biglm-faster-decoder.h 19.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
// decoder/biglm-faster-decoder.h

// Copyright 2009-2011 Microsoft Corporation,  Gilles Boulianne

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#ifndef KALDI_DECODER_BIGLM_FASTER_DECODER_H_
#define KALDI_DECODER_BIGLM_FASTER_DECODER_H_

#include "util/stl-utils.h"
#include "util/hash-list.h"
#include "fst/fstlib.h"
#include "itf/decodable-itf.h"
#include "lat/kaldi-lattice.h" // for CompactLatticeArc
#include "decoder/faster-decoder.h" // for options class
#include "fstext/deterministic-fst.h"

namespace kaldi {

struct BiglmFasterDecoderOptions: public FasterDecoderOptions {
  BiglmFasterDecoderOptions() {
    min_active = 200;
  }
};

/** This is as FasterDecoder, but does online composition between
    HCLG and the "difference language model", which is a deterministic
    FST that represents the difference between the language model you want
    and the language model you compiled HCLG with.  The class
    DeterministicOnDemandFst follows through the epsilons in G for you
    (assuming G is a standard backoff language model) and makes it look
    like a determinized FST.  Actually, in practice,
    DeterministicOnDemandFst operates in a mode where it composes two
    G's together; one has negated likelihoods and works by removing the
    LM probabilities that you made HCLG with, and one is the language model
    you want to use.
*/
class BiglmFasterDecoder {
 public:
  typedef fst::StdArc Arc;
  typedef Arc::Label Label;
  typedef Arc::StateId StateId;
  // A PairId will be constructed as: (StateId in fst) + (StateId in lm_diff_fst) << 32;
  typedef uint64 PairId;
  typedef Arc::Weight Weight;
  
  // This constructor is the same as for FasterDecoder, except the second
  // argument (lm_diff_fst) is new; it's an FST (actually, a
  // DeterministicOnDemandFst) that represents the difference in LM scores
  // between the LM we want and the LM the decoding-graph "fst" was built with.
  // See e.g. gmm-decode-biglm-faster.cc for an example of how this is called.
  // Basically, we are using fst o lm_diff_fst (where o is composition)
  // as the decoding graph.  Instead of having everything indexed by the state in
  // "fst", we now index by the pair of states in (fst, lm_diff_fst).
  // Whenever we cross a word, we need to propagate the state within
  // lm_diff_fst.
  BiglmFasterDecoder(const fst::Fst<fst::StdArc> &fst,
                     const BiglmFasterDecoderOptions &opts,
                     fst::DeterministicOnDemandFst<fst::StdArc> *lm_diff_fst):
      fst_(fst), lm_diff_fst_(lm_diff_fst), opts_(opts), warned_noarc_(false) {
    KALDI_ASSERT(opts_.hash_ratio >= 1.0);  // less doesn't make much sense.
    KALDI_ASSERT(opts_.max_active > 1);
    KALDI_ASSERT(fst.Start() != fst::kNoStateId &&
                 lm_diff_fst->Start() != fst::kNoStateId);
    toks_.SetSize(1000);  // just so on the first frame we do something reasonable.
  }
  
  void SetOptions(const BiglmFasterDecoderOptions &opts) { opts_ = opts; }

  ~BiglmFasterDecoder() {
    ClearToks(toks_.Clear());
  }

  void Decode(DecodableInterface *decodable) {
    // clean up from last time:
    ClearToks(toks_.Clear());
    PairId start_pair = ConstructPair(fst_.Start(), lm_diff_fst_->Start());
    Arc dummy_arc(0, 0, Weight::One(), fst_.Start()); // actually, the last element of
    // the Arcs (fst_.Start(), here) is never needed.
    toks_.Insert(start_pair, new Token(dummy_arc, NULL));
    ProcessNonemitting(std::numeric_limits<float>::max());
    for (int32 frame = 0; !decodable->IsLastFrame(frame-1); frame++) {
      BaseFloat weight_cutoff = ProcessEmitting(decodable, frame);
      ProcessNonemitting(weight_cutoff);
    }
  }

  bool ReachedFinal() {
    for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
      PairId state_pair = e->key;
      StateId state = PairToState(state_pair),
          lm_state = PairToLmState(state_pair);
      Weight this_weight =
          Times(e->val->weight_,
                Times(fst_.Final(state), lm_diff_fst_->Final(lm_state)));
      if (this_weight != Weight::Zero())
        return true;
    }
    return false;
  }

  bool GetBestPath(fst::MutableFst<LatticeArc> *fst_out,
                   bool use_final_probs = true) {
    // GetBestPath gets the decoding output.  If "use_final_probs" is true
    // AND we reached a final state, it limits itself to final states;
    // otherwise it gets the most likely token not taking into
    // account final-probs.  fst_out will be empty (Start() == kNoStateId) if
    // nothing was available.  It returns true if it got output (thus, fst_out
    // will be nonempty).
    fst_out->DeleteStates();
    Token *best_tok = NULL;
    Weight best_final = Weight::Zero(); // set only if is_final == true.  The
    // final-prob corresponding to the best final token (i.e. the one with best
    // weight best_weight, below).
    bool is_final = ReachedFinal();
    if (!is_final) {
      for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail)
        if (best_tok == NULL || *best_tok < *(e->val) )
          best_tok = e->val;
    } else {
      Weight best_weight = Weight::Zero();
      for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
        Weight fst_final = fst_.Final(PairToState(e->key)),
            lm_final = lm_diff_fst_->Final(PairToLmState(e->key)),
            final = Times(fst_final, lm_final);
        Weight this_weight = Times(e->val->weight_, final);
        if (this_weight != Weight::Zero() &&
           this_weight.Value() < best_weight.Value()) {
          best_weight = this_weight;
          best_final = final;
          best_tok = e->val;
        }
      }
    }
    if (best_tok == NULL) return false;  // No output.

    std::vector<LatticeArc> arcs_reverse;  // arcs in reverse order.

    for (Token *tok = best_tok; tok != NULL; tok = tok->prev_) {
      BaseFloat tot_cost = tok->weight_.Value() -
          (tok->prev_ ? tok->prev_->weight_.Value() : 0.0),
          graph_cost = tok->arc_.weight.Value(),
          ac_cost = tot_cost - graph_cost;
      LatticeArc l_arc(tok->arc_.ilabel,
                       tok->arc_.olabel,
                       LatticeWeight(graph_cost, ac_cost),
                       tok->arc_.nextstate);
      arcs_reverse.push_back(l_arc);
    }
    KALDI_ASSERT(arcs_reverse.back().nextstate == fst_.Start());
    arcs_reverse.pop_back();  // that was a "fake" token... gives no info.
    
    StateId cur_state = fst_out->AddState();
    fst_out->SetStart(cur_state);
    for (ssize_t i = static_cast<ssize_t>(arcs_reverse.size())-1; i >= 0; i--) {
      LatticeArc arc = arcs_reverse[i];
      arc.nextstate = fst_out->AddState();
      fst_out->AddArc(cur_state, arc);
      cur_state = arc.nextstate;
    }
    if (is_final && use_final_probs) {
      fst_out->SetFinal(cur_state, LatticeWeight(best_final.Value(), 0.0));
    } else {
      fst_out->SetFinal(cur_state, LatticeWeight::One());
    }
    RemoveEpsLocal(fst_out);
    return true;
  }

 private:
  inline PairId ConstructPair(StateId fst_state, StateId lm_state) {
    return static_cast<PairId>(fst_state) + (static_cast<PairId>(lm_state) << 32);
  }
  
  static inline StateId PairToState(PairId state_pair) {
    return static_cast<StateId>(static_cast<uint32>(state_pair));
  }
  static inline StateId PairToLmState(PairId state_pair) {
    return static_cast<StateId>(static_cast<uint32>(state_pair >> 32));
  }

  class Token {
   public:
    Arc arc_; // contains only the graph part of the cost,
    // including the part in "fst" (== HCLG) plus lm_diff_fst.
    // We can work out the acoustic part from difference between
    // "weight_" and prev->weight_.
    Token *prev_;
    int32 ref_count_;
    Weight weight_; // weight up to current point.
    inline Token(const Arc &arc, Weight &ac_weight, Token *prev):
        arc_(arc), prev_(prev), ref_count_(1) {
      if (prev) {
        prev->ref_count_++;
        weight_ = Times(Times(prev->weight_, arc.weight), ac_weight);
      } else {
        weight_ = Times(arc.weight, ac_weight);
      }
    }
    inline Token(const Arc &arc, Token *prev):
        arc_(arc), prev_(prev), ref_count_(1) {
      if (prev) {
        prev->ref_count_++;
        weight_ = Times(prev->weight_, arc.weight);
      } else {
        weight_ = arc.weight;
      }
    }
    inline bool operator < (const Token &other) {
      return weight_.Value() > other.weight_.Value();
      // This makes sense for log + tropical semiring.
    }

    inline ~Token() {
      KALDI_ASSERT(ref_count_ == 1);
      if (prev_ != NULL) TokenDelete(prev_);
    }
    inline static void TokenDelete(Token *tok) {
      if (tok->ref_count_ == 1) { 
        delete tok;
      } else {
        tok->ref_count_--;
      }
    }
  };
  typedef HashList<PairId, Token*>::Elem Elem;


  /// Gets the weight cutoff.  Also counts the active tokens.
  BaseFloat GetCutoff(Elem *list_head, size_t *tok_count,
                      BaseFloat *adaptive_beam, Elem **best_elem) {
    BaseFloat best_weight = 1.0e+10;  // positive == high cost == bad.
    size_t count = 0;
    if (opts_.max_active == std::numeric_limits<int32>::max() &&
        opts_.min_active == 0) {
      for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
        BaseFloat w = static_cast<BaseFloat>(e->val->weight_.Value());
        if (w < best_weight) {
          best_weight = w;
          if (best_elem) *best_elem = e;
        }
      }
      if (tok_count != NULL) *tok_count = count;
      if (adaptive_beam != NULL) *adaptive_beam = opts_.beam;
      return best_weight + opts_.beam;
    } else {
      tmp_array_.clear();
      for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
        BaseFloat w = e->val->weight_.Value();
        tmp_array_.push_back(w);
        if (w < best_weight) {
          best_weight = w;
          if (best_elem) *best_elem = e;
        }
      }
      if (tok_count != NULL) *tok_count = count;

      BaseFloat beam_cutoff = best_weight + opts_.beam,
        min_active_cutoff = std::numeric_limits<BaseFloat>::infinity(),
        max_active_cutoff = std::numeric_limits<BaseFloat>::infinity();

      if (tmp_array_.size() > static_cast<size_t>(opts_.max_active)) {
        std::nth_element(tmp_array_.begin(),
                         tmp_array_.begin() + opts_.max_active,
                         tmp_array_.end());
        max_active_cutoff = tmp_array_[opts_.max_active];
      }
      if (tmp_array_.size() > static_cast<size_t>(opts_.min_active)) {
        if (opts_.min_active == 0) min_active_cutoff = best_weight;
        else {
          std::nth_element(tmp_array_.begin(),
                           tmp_array_.begin() + opts_.min_active,
                           tmp_array_.size() > static_cast<size_t>(opts_.max_active) ?
                           tmp_array_.begin() + opts_.max_active :
                           tmp_array_.end());
          min_active_cutoff = tmp_array_[opts_.min_active];
        }
      }

      if (max_active_cutoff < beam_cutoff) { // max_active is tighter than beam.
        if (adaptive_beam)
          *adaptive_beam = max_active_cutoff - best_weight + opts_.beam_delta;
        return max_active_cutoff;
      } else if (min_active_cutoff > beam_cutoff) { // min_active is looser than beam.
        if (adaptive_beam)
          *adaptive_beam = min_active_cutoff - best_weight + opts_.beam_delta;
        return min_active_cutoff;
      } else {
        *adaptive_beam = opts_.beam;
        return beam_cutoff;
      }
    }
  }

  void PossiblyResizeHash(size_t num_toks) {
    size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks)
                                        * opts_.hash_ratio);
    if (new_sz > toks_.Size()) {
      toks_.SetSize(new_sz);
    }
  }

  inline StateId PropagateLm(StateId lm_state,
                             Arc *arc) { // returns new LM state.
    if (arc->olabel == 0) {
      return lm_state; // no change in LM state if no word crossed.
    } else { // Propagate in the LM-diff FST.
      Arc lm_arc;
      bool ans = lm_diff_fst_->GetArc(lm_state, arc->olabel, &lm_arc);
      if (!ans) { // this case is unexpected for statistical LMs.
        if (!warned_noarc_) {
          warned_noarc_ = true;
          KALDI_WARN << "No arc available in LM (unlikely to be correct "
              "if a statistical language model); will not warn again";
        }
        arc->weight = Weight::Zero();
        return lm_state; // doesn't really matter what we return here; will
        // be pruned.
      } else {
        arc->weight = Times(arc->weight, lm_arc.weight);
        arc->olabel = lm_arc.olabel; // probably will be the same.
        return lm_arc.nextstate; // return the new LM state.
      }      
    }
  }

  // ProcessEmitting returns the likelihood cutoff used.
  BaseFloat ProcessEmitting(DecodableInterface *decodable, int frame) {
    Elem *last_toks = toks_.Clear();
    size_t tok_cnt;
    BaseFloat adaptive_beam;
    Elem *best_elem = NULL;
    BaseFloat weight_cutoff = GetCutoff(last_toks, &tok_cnt,
                                        &adaptive_beam, &best_elem);
    PossiblyResizeHash(tok_cnt);  // This makes sure the hash is always big enough.
    
    // This is the cutoff we use after adding in the log-likes (i.e.
    // for the next frame).  This is a bound on the cutoff we will use
    // on the next frame.
    BaseFloat next_weight_cutoff = 1.0e+10;

    // First process the best token to get a hopefully
    // reasonably tight bound on the next cutoff.
    if (best_elem) {
      PairId state_pair = best_elem->key;
      StateId state = PairToState(state_pair),
          lm_state = PairToLmState(state_pair);
      Token *tok = best_elem->val;
      for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
           !aiter.Done();
           aiter.Next()) {
        Arc arc = aiter.Value();        
        if (arc.ilabel != 0) {  // we'd propagate..
          PropagateLm(lm_state, &arc); // may affect "arc.weight".
          // We don't need the return value (the new LM state).
          BaseFloat ac_cost = - decodable->LogLikelihood(frame, arc.ilabel),
              new_weight = arc.weight.Value() + tok->weight_.Value() + ac_cost;
          if (new_weight + adaptive_beam < next_weight_cutoff)
            next_weight_cutoff = new_weight + adaptive_beam;
        }
      }
    }

    // the tokens are now owned here, in last_toks, and the hash is empty.
    // 'owned' is a complex thing here; the point is we need to call toks_.Delete(e)
    // on each elem 'e' to let toks_ know we're done with them.
    for (Elem *e = last_toks, *e_tail; e != NULL; e = e_tail) {  // loop this way
      // because we delete "e" as we go.
      PairId state_pair = e->key;
      StateId state = PairToState(state_pair),
          lm_state = PairToLmState(state_pair);
      Token *tok = e->val;
      if (tok->weight_.Value() < weight_cutoff) {  // not pruned.
        KALDI_ASSERT(state == tok->arc_.nextstate);
        for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
            !aiter.Done();
            aiter.Next()) {
          Arc arc = aiter.Value();
          if (arc.ilabel != 0) {  // propagate.
            StateId next_lm_state = PropagateLm(lm_state, &arc);
            Weight ac_weight(-decodable->LogLikelihood(frame, arc.ilabel));
            BaseFloat new_weight = arc.weight.Value() + tok->weight_.Value()
                + ac_weight.Value();
            if (new_weight < next_weight_cutoff) {  // not pruned..
              PairId next_pair = ConstructPair(arc.nextstate, next_lm_state);
              Token *new_tok = new Token(arc, ac_weight, tok);
              Elem *e_found = toks_.Insert(next_pair, new_tok);
              if (new_weight + adaptive_beam < next_weight_cutoff)
                next_weight_cutoff = new_weight + adaptive_beam;
              if (e_found->val != new_tok) {
                if (*(e_found->val) < *new_tok) {
                  Token::TokenDelete(e_found->val);
                  e_found->val = new_tok;
                } else {
                  Token::TokenDelete(new_tok);
                }
              }
            }
          }
        }
      }
      e_tail = e->tail;
      Token::TokenDelete(e->val);
      toks_.Delete(e);
    }
    return next_weight_cutoff;
  }

  // TODO: first time we go through this, could avoid using the queue.
  void ProcessNonemitting(BaseFloat cutoff) {
    // Processes nonemitting arcs for one frame. 
    KALDI_ASSERT(queue_.empty());
    for (const Elem *e = toks_.GetList(); e != NULL;  e = e->tail)
      queue_.push_back(e);
    while (!queue_.empty()) {
      const Elem *e = queue_.back();
      queue_.pop_back();
      PairId state_pair = e->key;
      Token *tok = e->val;  // would segfault if state not
      // in toks_ but this can't happen.
      if (tok->weight_.Value() > cutoff) { // Don't bother processing successors.
        continue;
      }
      KALDI_ASSERT(tok != NULL);
      StateId state = PairToState(state_pair),
          lm_state = PairToLmState(state_pair);
      for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
           !aiter.Done();
           aiter.Next()) {
        const Arc &arc_ref = aiter.Value();
        if (arc_ref.ilabel == 0) {  // propagate nonemitting only...
          Arc arc(arc_ref);
          StateId next_lm_state = PropagateLm(lm_state, &arc);
          PairId next_pair = ConstructPair(arc.nextstate, next_lm_state);
          Token *new_tok = new Token(arc, tok);
          if (new_tok->weight_.Value() > cutoff) {  // prune
            Token::TokenDelete(new_tok);
          } else {
            Elem *e_found = toks_.Insert(next_pair, new_tok);
            if (e_found->val == new_tok) {
              queue_.push_back(e_found);
            } else {
              if ( *(e_found->val) < *new_tok ) {
                Token::TokenDelete(e_found->val);
                e_found->val = new_tok;
                queue_.push_back(e_found);
              } else {
                Token::TokenDelete(new_tok);
              }
            }
          }
        }
      }
    }
  }

  // HashList defined in ../util/hash-list.h.  It actually allows us to maintain
  // more than one list (e.g. for current and previous frames), but only one of
  // them at a time can be indexed by PairId.
  HashList<PairId, Token*> toks_;
  const fst::Fst<fst::StdArc> &fst_;
  fst::DeterministicOnDemandFst<fst::StdArc> *lm_diff_fst_;
  BiglmFasterDecoderOptions opts_;
  bool warned_noarc_;
  std::vector<const Elem* > queue_;  // temp variable used in ProcessNonemitting,
  std::vector<BaseFloat> tmp_array_;  // used in GetCutoff.
  // make it class member to avoid internal new/delete.

  // It might seem unclear why we call ClearToks(toks_.Clear()).
  // There are two separate cleanup tasks we need to do at when we start a new file.
  // one is to delete the Token objects in the list; the other is to delete
  // the Elem objects.  toks_.Clear() just clears them from the hash and gives ownership
  // to the caller, who then has to call toks_.Delete(e) for each one.  It was designed
  // this way for convenience in propagating tokens from one frame to the next.
  void ClearToks(Elem *list) {
    for (Elem *e = list, *e_tail; e != NULL; e = e_tail) {
      Token::TokenDelete(e->val);
      e_tail = e->tail;
      toks_.Delete(e);
    }
  }
  KALDI_DISALLOW_COPY_AND_ASSIGN(BiglmFasterDecoder);
};


} // end namespace kaldi.


#endif