lattice-biglm-faster-decoder.h 38.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
// decoder/lattice-biglm-faster-decoder.h

// Copyright 2009-2011  Microsoft Corporation, Mirko Hannemann,
//              Gilles Boulianne

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#ifndef KALDI_DECODER_LATTICE_BIGLM_FASTER_DECODER_H_
#define KALDI_DECODER_LATTICE_BIGLM_FASTER_DECODER_H_


#include "util/stl-utils.h"
#include "util/hash-list.h"
#include "fst/fstlib.h"
#include "itf/decodable-itf.h"
#include "fstext/fstext-lib.h"
#include "lat/kaldi-lattice.h"
#include "decoder/lattice-faster-decoder.h" // for options.


namespace kaldi {

// The options are the same as for lattice-faster-decoder.h for now.
typedef LatticeFasterDecoderConfig LatticeBiglmFasterDecoderConfig;

/** This is as LatticeFasterDecoder, but does online composition between
    HCLG and the "difference language model", which is a deterministic
    FST that represents the difference between the language model you want
    and the language model you compiled HCLG with.  The class
    DeterministicOnDemandFst follows through the epsilons in G for you
    (assuming G is a standard backoff language model) and makes it look
    like a determinized FST.
*/

class LatticeBiglmFasterDecoder {
 public:
  typedef fst::StdArc Arc;
  typedef Arc::Label Label;
  typedef Arc::StateId StateId;
  // A PairId will be constructed as: (StateId in fst) + (StateId in lm_diff_fst) << 32;
  typedef uint64 PairId;
  typedef Arc::Weight Weight;
  // instantiate this class once for each thing you have to decode.
  LatticeBiglmFasterDecoder(
      const fst::Fst<fst::StdArc> &fst,      
      const LatticeBiglmFasterDecoderConfig &config,
      fst::DeterministicOnDemandFst<fst::StdArc> *lm_diff_fst):
      fst_(fst), lm_diff_fst_(lm_diff_fst), config_(config),
      warned_noarc_(false), num_toks_(0) {
    config.Check();
    KALDI_ASSERT(fst.Start() != fst::kNoStateId &&
                 lm_diff_fst->Start() != fst::kNoStateId);
    toks_.SetSize(1000);  // just so on the first frame we do something reasonable.
  }
  void SetOptions(const LatticeBiglmFasterDecoderConfig &config) { config_ = config; } 
  LatticeBiglmFasterDecoderConfig GetOptions() { return config_; } 
  ~LatticeBiglmFasterDecoder() {
    DeleteElems(toks_.Clear());    
    ClearActiveTokens();
  }

  // Returns true if any kind of traceback is available (not necessarily from
  // a final state).
  bool Decode(DecodableInterface *decodable) {
    // clean up from last time:
    DeleteElems(toks_.Clear());
    ClearActiveTokens();
    warned_ = false;
    final_active_ = false;
    final_costs_.clear();
    num_toks_ = 0;
    PairId start_pair = ConstructPair(fst_.Start(), lm_diff_fst_->Start());
    active_toks_.resize(1);
    Token *start_tok = new Token(0.0, 0.0, NULL, NULL);
    active_toks_[0].toks = start_tok;
    toks_.Insert(start_pair, start_tok);
    num_toks_++;
    ProcessNonemitting(0);
    
    // We use 1-based indexing for frames in this decoder (if you view it in
    // terms of features), but note that the decodable object uses zero-based
    // numbering, which we have to correct for when we call it.
    for (int32 frame = 1; !decodable->IsLastFrame(frame-2); frame++) {
      active_toks_.resize(frame+1); // new column

      ProcessEmitting(decodable, frame);
      
      ProcessNonemitting(frame);

      if (decodable->IsLastFrame(frame-1))
        PruneActiveTokensFinal(frame);
      else if (frame % config_.prune_interval == 0)
        PruneActiveTokens(frame, config_.lattice_beam * 0.1); // use larger delta.        
    }
    // Returns true if we have any kind of traceback available (not necessarily
    // to the end state; query ReachedFinal() for that).
    return !final_costs_.empty();
  }

  /// says whether a final-state was active on the last frame.  If it was not, the
  /// lattice (or traceback) will end with states that are not final-states.
  bool ReachedFinal() const { return final_active_; }


  // Outputs an FST corresponding to the single best path
  // through the lattice.
  bool GetBestPath(fst::MutableFst<LatticeArc> *ofst, 
                   bool use_final_probs = true) const {
    fst::VectorFst<LatticeArc> fst;
    if (!GetRawLattice(&fst, use_final_probs)) return false;
    // std::cout << "Raw lattice is:\n";
    // fst::FstPrinter<LatticeArc> fstprinter(fst, NULL, NULL, NULL, false, true);
    // fstprinter.Print(&std::cout, "standard output");
    ShortestPath(fst, ofst);
    return true;
  }

  // Outputs an FST corresponding to the raw, state-level
  // tracebacks.
  bool GetRawLattice(fst::MutableFst<LatticeArc> *ofst,
                     bool use_final_probs = true) const {
    typedef LatticeArc Arc;
    typedef Arc::StateId StateId;
    // A PairId will be constructed as: (StateId in fst) + (StateId in lm_diff_fst) << 32;
    typedef uint64 PairId;
    typedef Arc::Weight Weight;
    typedef Arc::Label Label;
    ofst->DeleteStates();
    // num-frames plus one (since frames are one-based, and we have
    // an extra frame for the start-state).
    int32 num_frames = active_toks_.size() - 1;
    KALDI_ASSERT(num_frames > 0);
    unordered_map<Token*, StateId> tok_map(num_toks_/2 + 3); // bucket count
    // First create all states.
    for (int32 f = 0; f <= num_frames; f++) {
      if (active_toks_[f].toks == NULL) {
        KALDI_WARN << "GetRawLattice: no tokens active on frame " << f
                   << ": not producing lattice.\n";
        return false;
      }
      for (Token *tok = active_toks_[f].toks; tok != NULL; tok = tok->next)
        tok_map[tok] = ofst->AddState();
      // The next statement sets the start state of the output FST.
      // Because we always add new states to the head of the list
      // active_toks_[f].toks, and the start state was the first one
      // added, it will be the last one added to ofst.
      if (f == 0 && ofst->NumStates() > 0)
        ofst->SetStart(ofst->NumStates()-1);
    }
    KALDI_VLOG(3) << "init:" << num_toks_/2 + 3 << " buckets:" 
                  << tok_map.bucket_count() << " load:" << tok_map.load_factor() 
                  << " max:" << tok_map.max_load_factor();
    // Now create all arcs.
    StateId cur_state = 0; // we rely on the fact that we numbered these
    // consecutively (AddState() returns the numbers in order..)
    for (int32 f = 0; f <= num_frames; f++) {
      for (Token *tok = active_toks_[f].toks; tok != NULL; tok = tok->next,
               cur_state++) {
        for (ForwardLink *l = tok->links;
             l != NULL;
             l = l->next) {
          unordered_map<Token*, StateId>::const_iterator iter =
              tok_map.find(l->next_tok);
          StateId nextstate = iter->second;
          KALDI_ASSERT(iter != tok_map.end());
          Arc arc(l->ilabel, l->olabel,
                  Weight(l->graph_cost, l->acoustic_cost),
                  nextstate);
          ofst->AddArc(cur_state, arc);
        }
        if (f == num_frames) {
          if (use_final_probs && !final_costs_.empty()) {
            std::map<Token*, BaseFloat>::const_iterator iter =
                final_costs_.find(tok);
            if (iter != final_costs_.end())
              ofst->SetFinal(cur_state, LatticeWeight(iter->second, 0));
          } else {
            ofst->SetFinal(cur_state, LatticeWeight::One());
          }
        }
      }
    }
    KALDI_ASSERT(cur_state == ofst->NumStates());
    return (cur_state != 0);
  }

  // This function is now deprecated, since now we do determinization from
  // outside the LatticeBiglmFasterDecoder class.
  // Outputs an FST corresponding to the lattice-determinized
  // lattice (one path per word sequence).
  bool GetLattice(fst::MutableFst<CompactLatticeArc> *ofst,
                  bool use_final_probs = true) const {
    Lattice raw_fst;
    if (!GetRawLattice(&raw_fst, use_final_probs)) return false;
    Invert(&raw_fst); // make it so word labels are on the input.
    if (!TopSort(&raw_fst)) // topological sort makes lattice-determinization more efficient
      KALDI_WARN << "Topological sorting of state-level lattice failed "
          "(probably your lexicon has empty words or your LM has epsilon cycles; this "
          " is a bad idea.)";
    // (in phase where we get backward-costs).
    fst::ILabelCompare<LatticeArc> ilabel_comp;
    ArcSort(&raw_fst, ilabel_comp); // sort on ilabel; makes
    // lattice-determinization more efficient.
    
    fst::DeterminizeLatticePrunedOptions lat_opts;
    lat_opts.max_mem = config_.det_opts.max_mem;
    
    DeterminizeLatticePruned(raw_fst, config_.lattice_beam, ofst, lat_opts);
    raw_fst.DeleteStates(); // Free memory-- raw_fst no longer needed.
    Connect(ofst); // Remove unreachable states... there might be
    // a small number of these, in some cases.
    return true;
  }
  
 private:
  inline PairId ConstructPair(StateId fst_state, StateId lm_state) {
    return static_cast<PairId>(fst_state) + (static_cast<PairId>(lm_state) << 32);
  }
  
  static inline StateId PairToState(PairId state_pair) {
    return static_cast<StateId>(static_cast<uint32>(state_pair));
  }
  static inline StateId PairToLmState(PairId state_pair) {
    return static_cast<StateId>(static_cast<uint32>(state_pair >> 32));
  }
  
  struct Token;
  // ForwardLinks are the links from a token to a token on the next frame.
  // or sometimes on the current frame (for input-epsilon links).
  struct ForwardLink {
    Token *next_tok; // the next token [or NULL if represents final-state]
    Label ilabel; // ilabel on link.
    Label olabel; // olabel on link.
    BaseFloat graph_cost; // graph cost of traversing link (contains LM, etc.)
    BaseFloat acoustic_cost; // acoustic cost (pre-scaled) of traversing link
    ForwardLink *next; // next in singly-linked list of forward links from a
                       // token.
    inline ForwardLink(Token *next_tok, Label ilabel, Label olabel,
                       BaseFloat graph_cost, BaseFloat acoustic_cost, 
                       ForwardLink *next):
        next_tok(next_tok), ilabel(ilabel), olabel(olabel),
        graph_cost(graph_cost), acoustic_cost(acoustic_cost), 
        next(next) { }
  };  
  
  // Token is what's resident in a particular state at a particular time.
  // In this decoder a Token actually contains *forward* links.
  // When first created, a Token just has the (total) cost.    We add forward
  // links to it when we process the next frame.
  struct Token {
    BaseFloat tot_cost; // would equal weight.Value()... cost up to this point.
    BaseFloat extra_cost; // >= 0.  After calling PruneForwardLinks, this equals
    // the minimum difference between the cost of the best path, and the cost of
    // this is on, and the cost of the absolute best path, under the assumption
    // that any of the currently active states at the decoding front may
    // eventually succeed (e.g. if you were to take the currently active states
    // one by one and compute this difference, and then take the minimum).
    
    ForwardLink *links; // Head of singly linked list of ForwardLinks
    
    Token *next; // Next in list of tokens for this frame.
    
    inline Token(BaseFloat tot_cost, BaseFloat extra_cost, ForwardLink *links,
                 Token *next): tot_cost(tot_cost), extra_cost(extra_cost),
                 links(links), next(next) { }
    inline void DeleteForwardLinks() {
      ForwardLink *l = links, *m; 
      while (l != NULL) {
        m = l->next;
        delete l;
        l = m;
      }
      links = NULL;
    }
  };
  
  // head and tail of per-frame list of Tokens (list is in topological order),
  // and something saying whether we ever pruned it using PruneForwardLinks.
  struct TokenList {
    Token *toks;
    bool must_prune_forward_links;
    bool must_prune_tokens;
    TokenList(): toks(NULL), must_prune_forward_links(true),
                 must_prune_tokens(true) { }
  };

  typedef HashList<PairId, Token*>::Elem Elem;
  
  void PossiblyResizeHash(size_t num_toks) {
    size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks)
                                        * config_.hash_ratio);
    if (new_sz > toks_.Size()) {
      toks_.SetSize(new_sz);
    }
  }

  // FindOrAddToken either locates a token in hash of toks_,
  // or if necessary inserts a new, empty token (i.e. with no forward links)
  // for the current frame.  [note: it's inserted if necessary into hash toks_
  // and also into the singly linked list of tokens active on this frame
  // (whose head is at active_toks_[frame]).
  inline Elem *FindOrAddToken(PairId state_pair, int32 frame,
      BaseFloat tot_cost, bool emitting, bool *changed) {
    // Returns the Token pointer.  Sets "changed" (if non-NULL) to true
    // if the token was newly created or the cost changed.
    KALDI_ASSERT(frame < active_toks_.size());
    Token *&toks = active_toks_[frame].toks;
    Elem *e_found = toks_.Insert(state_pair, NULL);
    if (e_found->val == NULL) { // no such token presently.
      const BaseFloat extra_cost = 0.0;
      // tokens on the currently final frame have zero extra_cost
      // as any of them could end up
      // on the winning path.
      Token *new_tok = new Token (tot_cost, extra_cost, NULL, toks);
      // NULL: no forward links yet
      toks = new_tok;
      num_toks_++;
      e_found->val = new_tok;
      if (changed) *changed = true;
      return e_found;
    } else {
      Token *tok = e_found->val; // There is an existing Token for this state.
      if (tok->tot_cost > tot_cost) { // replace old token
        tok->tot_cost = tot_cost;
        // we don't allocate a new token, the old stays linked in active_toks_
        // we only replace the tot_cost
        // in the current frame, there are no forward links (and no extra_cost)
        // only in ProcessNonemitting we have to delete forward links
        // in case we visit a state for the second time
        // those forward links, that lead to this replaced token before:
        // they remain and will hopefully be pruned later (PruneForwardLinks...)
        if (changed) *changed = true;
      } else {
        if (changed) *changed = false;
      }
      return e_found;
    }
  }
  
  // prunes outgoing links for all tokens in active_toks_[frame]
  // it's called by PruneActiveTokens
  // all links, that have link_extra_cost > lattice_beam are pruned
  void PruneForwardLinks(int32 frame, bool *extra_costs_changed,
                         bool *links_pruned,
                         BaseFloat delta) {
    // delta is the amount by which the extra_costs must change
    // If delta is larger,  we'll tend to go back less far
    //    toward the beginning of the file.
    // extra_costs_changed is set to true if extra_cost was changed for any token
    // links_pruned is set to true if any link in any token was pruned

    *extra_costs_changed = false;
    *links_pruned = false;
    KALDI_ASSERT(frame >= 0 && frame < active_toks_.size());
    if (active_toks_[frame].toks == NULL ) { // empty list; should not happen.
      if (!warned_) {
        KALDI_WARN << "No tokens alive [doing pruning].. warning first "
            "time only for each utterance\n";
        warned_ = true;
      }
    }
    
    // We have to iterate until there is no more change, because the links
    // are not guaranteed to be in topological order.
    bool changed = true; // difference new minus old extra cost >= delta ?
    while (changed) {
      changed = false;
      for (Token *tok = active_toks_[frame].toks; tok != NULL; tok = tok->next) {
        ForwardLink *link, *prev_link=NULL;
        // will recompute tok_extra_cost for tok.
        BaseFloat tok_extra_cost = std::numeric_limits<BaseFloat>::infinity();
        // tok_extra_cost is the best (min) of link_extra_cost of outgoing links
        for (link = tok->links; link != NULL; ) {
          // See if we need to excise this link...
          Token *next_tok = link->next_tok;
          BaseFloat link_extra_cost = next_tok->extra_cost +
              ((tok->tot_cost + link->acoustic_cost + link->graph_cost)
               - next_tok->tot_cost); // difference in brackets is >= 0
          // link_exta_cost is the difference in score between the best paths
          // through link source state and through link destination state
          KALDI_ASSERT(link_extra_cost == link_extra_cost); // check for NaN
          if (link_extra_cost > config_.lattice_beam) { // excise link
            ForwardLink *next_link = link->next;
            if (prev_link != NULL) prev_link->next = next_link;
            else tok->links = next_link;
            delete link;
            link = next_link; // advance link but leave prev_link the same.
            *links_pruned = true;
          } else { // keep the link and update the tok_extra_cost if needed.
            if (link_extra_cost < 0.0) { // this is just a precaution.
              if (link_extra_cost < -0.01)
                KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
              link_extra_cost = 0.0;
            }
            if (link_extra_cost < tok_extra_cost)
              tok_extra_cost = link_extra_cost;
            prev_link = link; // move to next link
            link = link->next;
          }
        } // for all outgoing links
        if (fabs(tok_extra_cost - tok->extra_cost) > delta)
          changed = true;  // difference new minus old is bigger than delta
        tok->extra_cost = tok_extra_cost;
        // will be +infinity or <= lattice_beam_.
        // infinity indicates, that no forward link survived pruning
      } // for all Token on active_toks_[frame]
      if (changed) *extra_costs_changed = true;

      // Note: it's theoretically possible that aggressive compiler
      // optimizations could cause an infinite loop here for small delta and
      // high-dynamic-range scores.
    } // while changed
  }

  // PruneForwardLinksFinal is a version of PruneForwardLinks that we call
  // on the final frame.  If there are final tokens active, it uses
  // the final-probs for pruning, otherwise it treats all tokens as final.
  void PruneForwardLinksFinal(int32 frame) {
    KALDI_ASSERT(static_cast<size_t>(frame+1) == active_toks_.size());
    if (active_toks_[frame].toks == NULL ) // empty list; should not happen.
      KALDI_WARN << "No tokens alive at end of file\n";

    // First go through, working out the best token (do it in parallel
    // including final-probs and not including final-probs; we'll take
    // the one with final-probs if it's valid).
    const BaseFloat infinity = std::numeric_limits<BaseFloat>::infinity();
    BaseFloat best_cost_final = infinity,
        best_cost_nofinal = infinity;
    unordered_map<Token*, BaseFloat> tok_to_final_cost;
    Elem *cur_toks = toks_.Clear(); // swapping prev_toks_ / cur_toks_
    for (Elem *e = cur_toks, *e_tail; e != NULL;  e = e_tail) {
      PairId state_pair = e->key;
      StateId state = PairToState(state_pair),
          lm_state = PairToLmState(state_pair);
      Token *tok = e->val;
      BaseFloat final_cost = fst_.Final(state).Value() +
          lm_diff_fst_->Final(lm_state).Value();
      tok_to_final_cost[tok] = final_cost;
      best_cost_final = std::min(best_cost_final, tok->tot_cost + final_cost);
      best_cost_nofinal = std::min(best_cost_nofinal, tok->tot_cost);
      e_tail = e->tail;
      toks_.Delete(e);
    }
    final_active_ = (best_cost_final != infinity);
    
    // Now go through tokens on this frame, pruning forward links...  may have
    // to iterate a few times until there is no more change, because the list is
    // not in topological order.

    bool changed = true;
    BaseFloat delta = 1.0e-05;
    while (changed) {
      changed = false;
      for (Token *tok = active_toks_[frame].toks; tok != NULL; tok = tok->next) {
        ForwardLink *link, *prev_link=NULL;
        // will recompute tok_extra_cost.  It has a term in it that corresponds
        // to the "final-prob", so instead of initializing tok_extra_cost to infinity
        // below we set it to the difference between the (score+final_prob) of this token,
        // and the best such (score+final_prob).
        BaseFloat tok_extra_cost;
        if (final_active_) {
          BaseFloat final_cost = tok_to_final_cost[tok];
          tok_extra_cost = (tok->tot_cost + final_cost) - best_cost_final;
        } else 
          tok_extra_cost = tok->tot_cost - best_cost_nofinal;
      
        for (link = tok->links; link != NULL; ) {
          // See if we need to excise this link...
          Token *next_tok = link->next_tok;
          BaseFloat link_extra_cost = next_tok->extra_cost +
              ((tok->tot_cost + link->acoustic_cost + link->graph_cost)
               - next_tok->tot_cost);
          if (link_extra_cost > config_.lattice_beam) { // excise link
            ForwardLink *next_link = link->next;
            if (prev_link != NULL) prev_link->next = next_link;
            else tok->links = next_link;
            delete link;
            link = next_link; // advance link but leave prev_link the same.
          } else { // keep the link and update the tok_extra_cost if needed.
            if (link_extra_cost < 0.0) { // this is just a precaution.
              if (link_extra_cost < -0.01)
                KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
              link_extra_cost = 0.0;
            }
            if (link_extra_cost < tok_extra_cost)
              tok_extra_cost = link_extra_cost;
            prev_link = link;
            link = link->next;
          }
        }
        // prune away tokens worse than lattice_beam above best path.  This step
        // was not necessary in the non-final case because then, this case
        // showed up as having no forward links.  Here, the tok_extra_cost has
        // an extra component relating to the final-prob.
        if (tok_extra_cost > config_.lattice_beam)
          tok_extra_cost = infinity;
          // to be pruned in PruneTokensForFrame

        if (!ApproxEqual(tok->extra_cost, tok_extra_cost, delta))
          changed = true;
        tok->extra_cost = tok_extra_cost; // will be +infinity or <= lattice_beam_.
      }
    } // while changed

    // Now put surviving Tokens in the final_costs_ hash, which is a class
    // member (unlike tok_to_final_costs).
    for (Token *tok = active_toks_[frame].toks; tok != NULL; tok = tok->next) {    
      if (tok->extra_cost != infinity) {
        // If the token was not pruned away, 
        if (final_active_) {
          BaseFloat final_cost = tok_to_final_cost[tok];         
          if (final_cost != infinity)
            final_costs_[tok] = final_cost;
        } else {
          final_costs_[tok] = 0;
        }
      }
    }
  }
  
  // Prune away any tokens on this frame that have no forward links.
  // [we don't do this in PruneForwardLinks because it would give us
  // a problem with dangling pointers].
  // It's called by PruneActiveTokens if any forward links have been pruned
  void PruneTokensForFrame(int32 frame) {
    KALDI_ASSERT(frame >= 0 && frame < active_toks_.size());
    Token *&toks = active_toks_[frame].toks;
    if (toks == NULL)
      KALDI_WARN << "No tokens alive [doing pruning]\n";
    Token *tok, *next_tok, *prev_tok = NULL;
    for (tok = toks; tok != NULL; tok = next_tok) {
      next_tok = tok->next;
      if (tok->extra_cost == std::numeric_limits<BaseFloat>::infinity()) {
        // token is unreachable from end of graph; (no forward links survived)
        // excise tok from list and delete tok.
        if (prev_tok != NULL) prev_tok->next = tok->next;
        else toks = tok->next;
        delete tok;
        num_toks_--;
      } else { // fetch next Token
        prev_tok = tok;
      }
    }
  }
  
  // Go backwards through still-alive tokens, pruning them.  note: cur_frame is
  // where hash toks_ are (so we do not want to mess with it because these tokens
  // don't yet have forward pointers), but we do all previous frames, unless we
  // know that we can safely ignore them because the frame after them was unchanged.
  // delta controls when it considers a cost to have changed enough to continue
  // going backward and propagating the change.
  // for a larger delta, we will recurse less far back
  void PruneActiveTokens(int32 cur_frame, BaseFloat delta) {
    int32 num_toks_begin = num_toks_;
    for (int32 frame = cur_frame-1; frame >= 0; frame--) {
      // Reason why we need to prune forward links in this situation:
      // (1) we have never pruned them (new TokenList)
      // (2) we have not yet pruned the forward links to the next frame,
      // after any of those tokens have changed their extra_cost.
      if (active_toks_[frame].must_prune_forward_links) {
        bool extra_costs_changed = false, links_pruned = false;
        PruneForwardLinks(frame, &extra_costs_changed, &links_pruned, delta);
        if (extra_costs_changed && frame > 0) // any token has changed extra_cost
          active_toks_[frame-1].must_prune_forward_links = true;
        if (links_pruned) // any link was pruned
          active_toks_[frame].must_prune_tokens = true;
        active_toks_[frame].must_prune_forward_links = false; // job done
      }
      if (frame+1 < cur_frame &&      // except for last frame (no forward links)
         active_toks_[frame+1].must_prune_tokens) {
        PruneTokensForFrame(frame+1);
        active_toks_[frame+1].must_prune_tokens = false;
      }
    }
    KALDI_VLOG(3) << "PruneActiveTokens: pruned tokens from " << num_toks_begin
                  << " to " << num_toks_;
  }

  // Version of PruneActiveTokens that we call on the final frame.
  // Takes into account the final-prob of tokens.
  void PruneActiveTokensFinal(int32 cur_frame) {
    // returns true if there were final states active
    // else returns false and treats all states as final while doing the pruning
    // (this can be useful if you want partial lattice output,
    // although it can be dangerous, depending what you want the lattices for).
    // final_active_ and final_probs_ (a hash) are set internally
    // by PruneForwardLinksFinal
    int32 num_toks_begin = num_toks_;
    PruneForwardLinksFinal(cur_frame); // prune final frame (with final-probs)
    // sets final_active_ and final_probs_
    for (int32 frame = cur_frame-1; frame >= 0; frame--) {
      bool b1, b2; // values not used.
      BaseFloat dontcare = 0.0; // delta of zero means we must always update
      PruneForwardLinks(frame, &b1, &b2, dontcare);
      PruneTokensForFrame(frame+1);
    }
    PruneTokensForFrame(0); 
    KALDI_VLOG(3) << "PruneActiveTokensFinal: pruned tokens from " << num_toks_begin
                  << " to " << num_toks_;
  }
  
  /// Gets the weight cutoff.  Also counts the active tokens.
  BaseFloat GetCutoff(Elem *list_head, size_t *tok_count,
                      BaseFloat *adaptive_beam, Elem **best_elem) {
    BaseFloat best_weight = std::numeric_limits<BaseFloat>::infinity();
    // positive == high cost == bad.
    size_t count = 0;
    if (config_.max_active == std::numeric_limits<int32>::max()) {
      for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
        BaseFloat w = static_cast<BaseFloat>(e->val->tot_cost);
        if (w < best_weight) {
          best_weight = w;
          if (best_elem) *best_elem = e;
        }
      }
      if (tok_count != NULL) *tok_count = count;
      if (adaptive_beam != NULL) *adaptive_beam = config_.beam;
      return best_weight + config_.beam;
    } else {
      tmp_array_.clear();
      for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
        BaseFloat w = e->val->tot_cost;
        tmp_array_.push_back(w);
        if (w < best_weight) {
          best_weight = w;
          if (best_elem) *best_elem = e;
        }
      }
      if (tok_count != NULL) *tok_count = count;
      if (tmp_array_.size() <= static_cast<size_t>(config_.max_active)) {
        if (adaptive_beam) *adaptive_beam = config_.beam;
        return best_weight + config_.beam;
      } else {
        // the lowest elements (lowest costs, highest likes)
        // will be put in the left part of tmp_array.
        std::nth_element(tmp_array_.begin(),
                         tmp_array_.begin()+config_.max_active,
                         tmp_array_.end());
        // return the tighter of the two beams.
        BaseFloat ans = std::min(best_weight + config_.beam,
                                 *(tmp_array_.begin()+config_.max_active));
        if (adaptive_beam)
          *adaptive_beam = std::min(config_.beam,
                                    ans - best_weight + config_.beam_delta);
        return ans;
      }
    }
  }

  inline StateId PropagateLm(StateId lm_state,
                             Arc *arc) { // returns new LM state.
    if (arc->olabel == 0) {
      return lm_state; // no change in LM state if no word crossed.
    } else { // Propagate in the LM-diff FST.
      Arc lm_arc;
      bool ans = lm_diff_fst_->GetArc(lm_state, arc->olabel, &lm_arc);
      if (!ans) { // this case is unexpected for statistical LMs.
        if (!warned_noarc_) {
          warned_noarc_ = true;
          KALDI_WARN << "No arc available in LM (unlikely to be correct "
              "if a statistical language model); will not warn again";
        }
        arc->weight = Weight::Zero();
        return lm_state; // doesn't really matter what we return here; will
        // be pruned.
      } else {
        arc->weight = Times(arc->weight, lm_arc.weight);
        arc->olabel = lm_arc.olabel; // probably will be the same.
        return lm_arc.nextstate; // return the new LM state.
      }      
    }
  }
  
  void ProcessEmitting(DecodableInterface *decodable, int32 frame) {
    // Processes emitting arcs for one frame.  Propagates from prev_toks_ to cur_toks_.
    Elem *last_toks = toks_.Clear(); // swapping prev_toks_ / cur_toks_
    Elem *best_elem = NULL;
    BaseFloat adaptive_beam;
    size_t tok_cnt;
    BaseFloat cur_cutoff = GetCutoff(last_toks, &tok_cnt, &adaptive_beam, &best_elem);
    PossiblyResizeHash(tok_cnt);  // This makes sure the hash is always big enough.    
    
    BaseFloat next_cutoff = std::numeric_limits<BaseFloat>::infinity();
    // pruning "online" before having seen all tokens

    // First process the best token to get a hopefully
    // reasonably tight bound on the next cutoff.
    if (best_elem) {
      PairId state_pair = best_elem->key;
      StateId state = PairToState(state_pair), // state in "fst"
          lm_state = PairToLmState(state_pair);
      Token *tok = best_elem->val;
      for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
           !aiter.Done();
           aiter.Next()) {
        Arc arc = aiter.Value();
        if (arc.ilabel != 0) {  // propagate..
          PropagateLm(lm_state, &arc); // may affect "arc.weight".
          // We don't need the return value (the new LM state).
          arc.weight = Times(arc.weight,
                             Weight(-decodable->LogLikelihood(frame-1, arc.ilabel)));
          BaseFloat new_weight = arc.weight.Value() + tok->tot_cost;
          if (new_weight + adaptive_beam < next_cutoff)
            next_cutoff = new_weight + adaptive_beam;
        }
      }
    }
    
    // the tokens are now owned here, in last_toks, and the hash is empty.
    // 'owned' is a complex thing here; the point is we need to call DeleteElem
    // on each elem 'e' to let toks_ know we're done with them.
    for (Elem *e = last_toks, *e_tail; e != NULL; e = e_tail) {
      // loop this way because we delete "e" as we go.
      PairId state_pair = e->key;
      StateId state = PairToState(state_pair),
          lm_state = PairToLmState(state_pair);
      Token *tok = e->val;
      if (tok->tot_cost <=  cur_cutoff) {
        for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
             !aiter.Done();
             aiter.Next()) {
          const Arc &arc_ref = aiter.Value();
          if (arc_ref.ilabel != 0) {  // propagate..
            Arc arc(arc_ref);
            StateId next_lm_state = PropagateLm(lm_state, &arc);
            BaseFloat ac_cost = -decodable->LogLikelihood(frame-1, arc.ilabel),
                graph_cost = arc.weight.Value(),
                cur_cost = tok->tot_cost,
                tot_cost = cur_cost + ac_cost + graph_cost;
            if (tot_cost > next_cutoff) continue;
            else if (tot_cost + config_.beam < next_cutoff)
              next_cutoff = tot_cost + config_.beam; // prune by best current token
            PairId next_pair = ConstructPair(arc.nextstate, next_lm_state);
            Elem *e_next = FindOrAddToken(next_pair, frame, tot_cost, true, NULL);
            // true: emitting, NULL: no change indicator needed
          
            // Add ForwardLink from tok to next_tok (put on head of list tok->links)
            tok->links = new ForwardLink(e_next->val, arc.ilabel, arc.olabel, 
                                         graph_cost, ac_cost, tok->links);
          }
        } // for all arcs
      }
      e_tail = e->tail;
      toks_.Delete(e); // delete Elem
    }
  }

  void ProcessNonemitting(int32 frame) {
    // note: "frame" is the same as emitting states just processed.
    
    // Processes nonemitting arcs for one frame.  Propagates within toks_.
    // Note-- this queue structure is is not very optimal as
    // it may cause us to process states unnecessarily (e.g. more than once),
    // but in the baseline code, turning this vector into a set to fix this
    // problem did not improve overall speed.

    KALDI_ASSERT(queue_.empty());
    BaseFloat best_cost = std::numeric_limits<BaseFloat>::infinity();
    for (const Elem *e = toks_.GetList(); e != NULL;  e = e->tail) {
      queue_.push_back(e);
      // for pruning with current best token
      best_cost = std::min(best_cost, static_cast<BaseFloat>(e->val->tot_cost));
    }
    if (queue_.empty()) {
      if (!warned_) {
        KALDI_ERR << "Error in ProcessEmitting: no surviving tokens: frame is "
                  << frame;
        warned_ = true;
      }
    }
    BaseFloat cutoff = best_cost + config_.beam;
    
    while (!queue_.empty()) {
      const Elem *e = queue_.back();
      queue_.pop_back();

      PairId state_pair = e->key;
      Token *tok = e->val;  // would segfault if state not in
                            // toks_ but this can't happen.
      BaseFloat cur_cost = tok->tot_cost;
      if (cur_cost > cutoff) // Don't bother processing successors.
        continue;
      StateId state = PairToState(state_pair),
          lm_state = PairToLmState(state_pair);
      // If "tok" has any existing forward links, delete them,
      // because we're about to regenerate them.  This is a kind
      // of non-optimality (remember, this is the simple decoder),
      // but since most states are emitting it's not a huge issue.
      tok->DeleteForwardLinks(); // necessary when re-visiting
      tok->links = NULL;
      for (fst::ArcIterator<fst::Fst<Arc> > aiter(fst_, state);
          !aiter.Done();
          aiter.Next()) {
        const Arc &arc_ref = aiter.Value();
        if (arc_ref.ilabel == 0) {  // propagate nonemitting only...
          Arc arc(arc_ref);
          StateId next_lm_state = PropagateLm(lm_state, &arc);          
          BaseFloat graph_cost = arc.weight.Value(),
              tot_cost = cur_cost + graph_cost;
          if (tot_cost < cutoff) {
            bool changed;
            PairId next_pair = ConstructPair(arc.nextstate, next_lm_state);
            Elem *e_new = FindOrAddToken(next_pair, frame, tot_cost,
                                         false, &changed); // false: non-emit
            
            tok->links = new ForwardLink(e_new->val, 0, arc.olabel,
                                         graph_cost, 0, tok->links);
            
            // "changed" tells us whether the new token has a different
            // cost from before, or is new [if so, add into queue].
            if (changed) queue_.push_back(e_new);
          }
        }
      } // for all arcs
    } // while queue not empty
  }


  // HashList defined in ../util/hash-list.h.  It actually allows us to maintain
  // more than one list (e.g. for current and previous frames), but only one of
  // them at a time can be indexed by StateId.
  HashList<PairId, Token*> toks_;
  std::vector<TokenList> active_toks_; // Lists of tokens, indexed by
  // frame (members of TokenList are toks, must_prune_forward_links,
  // must_prune_tokens).
  std::vector<const Elem* > queue_;  // temp variable used in ProcessNonemitting,
  std::vector<BaseFloat> tmp_array_;  // used in GetCutoff.
  // make it class member to avoid internal new/delete.
  const fst::Fst<fst::StdArc> &fst_;
  fst::DeterministicOnDemandFst<fst::StdArc> *lm_diff_fst_;  
  LatticeBiglmFasterDecoderConfig config_;
  bool warned_noarc_;  
  int32 num_toks_; // current total #toks allocated...
  bool warned_;
  bool final_active_; // use this to say whether we found active final tokens
  // on the last frame.
  std::map<Token*, BaseFloat> final_costs_; // A cache of final-costs
  // of tokens on the last frame-- it's just convenient to store it this way.
  
  // It might seem unclear why we call DeleteElems(toks_.Clear()).
  // There are two separate cleanup tasks we need to do at when we start a new file.
  // one is to delete the Token objects in the list; the other is to delete
  // the Elem objects.  toks_.Clear() just clears them from the hash and gives ownership
  // to the caller, who then has to call toks_.Delete(e) for each one.  It was designed
  // this way for convenience in propagating tokens from one frame to the next.
  void DeleteElems(Elem *list) {
    for (Elem *e = list, *e_tail; e != NULL; e = e_tail) {
      e_tail = e->tail;
      toks_.Delete(e);
    }
    toks_.Clear();
  }
  
  void ClearActiveTokens() { // a cleanup routine, at utt end/begin
    for (size_t i = 0; i < active_toks_.size(); i++) {
      // Delete all tokens alive on this frame, and any forward
      // links they may have.
      for (Token *tok = active_toks_[i].toks; tok != NULL; ) {
        tok->DeleteForwardLinks();
        Token *next_tok = tok->next;
        delete tok;
        num_toks_--;
        tok = next_tok;
      }
    }
    active_toks_.clear();
    KALDI_ASSERT(num_toks_ == 0);
  }
};

} // end namespace kaldi.

#endif