cu-rand-speed-test.cc
7.06 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// cudamatrix/cu-rand-speed-test.cc
// Copyright 2016 Brno University of Technology (author: Karel Vesely)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <vector>
#include <cstdlib>
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "cudamatrix/cu-matrix.h"
#include "cudamatrix/cu-vector.h"
#include "cudamatrix/cu-rand.h"
using namespace kaldi;
namespace kaldi {
template<typename Real>
std::string NameOf() {
return (sizeof(Real) == 8 ? "<double>" : "<float>");
}
template <typename T>
std::string ToString(const T& t) {
std::ostringstream os;
os << t;
return os.str();
}
template<typename Real>
std::string MeanVariance(const CuMatrixBase<Real>& m) {
std::ostringstream os;
Real mean = m.Sum() / (m.NumRows()*m.NumCols());
CuMatrix<Real> tmp(m);
tmp.Add(-mean);
tmp.ApplyPow(2.0);
Real var = tmp.Sum() / (tmp.NumRows()*tmp.NumCols());
return std::string("mean ") + ToString(mean) + ", std-dev " + ToString(std::sqrt(var));
}
template<typename Real>
std::string MeanVariance(const CuVectorBase<Real>& v) {
std::ostringstream os;
Real mean = v.Sum() / v.Dim();
CuVector<Real> tmp(v);
tmp.Add(-mean);
tmp.ApplyPow(2.0);
Real var = tmp.Sum() / tmp.Dim();
return std::string("mean ") + ToString(mean) + ", std-dev " + ToString(std::sqrt(var));
}
template <typename Real>
void CuRandUniformMatrixSpeedTest(const int32 iter) {
Timer t;
CuRand<Real> rand;
CuMatrix<Real> m(249,1001, kUndefined);
for (int32 i = 0; i < iter; i++) {
rand.RandUniform(&m);
}
CuMatrix<Real> m2(256,1024, kUndefined);
for (int32 i = 0; i < iter; i++) {
rand.RandUniform(&m2);
}
// flops = number of generated random numbers per second,
Real flops = iter * (m.NumRows() * m.NumCols() + m2.NumRows() * m2.NumCols()) / t.Elapsed();
KALDI_LOG << __func__ << NameOf<Real>()
<< " Speed was " << flops << " rand_elems/s. "
<< "(debug " << MeanVariance(m) << ")";
}
template <typename Real>
void CuRandUniformMatrixBaseSpeedTest(const int32 iter) {
Timer t;
CuRand<Real> rand;
CuMatrix<Real> m(249,1001, kUndefined);
for (int32 i = 0; i < iter; i++) {
rand.RandUniform(dynamic_cast<CuMatrixBase<Real>*>(&m));
}
CuMatrix<Real> m2(256,1024, kUndefined);
for (int32 i = 0; i < iter; i++) {
rand.RandUniform(dynamic_cast<CuMatrixBase<Real>*>(&m2));
}
// flops = number of generated random numbers per second,
Real flops = iter * (m.NumRows() * m.NumCols() + m2.NumRows() * m2.NumCols()) / t.Elapsed();
KALDI_LOG << __func__ << NameOf<Real>()
<< " Speed was " << flops << " rand_elems/s. "
<< "(debug " << MeanVariance(m) << ")";
}
template <typename Real>
void CuRandGaussianMatrixSpeedTest(const int32 iter) {
Timer t;
CuRand<Real> rand;
CuMatrix<Real> m(249,1001, kUndefined);
for (int32 i = 0; i < iter; i++) {
rand.RandGaussian(&m);
}
CuMatrix<Real> m2(256,1024, kUndefined);
for (int32 i = 0; i < iter; i++) {
rand.RandGaussian(&m2);
}
// flops = number of generated random numbers per second,
Real flops = iter * (m.NumRows() * m.NumCols() + m2.NumRows() * m2.NumCols()) / t.Elapsed();
KALDI_LOG << __func__ << NameOf<Real>()
<< " Speed was " << flops << " rand_elems/s. "
<< "(debug " << MeanVariance(m) << ")";
}
template <typename Real>
void CuRandGaussianMatrixBaseSpeedTest(const int32 iter) {
Timer t;
CuRand<Real> rand;
CuMatrix<Real> m(249,1001, kUndefined);
for (int32 i = 0; i < iter; i++) {
rand.RandGaussian(dynamic_cast<CuMatrixBase<Real>*>(&m));
}
CuMatrix<Real> m2(256,1024, kUndefined);
for (int32 i = 0; i < iter; i++) {
rand.RandGaussian(dynamic_cast<CuMatrixBase<Real>*>(&m2));
}
// flops = number of generated random numbers per second,
Real flops = iter * (m.NumRows() * m.NumCols() + m2.NumRows() * m2.NumCols()) / t.Elapsed();
KALDI_LOG << __func__ << NameOf<Real>()
<< " Speed was " << flops << " rand_elems/s. "
<< "(debug " << MeanVariance(m) << ")";
}
template <typename Real>
void CuRandUniformVectorSpeedTest(const int32 iter) {
Timer t;
CuRand<Real> rand;
CuVector<Real> v(2011, kUndefined);
for (int32 i = 0; i < iter; i++) {
rand.RandUniform(&v);
}
CuVector<Real> v2(2048, kUndefined);
for (int32 i = 0; i < iter; i++) {
rand.RandUniform(&v2);
}
// flops = number of generated random numbers per second,
Real flops = iter * (v.Dim() + v2.Dim()) / t.Elapsed();
KALDI_LOG << __func__ << NameOf<Real>()
<< " Speed was " << flops << " rand_elems/s. "
<< "(debug " << MeanVariance(v) << ")";
}
template <typename Real>
void CuRandGaussianVectorSpeedTest(const int32 iter) {
Timer t;
CuRand<Real> rand;
CuVector<Real> v(2011, kUndefined);
for (int32 i = 0; i < iter; i++) {
rand.RandGaussian(&v);
}
CuVector<Real> v2(2048, kUndefined);
for (int32 i = 0; i < iter; i++) {
rand.RandGaussian(&v2);
}
// flops = number of generated random numbers per second,
Real flops = iter * (v.Dim() + v2.Dim()) / t.Elapsed();
KALDI_LOG << __func__ << NameOf<Real>()
<< " Speed was " << flops << " rand_elems/s. "
<< "(debug " << MeanVariance(v) << ")";
}
} // namespace kaldi
int main() {
int32 iter = 10; // Be quick on CPU,
#if HAVE_CUDA == 1
for (int32 loop = 0; loop < 2; loop++) { // NO for loop if 'HAVE_CUDA != 1',
CuDevice::Instantiate().SetDebugStrideMode(true);
if ( loop == 0)
CuDevice::Instantiate().SelectGpuId("no");
else {
CuDevice::Instantiate().SelectGpuId("yes");
iter = 400; // GPUs are faster,
}
#endif
Timer t;
kaldi::CuRandUniformMatrixSpeedTest<float>(iter);
kaldi::CuRandUniformMatrixBaseSpeedTest<float>(iter);
kaldi::CuRandUniformVectorSpeedTest<float>(iter);
kaldi::CuRandGaussianMatrixSpeedTest<float>(iter);
kaldi::CuRandGaussianMatrixBaseSpeedTest<float>(iter);
kaldi::CuRandGaussianVectorSpeedTest<float>(iter);
fprintf(stderr, "---\n");
kaldi::CuRandUniformMatrixSpeedTest<double>(iter);
kaldi::CuRandUniformMatrixBaseSpeedTest<double>(iter);
kaldi::CuRandUniformVectorSpeedTest<double>(iter);
kaldi::CuRandGaussianMatrixSpeedTest<double>(iter);
kaldi::CuRandGaussianMatrixBaseSpeedTest<double>(iter);
kaldi::CuRandGaussianVectorSpeedTest<double>(iter);
fprintf(stderr, "--- ELAPSED %fs.\n\n", t.Elapsed());
#if HAVE_CUDA == 1
} // No for loop if 'HAVE_CUDA != 1',
CuDevice::Instantiate().PrintProfile();
#endif
KALDI_LOG << "Tests succeeded.";
}