" << e.what()
                    << "'\n";
          KALDI_ASSERT(UNRECOVERABLE_EXCEPTION);
        } else {
          KALDI_LOG << "Error recoverable cuda decoder error '" << e.what()
                    << "'\n";
          KALDI_LOG << "    Aborting batch for recovery.  Canceling the "
                       "following decodes:\n";
          // Cancel all outstanding tasks
          for (int i = 0; i < tasks.size(); i++) {
            // move all channels to free channel queue
            ChannelId channel = channel_state.channels[i];
            {
              std::lock_guard<std::mutex> lk(channel_state.free_channels_mutex);
              channel_state.free_channels.push_back(channel);
            }
            TaskState &task = *(tasks[i]);
            KALDI_LOG << "      Canceled: " << task.key << "\n";

            // set error flag
            task.error = true;
            task.error_string = e.what();

            // cleanup memory
            delete decodables[i];

            // notifiy master decode is finished
            task.finished = true;
          }
          tasks.resize(0);
          channel_state.channels.resize(0);
          decodables.resize(0);
        }
      }
    } while (tasks.size() > 0);  // more work don't check exit condition
  }                              // end while(!exit_)
}  // end ExecuteWorker

}  // end namespace cuda_decoder
}  // end namespace kaldi

#endif  // HAVE_CUDA == 1