feature-online-cmvn-cuda.cu
6.69 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// cudafeat/feature-online-cmvn-cuda.cu
//
// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
// Justin Luitjens
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cub/cub.cuh>
#include "cudafeat/feature-online-cmvn-cuda.h"
#include "cudamatrix/cu-matrix.h"
#include "cudamatrix/cu-vector.h"
__host__ __device__ inline float2 operator-(const float2 &a, const float2 &b) {
float2 retval;
retval.x = a.x - b.x;
retval.y = a.y - b.y;
return retval;
}
__host__ __device__ inline float2 operator+(const float2 &a, const float2 &b) {
float2 retval;
retval.x = a.x + b.x;
retval.y = a.y + b.y;
return retval;
}
#if __CUDA_ARCH__ == 750
__launch_bounds__ (1024, 1)
#else
__launch_bounds__ (1024, 2)
#endif
__global__ void compute_cmvn_stats_kernel(const float *data, int32_t ldd,
int32_t num_frames, int32_t feat_dim,
float *stats, int32_t lds) {
typedef cub::BlockScan<float2, 1024> BlockScan;
__shared__ typename BlockScan::TempStorage temp_storage;
int32_t feat = blockIdx.x;
float2 running_sum = {0.0f, 0.0f};
// for each frame, keep threads alive for cub
for (int32_t r = 0; r < num_frames; r += blockDim.x) {
int32_t rid = r + threadIdx.x;
float val = 0.0f;
if (rid < num_frames) {
// uncoalesced, could transpose data or do some shared memory swizzling...
val = data[rid * ldd + feat];
}
float2 sum = {val, val * val}; // this elements value and value squared
float2 psum; // row prefix sum
float2 total; // total count
BlockScan(temp_storage).InclusiveSum(sum, psum, total);
// offset by running sum
psum = psum + running_sum;
// increase running sum by new total
running_sum = running_sum + total;
// un-coalesced
if (rid < num_frames) {
reinterpret_cast<float2 *>(&stats[rid * lds])[feat] = psum;
}
}
}
__global__ void apply_cmvn_kernel(
int32_t cmvn_window, bool var_norm, bool mean_norm, const float *feat_in,
int32_t ldi, int32_t num_rows, int32_t num_cols,
const float *__restrict__ stats, int32_t lds,
const float *__restrict__ global_stats, int32_t ldg, int32_t global_frames,
const float *__restrict__ speaker_stats, int32_t ldss,
int32_t speaker_frames, float *feat_out, int32_t ldo) {
int32_t r = blockIdx.x;
for (int c = threadIdx.x; c < num_cols; c += blockDim.x) {
float2 frame_stats =
reinterpret_cast<const float2 __restrict__ *>(&stats[r * lds])[c];
float val = feat_in[r * ldi + c];
float window_length = min(r + 1, cmvn_window);
// we have to subtract row r-cmvn_window stats
if (r >= cmvn_window) {
// window starting row
int32_t o = r - cmvn_window;
// stats at the start row of the window that must be removed
float2 ostats =
reinterpret_cast<const float2 __restrict__ *>(&stats[o * lds])[c];
// remove start of the window stats
frame_stats = frame_stats - ostats;
}
// Smooth stats by speaker frames if necessary
float smooth_frames = cmvn_window - window_length;
if (smooth_frames > 0 && speaker_frames > 0) {
float count_from_speaker = min(smooth_frames, (float)speaker_frames);
float speaker_count = speaker_stats[num_cols];
if (count_from_speaker > 0.0) {
float alpha = count_from_speaker / speaker_count;
frame_stats.x += alpha * speaker_stats[c]; // update mean
frame_stats.y += alpha * speaker_stats[ldss + c]; // update variance
window_length += alpha * speaker_count; // update window length
// recompute smooth frames now that we have speaker stats
smooth_frames = cmvn_window - window_length;
}
}
// Smooth stats by global frames if necessary
if (smooth_frames > 0 && global_frames > 0) {
float count_from_global = min(smooth_frames, (float)global_frames);
float global_count = global_stats[num_cols];
if (count_from_global > 0.0) {
float alpha = count_from_global / global_count;
frame_stats.x += alpha * global_stats[c]; // update mean
frame_stats.y += alpha * global_stats[ldg + c]; // update variance
window_length += alpha * global_count; // update window length
}
}
float mean = frame_stats.x / window_length;
float var = frame_stats.y / window_length - mean * mean;
float floor = 1e-20;
if (var < floor) // avoid dividing by zero
var = floor;
if (!var_norm) {
// skip variance normalization
var = 1.0f;
}
if (!mean_norm) {
assert(false);
// skip mean normalization
mean = 0.0f;
}
// shift by mean and scale by variance
feat_out[r * ldo + c] = (val - mean) / sqrtf(var);
}
}
namespace kaldi {
void CudaOnlineCmvn::ComputeFeatures(const CuMatrixBase<BaseFloat> &feats_in,
CuMatrix<BaseFloat> *feats_out) {
int32_t num_frames = feats_in.NumRows();
int32_t feat_dim = feats_in.NumCols();
feats_out->Resize(num_frames, feat_dim, kUndefined);
CuMatrix<float> stats(num_frames, feat_dim * 2, kUndefined);
int threads = 1024;
int blocks = feat_dim;
// compute windowed sum/sum2 prefix sum along column of feats
compute_cmvn_stats_kernel<<<blocks, threads>>>(
feats_in.Data(), feats_in.Stride(), num_frames, feat_dim, stats.Data(),
stats.Stride());
CU_SAFE_CALL(cudaGetLastError());
threads = (feat_dim + 31) / 32 * 32; // round up to 32 threads
if (threads > 1024) threads = 1024;
const CuMatrix<float> &gstats = cmvn_state_.global_cmvn_stats;
const CuMatrix<float> &sstats = cmvn_state_.speaker_cmvn_stats;
int global_frames = opts_.global_frames;
int speaker_frames = opts_.speaker_frames;
if (gstats.NumRows() == 0) global_frames = 0;
if (sstats.NumRows() == 0) speaker_frames = 0;
// apply cmvn
apply_cmvn_kernel<<<num_frames, threads>>>(
opts_.cmn_window, opts_.normalize_variance, opts_.normalize_mean,
feats_in.Data(), feats_in.Stride(), num_frames, feat_dim, stats.Data(),
stats.Stride(), gstats.Data(), gstats.Stride(), global_frames,
sstats.Data(), sstats.Stride(), speaker_frames, feats_out->Data(),
feats_out->Stride());
CU_SAFE_CALL(cudaGetLastError());
}
}