lattice-biglm-faster-decoder.h
38.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
// decoder/lattice-biglm-faster-decoder.h
// Copyright 2009-2011 Microsoft Corporation, Mirko Hannemann,
// Gilles Boulianne
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_DECODER_LATTICE_BIGLM_FASTER_DECODER_H_
#define KALDI_DECODER_LATTICE_BIGLM_FASTER_DECODER_H_
#include "util/stl-utils.h"
#include "util/hash-list.h"
#include "fst/fstlib.h"
#include "itf/decodable-itf.h"
#include "fstext/fstext-lib.h"
#include "lat/kaldi-lattice.h"
#include "decoder/lattice-faster-decoder.h" // for options.
namespace kaldi {
// The options are the same as for lattice-faster-decoder.h for now.
typedef LatticeFasterDecoderConfig LatticeBiglmFasterDecoderConfig;
/** This is as LatticeFasterDecoder, but does online composition between
HCLG and the "difference language model", which is a deterministic
FST that represents the difference between the language model you want
and the language model you compiled HCLG with. The class
DeterministicOnDemandFst follows through the epsilons in G for you
(assuming G is a standard backoff language model) and makes it look
like a determinized FST.
*/
class LatticeBiglmFasterDecoder {
public:
typedef fst::StdArc Arc;
typedef Arc::Label Label;
typedef Arc::StateId StateId;
// A PairId will be constructed as: (StateId in fst) + (StateId in lm_diff_fst) << 32;
typedef uint64 PairId;
typedef Arc::Weight Weight;
// instantiate this class once for each thing you have to decode.
LatticeBiglmFasterDecoder(
const fst::Fst<fst::StdArc> &fst,
const LatticeBiglmFasterDecoderConfig &config,
fst::DeterministicOnDemandFst<fst::StdArc> *lm_diff_fst):
fst_(fst), lm_diff_fst_(lm_diff_fst), config_(config),
warned_noarc_(false), num_toks_(0) {
config.Check();
KALDI_ASSERT(fst.Start() != fst::kNoStateId &&
lm_diff_fst->Start() != fst::kNoStateId);
toks_.SetSize(1000); // just so on the first frame we do something reasonable.
}
void SetOptions(const LatticeBiglmFasterDecoderConfig &config) { config_ = config; }
LatticeBiglmFasterDecoderConfig GetOptions() { return config_; }
~LatticeBiglmFasterDecoder() {
DeleteElems(toks_.Clear());
ClearActiveTokens();
}
// Returns true if any kind of traceback is available (not necessarily from
// a final state).
bool Decode(DecodableInterface *decodable) {
// clean up from last time:
DeleteElems(toks_.Clear());
ClearActiveTokens();
warned_ = false;
final_active_ = false;
final_costs_.clear();
num_toks_ = 0;
PairId start_pair = ConstructPair(fst_.Start(), lm_diff_fst_->Start());
active_toks_.resize(1);
Token *start_tok = new Token(0.0, 0.0, NULL, NULL);
active_toks_[0].toks = start_tok;
toks_.Insert(start_pair, start_tok);
num_toks_++;
ProcessNonemitting(0);
// We use 1-based indexing for frames in this decoder (if you view it in
// terms of features), but note that the decodable object uses zero-based
// numbering, which we have to correct for when we call it.
for (int32 frame = 1; !decodable->IsLastFrame(frame-2); frame++) {
active_toks_.resize(frame+1); // new column
ProcessEmitting(decodable, frame);
ProcessNonemitting(frame);
if (decodable->IsLastFrame(frame-1))
PruneActiveTokensFinal(frame);
else if (frame % config_.prune_interval == 0)
PruneActiveTokens(frame, config_.lattice_beam * 0.1); // use larger delta.
}
// Returns true if we have any kind of traceback available (not necessarily
// to the end state; query ReachedFinal() for that).
return !final_costs_.empty();
}
/// says whether a final-state was active on the last frame. If it was not, the
/// lattice (or traceback) will end with states that are not final-states.
bool ReachedFinal() const { return final_active_; }
// Outputs an FST corresponding to the single best path
// through the lattice.
bool GetBestPath(fst::MutableFst<LatticeArc> *ofst,
bool use_final_probs = true) const {
fst::VectorFst<LatticeArc> fst;
if (!GetRawLattice(&fst, use_final_probs)) return false;
// std::cout << "Raw lattice is:\n";
// fst::FstPrinter<LatticeArc> fstprinter(fst, NULL, NULL, NULL, false, true);
// fstprinter.Print(&std::cout, "standard output");
ShortestPath(fst, ofst);
return true;
}
// Outputs an FST corresponding to the raw, state-level
// tracebacks.
bool GetRawLattice(fst::MutableFst<LatticeArc> *ofst,
bool use_final_probs = true) const {
typedef LatticeArc Arc;
typedef Arc::StateId StateId;
// A PairId will be constructed as: (StateId in fst) + (StateId in lm_diff_fst) << 32;
typedef uint64 PairId;
typedef Arc::Weight Weight;
typedef Arc::Label Label;
ofst->DeleteStates();
// num-frames plus one (since frames are one-based, and we have
// an extra frame for the start-state).
int32 num_frames = active_toks_.size() - 1;
KALDI_ASSERT(num_frames > 0);
unordered_map<Token*, StateId> tok_map(num_toks_/2 + 3); // bucket count
// First create all states.
for (int32 f = 0; f <= num_frames; f++) {
if (active_toks_[f].toks == NULL) {
KALDI_WARN << "GetRawLattice: no tokens active on frame " << f
<< ": not producing lattice.\n";
return false;
}
for (Token *tok = active_toks_[f].toks; tok != NULL; tok = tok->next)
tok_map[tok] = ofst->AddState();
// The next statement sets the start state of the output FST.
// Because we always add new states to the head of the list
// active_toks_[f].toks, and the start state was the first one
// added, it will be the last one added to ofst.
if (f == 0 && ofst->NumStates() > 0)
ofst->SetStart(ofst->NumStates()-1);
}
KALDI_VLOG(3) << "init:" << num_toks_/2 + 3 << " buckets:"
<< tok_map.bucket_count() << " load:" << tok_map.load_factor()
<< " max:" << tok_map.max_load_factor();
// Now create all arcs.
StateId cur_state = 0; // we rely on the fact that we numbered these
// consecutively (AddState() returns the numbers in order..)
for (int32 f = 0; f <= num_frames; f++) {
for (Token *tok = active_toks_[f].toks; tok != NULL; tok = tok->next,
cur_state++) {
for (ForwardLink *l = tok->links;
l != NULL;
l = l->next) {
unordered_map<Token*, StateId>::const_iterator iter =
tok_map.find(l->next_tok);
StateId nextstate = iter->second;
KALDI_ASSERT(iter != tok_map.end());
Arc arc(l->ilabel, l->olabel,
Weight(l->graph_cost, l->acoustic_cost),
nextstate);
ofst->AddArc(cur_state, arc);
}
if (f == num_frames) {
if (use_final_probs && !final_costs_.empty()) {
std::map<Token*, BaseFloat>::const_iterator iter =
final_costs_.find(tok);
if (iter != final_costs_.end())
ofst->SetFinal(cur_state, LatticeWeight(iter->second, 0));
} else {
ofst->SetFinal(cur_state, LatticeWeight::One());
}
}
}
}
KALDI_ASSERT(cur_state == ofst->NumStates());
return (cur_state != 0);
}
// This function is now deprecated, since now we do determinization from
// outside the LatticeBiglmFasterDecoder class.
// Outputs an FST corresponding to the lattice-determinized
// lattice (one path per word sequence).
bool GetLattice(fst::MutableFst<CompactLatticeArc> *ofst,
bool use_final_probs = true) const {
Lattice raw_fst;
if (!GetRawLattice(&raw_fst, use_final_probs)) return false;
Invert(&raw_fst); // make it so word labels are on the input.
if (!TopSort(&raw_fst)) // topological sort makes lattice-determinization more efficient
KALDI_WARN << "Topological sorting of state-level lattice failed "
"(probably your lexicon has empty words or your LM has epsilon cycles; this "
" is a bad idea.)";
// (in phase where we get backward-costs).
fst::ILabelCompare<LatticeArc> ilabel_comp;
ArcSort(&raw_fst, ilabel_comp); // sort on ilabel; makes
// lattice-determinization more efficient.
fst::DeterminizeLatticePrunedOptions lat_opts;
lat_opts.max_mem = config_.det_opts.max_mem;
DeterminizeLatticePruned(raw_fst, config_.lattice_beam, ofst, lat_opts);
raw_fst.DeleteStates(); // Free memory-- raw_fst no longer needed.
Connect(ofst); // Remove unreachable states... there might be
// a small number of these, in some cases.
return true;
}
private:
inline PairId ConstructPair(StateId fst_state, StateId lm_state) {
return static_cast<PairId>(fst_state) + (static_cast<PairId>(lm_state) << 32);
}
static inline StateId PairToState(PairId state_pair) {
return static_cast<StateId>(static_cast<uint32>(state_pair));
}
static inline StateId PairToLmState(PairId state_pair) {
return static_cast<StateId>(static_cast<uint32>(state_pair >> 32));
}
struct Token;
// ForwardLinks are the links from a token to a token on the next frame.
// or sometimes on the current frame (for input-epsilon links).
struct ForwardLink {
Token *next_tok; // the next token [or NULL if represents final-state]
Label ilabel; // ilabel on link.
Label olabel; // olabel on link.
BaseFloat graph_cost; // graph cost of traversing link (contains LM, etc.)
BaseFloat acoustic_cost; // acoustic cost (pre-scaled) of traversing link
ForwardLink *next; // next in singly-linked list of forward links from a
// token.
inline ForwardLink(Token *next_tok, Label ilabel, Label olabel,
BaseFloat graph_cost, BaseFloat acoustic_cost,
ForwardLink *next):
next_tok(next_tok), ilabel(ilabel), olabel(olabel),
graph_cost(graph_cost), acoustic_cost(acoustic_cost),
next(next) { }
};
// Token is what's resident in a particular state at a particular time.
// In this decoder a Token actually contains *forward* links.
// When first created, a Token just has the (total) cost. We add forward
// links to it when we process the next frame.
struct Token {
BaseFloat tot_cost; // would equal weight.Value()... cost up to this point.
BaseFloat extra_cost; // >= 0. After calling PruneForwardLinks, this equals
// the minimum difference between the cost of the best path, and the cost of
// this is on, and the cost of the absolute best path, under the assumption
// that any of the currently active states at the decoding front may
// eventually succeed (e.g. if you were to take the currently active states
// one by one and compute this difference, and then take the minimum).
ForwardLink *links; // Head of singly linked list of ForwardLinks
Token *next; // Next in list of tokens for this frame.
inline Token(BaseFloat tot_cost, BaseFloat extra_cost, ForwardLink *links,
Token *next): tot_cost(tot_cost), extra_cost(extra_cost),
links(links), next(next) { }
inline void DeleteForwardLinks() {
ForwardLink *l = links, *m;
while (l != NULL) {
m = l->next;
delete l;
l = m;
}
links = NULL;
}
};
// head and tail of per-frame list of Tokens (list is in topological order),
// and something saying whether we ever pruned it using PruneForwardLinks.
struct TokenList {
Token *toks;
bool must_prune_forward_links;
bool must_prune_tokens;
TokenList(): toks(NULL), must_prune_forward_links(true),
must_prune_tokens(true) { }
};
typedef HashList<PairId, Token*>::Elem Elem;
void PossiblyResizeHash(size_t num_toks) {
size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks)
* config_.hash_ratio);
if (new_sz > toks_.Size()) {
toks_.SetSize(new_sz);
}
}
// FindOrAddToken either locates a token in hash of toks_,
// or if necessary inserts a new, empty token (i.e. with no forward links)
// for the current frame. [note: it's inserted if necessary into hash toks_
// and also into the singly linked list of tokens active on this frame
// (whose head is at active_toks_[frame]).
inline Elem *FindOrAddToken(PairId state_pair, int32 frame,
BaseFloat tot_cost, bool emitting, bool *changed) {
// Returns the Token pointer. Sets "changed" (if non-NULL) to true
// if the token was newly created or the cost changed.
KALDI_ASSERT(frame < active_toks_.size());
Token *&toks = active_toks_[frame].toks;
Elem *e_found = toks_.Insert(state_pair, NULL);
if (e_found->val == NULL) { // no such token presently.
const BaseFloat extra_cost = 0.0;
// tokens on the currently final frame have zero extra_cost
// as any of them could end up
// on the winning path.
Token *new_tok = new Token (tot_cost, extra_cost, NULL, toks);
// NULL: no forward links yet
toks = new_tok;
num_toks_++;
e_found->val = new_tok;
if (changed) *changed = true;
return e_found;
} else {
Token *tok = e_found->val; // There is an existing Token for this state.
if (tok->tot_cost > tot_cost) { // replace old token
tok->tot_cost = tot_cost;
// we don't allocate a new token, the old stays linked in active_toks_
// we only replace the tot_cost
// in the current frame, there are no forward links (and no extra_cost)
// only in ProcessNonemitting we have to delete forward links
// in case we visit a state for the second time
// those forward links, that lead to this replaced token before:
// they remain and will hopefully be pruned later (PruneForwardLinks...)
if (changed) *changed = true;
} else {
if (changed) *changed = false;
}
return e_found;
}
}
// prunes outgoing links for all tokens in active_toks_[frame]
// it's called by PruneActiveTokens
// all links, that have link_extra_cost > lattice_beam are pruned
void PruneForwardLinks(int32 frame, bool *extra_costs_changed,
bool *links_pruned,
BaseFloat delta) {
// delta is the amount by which the extra_costs must change
// If delta is larger, we'll tend to go back less far
// toward the beginning of the file.
// extra_costs_changed is set to true if extra_cost was changed for any token
// links_pruned is set to true if any link in any token was pruned
*extra_costs_changed = false;
*links_pruned = false;
KALDI_ASSERT(frame >= 0 && frame < active_toks_.size());
if (active_toks_[frame].toks == NULL ) { // empty list; should not happen.
if (!warned_) {
KALDI_WARN << "No tokens alive [doing pruning].. warning first "
"time only for each utterance\n";
warned_ = true;
}
}
// We have to iterate until there is no more change, because the links
// are not guaranteed to be in topological order.
bool changed = true; // difference new minus old extra cost >= delta ?
while (changed) {
changed = false;
for (Token *tok = active_toks_[frame].toks; tok != NULL; tok = tok->next) {
ForwardLink *link, *prev_link=NULL;
// will recompute tok_extra_cost for tok.
BaseFloat tok_extra_cost = std::numeric_limits<BaseFloat>::infinity();
// tok_extra_cost is the best (min) of link_extra_cost of outgoing links
for (link = tok->links; link != NULL; ) {
// See if we need to excise this link...
Token *next_tok = link->next_tok;
BaseFloat link_extra_cost = next_tok->extra_cost +
((tok->tot_cost + link->acoustic_cost + link->graph_cost)
- next_tok->tot_cost); // difference in brackets is >= 0
// link_exta_cost is the difference in score between the best paths
// through link source state and through link destination state
KALDI_ASSERT(link_extra_cost == link_extra_cost); // check for NaN
if (link_extra_cost > config_.lattice_beam) { // excise link
ForwardLink *next_link = link->next;
if (prev_link != NULL) prev_link->next = next_link;
else tok->links = next_link;
delete link;
link = next_link; // advance link but leave prev_link the same.
*links_pruned = true;
} else { // keep the link and update the tok_extra_cost if needed.
if (link_extra_cost < 0.0) { // this is just a precaution.
if (link_extra_cost < -0.01)
KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
link_extra_cost = 0.0;
}
if (link_extra_cost < tok_extra_cost)
tok_extra_cost = link_extra_cost;
prev_link = link; // move to next link
link = link->next;
}
} // for all outgoing links
if (fabs(tok_extra_cost - tok->extra_cost) > delta)
changed = true; // difference new minus old is bigger than delta
tok->extra_cost = tok_extra_cost;
// will be +infinity or <= lattice_beam_.
// infinity indicates, that no forward link survived pruning
} // for all Token on active_toks_[frame]
if (changed) *extra_costs_changed = true;
// Note: it's theoretically possible that aggressive compiler
// optimizations could cause an infinite loop here for small delta and
// high-dynamic-range scores.
} // while changed
}
// PruneForwardLinksFinal is a version of PruneForwardLinks that we call
// on the final frame. If there are final tokens active, it uses
// the final-probs for pruning, otherwise it treats all tokens as final.
void PruneForwardLinksFinal(int32 frame) {
KALDI_ASSERT(static_cast<size_t>(frame+1) == active_toks_.size());
if (active_toks_[frame].toks == NULL ) // empty list; should not happen.
KALDI_WARN << "No tokens alive at end of file\n";
// First go through, working out the best token (do it in parallel
// including final-probs and not including final-probs; we'll take
// the one with final-probs if it's valid).
const BaseFloat infinity = std::numeric_limits<BaseFloat>::infinity();
BaseFloat best_cost_final = infinity,
best_cost_nofinal = infinity;
unordered_map<Token*, BaseFloat> tok_to_final_cost;
Elem *cur_toks = toks_.Clear(); // swapping prev_toks_ / cur_toks_
for (Elem *e = cur_toks, *e_tail; e != NULL; e = e_tail) {
PairId state_pair = e->key;
StateId state = PairToState(state_pair),
lm_state = PairToLmState(state_pair);
Token *tok = e->val;
BaseFloat final_cost = fst_.Final(state).Value() +
lm_diff_fst_->Final(lm_state).Value();
tok_to_final_cost[tok] = final_cost;
best_cost_final = std::min(best_cost_final, tok->tot_cost + final_cost);
best_cost_nofinal = std::min(best_cost_nofinal, tok->tot_cost);
e_tail = e->tail;
toks_.Delete(e);
}
final_active_ = (best_cost_final != infinity);
// Now go through tokens on this frame, pruning forward links... may have
// to iterate a few times until there is no more change, because the list is
// not in topological order.
bool changed = true;
BaseFloat delta = 1.0e-05;
while (changed) {
changed = false;
for (Token *tok = active_toks_[frame].toks; tok != NULL; tok = tok->next) {
ForwardLink *link, *prev_link=NULL;
// will recompute tok_extra_cost. It has a term in it that corresponds
// to the "final-prob", so instead of initializing tok_extra_cost to infinity
// below we set it to the difference between the (score+final_prob) of this token,
// and the best such (score+final_prob).
BaseFloat tok_extra_cost;
if (final_active_) {
BaseFloat final_cost = tok_to_final_cost[tok];
tok_extra_cost = (tok->tot_cost + final_cost) - best_cost_final;
} else
tok_extra_cost = tok->tot_cost - best_cost_nofinal;
for (link = tok->links; link != NULL; ) {
// See if we need to excise this link...
Token *next_tok = link->next_tok;
BaseFloat link_extra_cost = next_tok->extra_cost +
((tok->tot_cost + link->acoustic_cost + link->graph_cost)
- next_tok->tot_cost);
if (link_extra_cost > config_.lattice_beam) { // excise link
ForwardLink *next_link = link->next;
if (prev_link != NULL) prev_link->next = next_link;
else tok->links = next_link;
delete link;
link = next_link; // advance link but leave prev_link the same.
} else { // keep the link and update the tok_extra_cost if needed.
if (link_extra_cost < 0.0) { // this is just a precaution.
if (link_extra_cost < -0.01)
KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
link_extra_cost = 0.0;
}
if (link_extra_cost < tok_extra_cost)
tok_extra_cost = link_extra_cost;
prev_link = link;
link = link->next;
}
}
// prune away tokens worse than lattice_beam above best path. This step
// was not necessary in the non-final case because then, this case
// showed up as having no forward links. Here, the tok_extra_cost has
// an extra component relating to the final-prob.
if (tok_extra_cost > config_.lattice_beam)
tok_extra_cost = infinity;
// to be pruned in PruneTokensForFrame
if (!ApproxEqual(tok->extra_cost, tok_extra_cost, delta))
changed = true;
tok->extra_cost = tok_extra_cost; // will be +infinity or <= lattice_beam_.
}
} // while changed
// Now put surviving Tokens in the final_costs_ hash, which is a class
// member (unlike tok_to_final_costs).
for (Token *tok = active_toks_[frame].toks; tok != NULL; tok = tok->next) {
if (tok->extra_cost != infinity) {
// If the token was not pruned away,
if (final_active_) {
BaseFloat final_cost = tok_to_final_cost[tok];
if (final_cost != infinity)
final_costs_[tok] = final_cost;
} else {
final_costs_[tok] = 0;
}
}
}
}
// Prune away any tokens on this frame that have no forward links.
// [we don't do this in PruneForwardLinks because it would give us
// a problem with dangling pointers].
// It's called by PruneActiveTokens if any forward links have been pruned
void PruneTokensForFrame(int32 frame) {
KALDI_ASSERT(frame >= 0 && frame < active_toks_.size());
Token *&toks = active_toks_[frame].toks;
if (toks == NULL)
KALDI_WARN << "No tokens alive [doing pruning]\n";
Token *tok, *next_tok, *prev_tok = NULL;
for (tok = toks; tok != NULL; tok = next_tok) {
next_tok = tok->next;
if (tok->extra_cost == std::numeric_limits<BaseFloat>::infinity()) {
// token is unreachable from end of graph; (no forward links survived)
// excise tok from list and delete tok.
if (prev_tok != NULL) prev_tok->next = tok->next;
else toks = tok->next;
delete tok;
num_toks_--;
} else { // fetch next Token
prev_tok = tok;
}
}
}
// Go backwards through still-alive tokens, pruning them. note: cur_frame is
// where hash toks_ are (so we do not want to mess with it because these tokens
// don't yet have forward pointers), but we do all previous frames, unless we
// know that we can safely ignore them because the frame after them was unchanged.
// delta controls when it considers a cost to have changed enough to continue
// going backward and propagating the change.
// for a larger delta, we will recurse less far back
void PruneActiveTokens(int32 cur_frame, BaseFloat delta) {
int32 num_toks_begin = num_toks_;
for (int32 frame = cur_frame-1; frame >= 0; frame--) {
// Reason why we need to prune forward links in this situation:
// (1) we have never pruned them (new TokenList)
// (2) we have not yet pruned the forward links to the next frame,
// after any of those tokens have changed their extra_cost.
if (active_toks_[frame].must_prune_forward_links) {
bool extra_costs_changed = false, links_pruned = false;
PruneForwardLinks(frame, &extra_costs_changed, &links_pruned, delta);
if (extra_costs_changed && frame > 0) // any token has changed extra_cost
active_toks_[frame-1].must_prune_forward_links = true;
if (links_pruned) // any link was pruned
active_toks_[frame].must_prune_tokens = true;
active_toks_[frame].must_prune_forward_links = false; // job done
}
if (frame+1 < cur_frame && // except for last frame (no forward links)
active_toks_[frame+1].must_prune_tokens) {
PruneTokensForFrame(frame+1);
active_toks_[frame+1].must_prune_tokens = false;
}
}
KALDI_VLOG(3) << "PruneActiveTokens: pruned tokens from " << num_toks_begin
<< " to " << num_toks_;
}
// Version of PruneActiveTokens that we call on the final frame.
// Takes into account the final-prob of tokens.
void PruneActiveTokensFinal(int32 cur_frame) {
// returns true if there were final states active
// else returns false and treats all states as final while doing the pruning
// (this can be useful if you want partial lattice output,
// although it can be dangerous, depending what you want the lattices for).
// final_active_ and final_probs_ (a hash) are set internally
// by PruneForwardLinksFinal
int32 num_toks_begin = num_toks_;
PruneForwardLinksFinal(cur_frame); // prune final frame (with final-probs)
// sets final_active_ and final_probs_
for (int32 frame = cur_frame-1; frame >= 0; frame--) {
bool b1, b2; // values not used.
BaseFloat dontcare = 0.0; // delta of zero means we must always update
PruneForwardLinks(frame, &b1, &b2, dontcare);
PruneTokensForFrame(frame+1);
}
PruneTokensForFrame(0);
KALDI_VLOG(3) << "PruneActiveTokensFinal: pruned tokens from " << num_toks_begin
<< " to " << num_toks_;
}
/// Gets the weight cutoff. Also counts the active tokens.
BaseFloat GetCutoff(Elem *list_head, size_t *tok_count,
BaseFloat *adaptive_beam, Elem **best_elem) {
BaseFloat best_weight = std::numeric_limits<BaseFloat>::infinity();
// positive == high cost == bad.
size_t count = 0;
if (config_.max_active == std::numeric_limits<int32>::max()) {
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
BaseFloat w = static_cast<BaseFloat>(e->val->tot_cost);
if (w < best_weight) {
best_weight = w;
if (best_elem) *best_elem = e;
}
}
if (tok_count != NULL) *tok_count = count;
if (adaptive_beam != NULL) *adaptive_beam = config_.beam;
return best_weight + config_.beam;
} else {
tmp_array_.clear();
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
BaseFloat w = e->val->tot_cost;
tmp_array_.push_back(w);
if (w < best_weight) {
best_weight = w;
if (best_elem) *best_elem = e;
}
}
if (tok_count != NULL) *tok_count = count;
if (tmp_array_.size() <= static_cast<size_t>(config_.max_active)) {
if (adaptive_beam) *adaptive_beam = config_.beam;
return best_weight + config_.beam;
} else {
// the lowest elements (lowest costs, highest likes)
// will be put in the left part of tmp_array.
std::nth_element(tmp_array_.begin(),
tmp_array_.begin()+config_.max_active,
tmp_array_.end());
// return the tighter of the two beams.
BaseFloat ans = std::min(best_weight + config_.beam,
*(tmp_array_.begin()+config_.max_active));
if (adaptive_beam)
*adaptive_beam = std::min(config_.beam,
ans - best_weight + config_.beam_delta);
return ans;
}
}
}
inline StateId PropagateLm(StateId lm_state,
Arc *arc) { // returns new LM state.
if (arc->olabel == 0) {
return lm_state; // no change in LM state if no word crossed.
} else { // Propagate in the LM-diff FST.
Arc lm_arc;
bool ans = lm_diff_fst_->GetArc(lm_state, arc->olabel, &lm_arc);
if (!ans) { // this case is unexpected for statistical LMs.
if (!warned_noarc_) {
warned_noarc_ = true;
KALDI_WARN << "No arc available in LM (unlikely to be correct "
"if a statistical language model); will not warn again";
}
arc->weight = Weight::Zero();
return lm_state; // doesn't really matter what we return here; will
// be pruned.
} else {
arc->weight = Times(arc->weight, lm_arc.weight);
arc->olabel = lm_arc.olabel; // probably will be the same.
return lm_arc.nextstate; // return the new LM state.
}
}
}
void ProcessEmitting(DecodableInterface *decodable, int32 frame) {
// Processes emitting arcs for one frame. Propagates from prev_toks_ to cur_toks_.
Elem *last_toks = toks_.Clear(); // swapping prev_toks_ / cur_toks_
Elem *best_elem = NULL;
BaseFloat adaptive_beam;
size_t tok_cnt;
BaseFloat cur_cutoff = GetCutoff(last_toks, &tok_cnt, &adaptive_beam, &best_elem);
PossiblyResizeHash(tok_cnt); // This makes sure the hash is always big enough.
BaseFloat next_cutoff = std::numeric_limits<BaseFloat>::infinity();
// pruning "online" before having seen all tokens
// First process the best token to get a hopefully
// reasonably tight bound on the next cutoff.
if (best_elem) {
PairId state_pair = best_elem->key;
StateId state = PairToState(state_pair), // state in "fst"
lm_state = PairToLmState(state_pair);
Token *tok = best_elem->val;
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
!aiter.Done();
aiter.Next()) {
Arc arc = aiter.Value();
if (arc.ilabel != 0) { // propagate..
PropagateLm(lm_state, &arc); // may affect "arc.weight".
// We don't need the return value (the new LM state).
arc.weight = Times(arc.weight,
Weight(-decodable->LogLikelihood(frame-1, arc.ilabel)));
BaseFloat new_weight = arc.weight.Value() + tok->tot_cost;
if (new_weight + adaptive_beam < next_cutoff)
next_cutoff = new_weight + adaptive_beam;
}
}
}
// the tokens are now owned here, in last_toks, and the hash is empty.
// 'owned' is a complex thing here; the point is we need to call DeleteElem
// on each elem 'e' to let toks_ know we're done with them.
for (Elem *e = last_toks, *e_tail; e != NULL; e = e_tail) {
// loop this way because we delete "e" as we go.
PairId state_pair = e->key;
StateId state = PairToState(state_pair),
lm_state = PairToLmState(state_pair);
Token *tok = e->val;
if (tok->tot_cost <= cur_cutoff) {
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
!aiter.Done();
aiter.Next()) {
const Arc &arc_ref = aiter.Value();
if (arc_ref.ilabel != 0) { // propagate..
Arc arc(arc_ref);
StateId next_lm_state = PropagateLm(lm_state, &arc);
BaseFloat ac_cost = -decodable->LogLikelihood(frame-1, arc.ilabel),
graph_cost = arc.weight.Value(),
cur_cost = tok->tot_cost,
tot_cost = cur_cost + ac_cost + graph_cost;
if (tot_cost > next_cutoff) continue;
else if (tot_cost + config_.beam < next_cutoff)
next_cutoff = tot_cost + config_.beam; // prune by best current token
PairId next_pair = ConstructPair(arc.nextstate, next_lm_state);
Elem *e_next = FindOrAddToken(next_pair, frame, tot_cost, true, NULL);
// true: emitting, NULL: no change indicator needed
// Add ForwardLink from tok to next_tok (put on head of list tok->links)
tok->links = new ForwardLink(e_next->val, arc.ilabel, arc.olabel,
graph_cost, ac_cost, tok->links);
}
} // for all arcs
}
e_tail = e->tail;
toks_.Delete(e); // delete Elem
}
}
void ProcessNonemitting(int32 frame) {
// note: "frame" is the same as emitting states just processed.
// Processes nonemitting arcs for one frame. Propagates within toks_.
// Note-- this queue structure is is not very optimal as
// it may cause us to process states unnecessarily (e.g. more than once),
// but in the baseline code, turning this vector into a set to fix this
// problem did not improve overall speed.
KALDI_ASSERT(queue_.empty());
BaseFloat best_cost = std::numeric_limits<BaseFloat>::infinity();
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
queue_.push_back(e);
// for pruning with current best token
best_cost = std::min(best_cost, static_cast<BaseFloat>(e->val->tot_cost));
}
if (queue_.empty()) {
if (!warned_) {
KALDI_ERR << "Error in ProcessEmitting: no surviving tokens: frame is "
<< frame;
warned_ = true;
}
}
BaseFloat cutoff = best_cost + config_.beam;
while (!queue_.empty()) {
const Elem *e = queue_.back();
queue_.pop_back();
PairId state_pair = e->key;
Token *tok = e->val; // would segfault if state not in
// toks_ but this can't happen.
BaseFloat cur_cost = tok->tot_cost;
if (cur_cost > cutoff) // Don't bother processing successors.
continue;
StateId state = PairToState(state_pair),
lm_state = PairToLmState(state_pair);
// If "tok" has any existing forward links, delete them,
// because we're about to regenerate them. This is a kind
// of non-optimality (remember, this is the simple decoder),
// but since most states are emitting it's not a huge issue.
tok->DeleteForwardLinks(); // necessary when re-visiting
tok->links = NULL;
for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
!aiter.Done();
aiter.Next()) {
const Arc &arc_ref = aiter.Value();
if (arc_ref.ilabel == 0) { // propagate nonemitting only...
Arc arc(arc_ref);
StateId next_lm_state = PropagateLm(lm_state, &arc);
BaseFloat graph_cost = arc.weight.Value(),
tot_cost = cur_cost + graph_cost;
if (tot_cost < cutoff) {
bool changed;
PairId next_pair = ConstructPair(arc.nextstate, next_lm_state);
Elem *e_new = FindOrAddToken(next_pair, frame, tot_cost,
false, &changed); // false: non-emit
tok->links = new ForwardLink(e_new->val, 0, arc.olabel,
graph_cost, 0, tok->links);
// "changed" tells us whether the new token has a different
// cost from before, or is new [if so, add into queue].
if (changed) queue_.push_back(e_new);
}
}
} // for all arcs
} // while queue not empty
}
// HashList defined in ../util/hash-list.h. It actually allows us to maintain
// more than one list (e.g. for current and previous frames), but only one of
// them at a time can be indexed by StateId.
HashList<PairId, Token*> toks_;
std::vector<TokenList> active_toks_; // Lists of tokens, indexed by
// frame (members of TokenList are toks, must_prune_forward_links,
// must_prune_tokens).
std::vector<const Elem* > queue_; // temp variable used in ProcessNonemitting,
std::vector<BaseFloat> tmp_array_; // used in GetCutoff.
// make it class member to avoid internal new/delete.
const fst::Fst<fst::StdArc> &fst_;
fst::DeterministicOnDemandFst<fst::StdArc> *lm_diff_fst_;
LatticeBiglmFasterDecoderConfig config_;
bool warned_noarc_;
int32 num_toks_; // current total #toks allocated...
bool warned_;
bool final_active_; // use this to say whether we found active final tokens
// on the last frame.
std::map<Token*, BaseFloat> final_costs_; // A cache of final-costs
// of tokens on the last frame-- it's just convenient to store it this way.
// It might seem unclear why we call DeleteElems(toks_.Clear()).
// There are two separate cleanup tasks we need to do at when we start a new file.
// one is to delete the Token objects in the list; the other is to delete
// the Elem objects. toks_.Clear() just clears them from the hash and gives ownership
// to the caller, who then has to call toks_.Delete(e) for each one. It was designed
// this way for convenience in propagating tokens from one frame to the next.
void DeleteElems(Elem *list) {
for (Elem *e = list, *e_tail; e != NULL; e = e_tail) {
e_tail = e->tail;
toks_.Delete(e);
}
toks_.Clear();
}
void ClearActiveTokens() { // a cleanup routine, at utt end/begin
for (size_t i = 0; i < active_toks_.size(); i++) {
// Delete all tokens alive on this frame, and any forward
// links they may have.
for (Token *tok = active_toks_[i].toks; tok != NULL; ) {
tok->DeleteForwardLinks();
Token *next_tok = tok->next;
delete tok;
num_toks_--;
tok = next_tok;
}
}
active_toks_.clear();
KALDI_ASSERT(num_toks_ == 0);
}
};
} // end namespace kaldi.
#endif