lattice-faster-decoder.cc 42.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
// decoder/lattice-faster-decoder.cc

// Copyright 2009-2012  Microsoft Corporation  Mirko Hannemann
//           2013-2018  Johns Hopkins University (Author: Daniel Povey)
//                2014  Guoguo Chen
//                2018  Zhehuai Chen

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include "decoder/lattice-faster-decoder.h"
#include "lat/lattice-functions.h"

namespace kaldi {

// instantiate this class once for each thing you have to decode.
template <typename FST, typename Token>
LatticeFasterDecoderTpl<FST, Token>::LatticeFasterDecoderTpl(
    const FST &fst,
    const LatticeFasterDecoderConfig &config):
    fst_(&fst), delete_fst_(false), config_(config), num_toks_(0) {
  config.Check();
  toks_.SetSize(1000);  // just so on the first frame we do something reasonable.
}


template <typename FST, typename Token>
LatticeFasterDecoderTpl<FST, Token>::LatticeFasterDecoderTpl(
    const LatticeFasterDecoderConfig &config, FST *fst):
    fst_(fst), delete_fst_(true), config_(config), num_toks_(0) {
  config.Check();
  toks_.SetSize(1000);  // just so on the first frame we do something reasonable.
}


template <typename FST, typename Token>
LatticeFasterDecoderTpl<FST, Token>::~LatticeFasterDecoderTpl() {
  DeleteElems(toks_.Clear());
  ClearActiveTokens();
  if (delete_fst_) delete fst_;
}

template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::InitDecoding() {
  // clean up from last time:
  DeleteElems(toks_.Clear());
  cost_offsets_.clear();
  ClearActiveTokens();
  warned_ = false;
  num_toks_ = 0;
  decoding_finalized_ = false;
  final_costs_.clear();
  StateId start_state = fst_->Start();
  KALDI_ASSERT(start_state != fst::kNoStateId);
  active_toks_.resize(1);
  Token *start_tok = new Token(0.0, 0.0, NULL, NULL, NULL);
  active_toks_[0].toks = start_tok;
  toks_.Insert(start_state, start_tok);
  num_toks_++;
  ProcessNonemitting(config_.beam);
}

// Returns true if any kind of traceback is available (not necessarily from
// a final state).  It should only very rarely return false; this indicates
// an unusual search error.
template <typename FST, typename Token>
bool LatticeFasterDecoderTpl<FST, Token>::Decode(DecodableInterface *decodable) {
  InitDecoding();

  // We use 1-based indexing for frames in this decoder (if you view it in
  // terms of features), but note that the decodable object uses zero-based
  // numbering, which we have to correct for when we call it.

  while (!decodable->IsLastFrame(NumFramesDecoded() - 1)) {
    if (NumFramesDecoded() % config_.prune_interval == 0)
      PruneActiveTokens(config_.lattice_beam * config_.prune_scale);
    BaseFloat cost_cutoff = ProcessEmitting(decodable);
    ProcessNonemitting(cost_cutoff);
  }
  FinalizeDecoding();

  // Returns true if we have any kind of traceback available (not necessarily
  // to the end state; query ReachedFinal() for that).
  return !active_toks_.empty() && active_toks_.back().toks != NULL;
}


// Outputs an FST corresponding to the single best path through the lattice.
template <typename FST, typename Token>
bool LatticeFasterDecoderTpl<FST, Token>::GetBestPath(Lattice *olat,
                                       bool use_final_probs) const {
  Lattice raw_lat;
  GetRawLattice(&raw_lat, use_final_probs);
  ShortestPath(raw_lat, olat);
  return (olat->NumStates() != 0);
}


// Outputs an FST corresponding to the raw, state-level lattice
template <typename FST, typename Token>
bool LatticeFasterDecoderTpl<FST, Token>::GetRawLattice(
    Lattice *ofst,
    bool use_final_probs) const {
  typedef LatticeArc Arc;
  typedef Arc::StateId StateId;
  typedef Arc::Weight Weight;
  typedef Arc::Label Label;

  // Note: you can't use the old interface (Decode()) if you want to
  // get the lattice with use_final_probs = false.  You'd have to do
  // InitDecoding() and then AdvanceDecoding().
  if (decoding_finalized_ && !use_final_probs)
    KALDI_ERR << "You cannot call FinalizeDecoding() and then call "
              << "GetRawLattice() with use_final_probs == false";

  unordered_map<Token*, BaseFloat> final_costs_local;

  const unordered_map<Token*, BaseFloat> &final_costs =
      (decoding_finalized_ ? final_costs_ : final_costs_local);
  if (!decoding_finalized_ && use_final_probs)
    ComputeFinalCosts(&final_costs_local, NULL, NULL);

  ofst->DeleteStates();
  // num-frames plus one (since frames are one-based, and we have
  // an extra frame for the start-state).
  int32 num_frames = active_toks_.size() - 1;
  KALDI_ASSERT(num_frames > 0);
  const int32 bucket_count = num_toks_/2 + 3;
  unordered_map<Token*, StateId> tok_map(bucket_count);
  // First create all states.
  std::vector<Token*> token_list;
  for (int32 f = 0; f <= num_frames; f++) {
    if (active_toks_[f].toks == NULL) {
      KALDI_WARN << "GetRawLattice: no tokens active on frame " << f
                 << ": not producing lattice.\n";
      return false;
    }
    TopSortTokens(active_toks_[f].toks, &token_list);
    for (size_t i = 0; i < token_list.size(); i++)
      if (token_list[i] != NULL)
        tok_map[token_list[i]] = ofst->AddState();
  }
  // The next statement sets the start state of the output FST.  Because we
  // topologically sorted the tokens, state zero must be the start-state.
  ofst->SetStart(0);

  KALDI_VLOG(4) << "init:" << num_toks_/2 + 3 << " buckets:"
                << tok_map.bucket_count() << " load:" << tok_map.load_factor()
                << " max:" << tok_map.max_load_factor();
  // Now create all arcs.
  for (int32 f = 0; f <= num_frames; f++) {
    for (Token *tok = active_toks_[f].toks; tok != NULL; tok = tok->next) {
      StateId cur_state = tok_map[tok];
      for (ForwardLinkT *l = tok->links;
           l != NULL;
           l = l->next) {
        typename unordered_map<Token*, StateId>::const_iterator
            iter = tok_map.find(l->next_tok);
        StateId nextstate = iter->second;
        KALDI_ASSERT(iter != tok_map.end());
        BaseFloat cost_offset = 0.0;
        if (l->ilabel != 0) {  // emitting..
          KALDI_ASSERT(f >= 0 && f < cost_offsets_.size());
          cost_offset = cost_offsets_[f];
        }
        Arc arc(l->ilabel, l->olabel,
                Weight(l->graph_cost, l->acoustic_cost - cost_offset),
                nextstate);
        ofst->AddArc(cur_state, arc);
      }
      if (f == num_frames) {
        if (use_final_probs && !final_costs.empty()) {
          typename unordered_map<Token*, BaseFloat>::const_iterator
              iter = final_costs.find(tok);
          if (iter != final_costs.end())
            ofst->SetFinal(cur_state, LatticeWeight(iter->second, 0));
        } else {
          ofst->SetFinal(cur_state, LatticeWeight::One());
        }
      }
    }
  }
  return (ofst->NumStates() > 0);
}


// This function is now deprecated, since now we do determinization from outside
// the LatticeFasterDecoder class.  Outputs an FST corresponding to the
// lattice-determinized lattice (one path per word sequence).
template <typename FST, typename Token>
bool LatticeFasterDecoderTpl<FST, Token>::GetLattice(CompactLattice *ofst,
                                           bool use_final_probs) const {
  Lattice raw_fst;
  GetRawLattice(&raw_fst, use_final_probs);
  Invert(&raw_fst);  // make it so word labels are on the input.
  // (in phase where we get backward-costs).
  fst::ILabelCompare<LatticeArc> ilabel_comp;
  ArcSort(&raw_fst, ilabel_comp);  // sort on ilabel; makes
  // lattice-determinization more efficient.

  fst::DeterminizeLatticePrunedOptions lat_opts;
  lat_opts.max_mem = config_.det_opts.max_mem;

  DeterminizeLatticePruned(raw_fst, config_.lattice_beam, ofst, lat_opts);
  raw_fst.DeleteStates();  // Free memory-- raw_fst no longer needed.
  Connect(ofst);  // Remove unreachable states... there might be
  // a small number of these, in some cases.
  // Note: if something went wrong and the raw lattice was empty,
  // we should still get to this point in the code without warnings or failures.
  return (ofst->NumStates() != 0);
}

template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PossiblyResizeHash(size_t num_toks) {
  size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks)
                                      * config_.hash_ratio);
  if (new_sz > toks_.Size()) {
    toks_.SetSize(new_sz);
  }
}

/*
  A note on the definition of extra_cost.

  extra_cost is used in pruning tokens, to save memory.

  Define the 'forward cost' of a token as zero for any token on the frame
  we're currently decoding; and for other frames, as the shortest-path cost
  between that token and a token on the frame we're currently decoding.
  (by "currently decoding" I mean the most recently processed frame).

  Then define the extra_cost of a token (always >= 0) as the forward-cost of
  the token minus the smallest forward-cost of any token on the same frame.

  We can use the extra_cost to accurately prune away tokens that we know will
  never appear in the lattice.  If the extra_cost is greater than the desired
  lattice beam, the token would provably never appear in the lattice, so we can
  prune away the token.

  The advantage of storing the extra_cost rather than the forward-cost, is that
  it is less costly to keep the extra_cost up-to-date when we process new frames.
  When we process a new frame, *all* the previous frames' forward-costs would change;
  but in general the extra_cost will change only for a finite number of frames.
  (Actually we don't update all the extra_costs every time we update a frame; we
  only do it every 'config_.prune_interval' frames).
 */

// FindOrAddToken either locates a token in hash of toks_,
// or if necessary inserts a new, empty token (i.e. with no forward links)
// for the current frame.  [note: it's inserted if necessary into hash toks_
// and also into the singly linked list of tokens active on this frame
// (whose head is at active_toks_[frame]).
template <typename FST, typename Token>
inline typename LatticeFasterDecoderTpl<FST, Token>::Elem*
LatticeFasterDecoderTpl<FST, Token>::FindOrAddToken(
      StateId state, int32 frame_plus_one, BaseFloat tot_cost,
      Token *backpointer, bool *changed) {
  // Returns the Token pointer.  Sets "changed" (if non-NULL) to true
  // if the token was newly created or the cost changed.
  KALDI_ASSERT(frame_plus_one < active_toks_.size());
  Token *&toks = active_toks_[frame_plus_one].toks;
  Elem *e_found = toks_.Insert(state, NULL);
  if (e_found->val == NULL) {  // no such token presently.
    const BaseFloat extra_cost = 0.0;
    // tokens on the currently final frame have zero extra_cost
    // as any of them could end up
    // on the winning path.
    Token *new_tok = new Token (tot_cost, extra_cost, NULL, toks, backpointer);
    // NULL: no forward links yet
    toks = new_tok;
    num_toks_++;
    e_found->val = new_tok;
    if (changed) *changed = true;
    return e_found;
  } else {
    Token *tok = e_found->val;  // There is an existing Token for this state.
    if (tok->tot_cost > tot_cost) {  // replace old token
      tok->tot_cost = tot_cost;
      // SetBackpointer() just does tok->backpointer = backpointer in
      // the case where Token == BackpointerToken, else nothing.
      tok->SetBackpointer(backpointer);
      // we don't allocate a new token, the old stays linked in active_toks_
      // we only replace the tot_cost
      // in the current frame, there are no forward links (and no extra_cost)
      // only in ProcessNonemitting we have to delete forward links
      // in case we visit a state for the second time
      // those forward links, that lead to this replaced token before:
      // they remain and will hopefully be pruned later (PruneForwardLinks...)
      if (changed) *changed = true;
    } else {
      if (changed) *changed = false;
    }
    return e_found;
  }
}

// prunes outgoing links for all tokens in active_toks_[frame]
// it's called by PruneActiveTokens
// all links, that have link_extra_cost > lattice_beam are pruned
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PruneForwardLinks(
    int32 frame_plus_one, bool *extra_costs_changed,
    bool *links_pruned, BaseFloat delta) {
  // delta is the amount by which the extra_costs must change
  // If delta is larger,  we'll tend to go back less far
  //    toward the beginning of the file.
  // extra_costs_changed is set to true if extra_cost was changed for any token
  // links_pruned is set to true if any link in any token was pruned

  *extra_costs_changed = false;
  *links_pruned = false;
  KALDI_ASSERT(frame_plus_one >= 0 && frame_plus_one < active_toks_.size());
  if (active_toks_[frame_plus_one].toks == NULL) {  // empty list; should not happen.
    if (!warned_) {
      KALDI_WARN << "No tokens alive [doing pruning].. warning first "
          "time only for each utterance\n";
      warned_ = true;
    }
  }

  // We have to iterate until there is no more change, because the links
  // are not guaranteed to be in topological order.
  bool changed = true;  // difference new minus old extra cost >= delta ?
  while (changed) {
    changed = false;
    for (Token *tok = active_toks_[frame_plus_one].toks;
         tok != NULL; tok = tok->next) {
      ForwardLinkT *link, *prev_link = NULL;
      // will recompute tok_extra_cost for tok.
      BaseFloat tok_extra_cost = std::numeric_limits<BaseFloat>::infinity();
      // tok_extra_cost is the best (min) of link_extra_cost of outgoing links
      for (link = tok->links; link != NULL; ) {
        // See if we need to excise this link...
        Token *next_tok = link->next_tok;
        BaseFloat link_extra_cost = next_tok->extra_cost +
            ((tok->tot_cost + link->acoustic_cost + link->graph_cost)
             - next_tok->tot_cost);  // difference in brackets is >= 0
        // link_exta_cost is the difference in score between the best paths
        // through link source state and through link destination state
        KALDI_ASSERT(link_extra_cost == link_extra_cost);  // check for NaN
        if (link_extra_cost > config_.lattice_beam) {  // excise link
          ForwardLinkT *next_link = link->next;
          if (prev_link != NULL) prev_link->next = next_link;
          else tok->links = next_link;
          delete link;
          link = next_link;  // advance link but leave prev_link the same.
          *links_pruned = true;
        } else {   // keep the link and update the tok_extra_cost if needed.
          if (link_extra_cost < 0.0) {  // this is just a precaution.
            if (link_extra_cost < -0.01)
              KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
            link_extra_cost = 0.0;
          }
          if (link_extra_cost < tok_extra_cost)
            tok_extra_cost = link_extra_cost;
          prev_link = link;  // move to next link
          link = link->next;
        }
      }  // for all outgoing links
      if (fabs(tok_extra_cost - tok->extra_cost) > delta)
        changed = true;   // difference new minus old is bigger than delta
      tok->extra_cost = tok_extra_cost;
      // will be +infinity or <= lattice_beam_.
      // infinity indicates, that no forward link survived pruning
    }  // for all Token on active_toks_[frame]
    if (changed) *extra_costs_changed = true;

    // Note: it's theoretically possible that aggressive compiler
    // optimizations could cause an infinite loop here for small delta and
    // high-dynamic-range scores.
  } // while changed
}

// PruneForwardLinksFinal is a version of PruneForwardLinks that we call
// on the final frame.  If there are final tokens active, it uses
// the final-probs for pruning, otherwise it treats all tokens as final.
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PruneForwardLinksFinal() {
  KALDI_ASSERT(!active_toks_.empty());
  int32 frame_plus_one = active_toks_.size() - 1;

  if (active_toks_[frame_plus_one].toks == NULL)  // empty list; should not happen.
    KALDI_WARN << "No tokens alive at end of file";

  typedef typename unordered_map<Token*, BaseFloat>::const_iterator IterType;
  ComputeFinalCosts(&final_costs_, &final_relative_cost_, &final_best_cost_);
  decoding_finalized_ = true;
  // We call DeleteElems() as a nicety, not because it's really necessary;
  // otherwise there would be a time, after calling PruneTokensForFrame() on the
  // final frame, when toks_.GetList() or toks_.Clear() would contain pointers
  // to nonexistent tokens.
  DeleteElems(toks_.Clear());

  // Now go through tokens on this frame, pruning forward links...  may have to
  // iterate a few times until there is no more change, because the list is not
  // in topological order.  This is a modified version of the code in
  // PruneForwardLinks, but here we also take account of the final-probs.
  bool changed = true;
  BaseFloat delta = 1.0e-05;
  while (changed) {
    changed = false;
    for (Token *tok = active_toks_[frame_plus_one].toks;
         tok != NULL; tok = tok->next) {
      ForwardLinkT *link, *prev_link = NULL;
      // will recompute tok_extra_cost.  It has a term in it that corresponds
      // to the "final-prob", so instead of initializing tok_extra_cost to infinity
      // below we set it to the difference between the (score+final_prob) of this token,
      // and the best such (score+final_prob).
      BaseFloat final_cost;
      if (final_costs_.empty()) {
        final_cost = 0.0;
      } else {
        IterType iter = final_costs_.find(tok);
        if (iter != final_costs_.end())
          final_cost = iter->second;
        else
          final_cost = std::numeric_limits<BaseFloat>::infinity();
      }
      BaseFloat tok_extra_cost = tok->tot_cost + final_cost - final_best_cost_;
      // tok_extra_cost will be a "min" over either directly being final, or
      // being indirectly final through other links, and the loop below may
      // decrease its value:
      for (link = tok->links; link != NULL; ) {
        // See if we need to excise this link...
        Token *next_tok = link->next_tok;
        BaseFloat link_extra_cost = next_tok->extra_cost +
            ((tok->tot_cost + link->acoustic_cost + link->graph_cost)
             - next_tok->tot_cost);
        if (link_extra_cost > config_.lattice_beam) {  // excise link
          ForwardLinkT *next_link = link->next;
          if (prev_link != NULL) prev_link->next = next_link;
          else tok->links = next_link;
          delete link;
          link = next_link; // advance link but leave prev_link the same.
        } else { // keep the link and update the tok_extra_cost if needed.
          if (link_extra_cost < 0.0) { // this is just a precaution.
            if (link_extra_cost < -0.01)
              KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
            link_extra_cost = 0.0;
          }
          if (link_extra_cost < tok_extra_cost)
            tok_extra_cost = link_extra_cost;
          prev_link = link;
          link = link->next;
        }
      }
      // prune away tokens worse than lattice_beam above best path.  This step
      // was not necessary in the non-final case because then, this case
      // showed up as having no forward links.  Here, the tok_extra_cost has
      // an extra component relating to the final-prob.
      if (tok_extra_cost > config_.lattice_beam)
        tok_extra_cost = std::numeric_limits<BaseFloat>::infinity();
      // to be pruned in PruneTokensForFrame

      if (!ApproxEqual(tok->extra_cost, tok_extra_cost, delta))
        changed = true;
      tok->extra_cost = tok_extra_cost; // will be +infinity or <= lattice_beam_.
    }
  } // while changed
}

template <typename FST, typename Token>
BaseFloat LatticeFasterDecoderTpl<FST, Token>::FinalRelativeCost() const {
  if (!decoding_finalized_) {
    BaseFloat relative_cost;
    ComputeFinalCosts(NULL, &relative_cost, NULL);
    return relative_cost;
  } else {
    // we're not allowed to call that function if FinalizeDecoding() has
    // been called; return a cached value.
    return final_relative_cost_;
  }
}


// Prune away any tokens on this frame that have no forward links.
// [we don't do this in PruneForwardLinks because it would give us
// a problem with dangling pointers].
// It's called by PruneActiveTokens if any forward links have been pruned
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PruneTokensForFrame(int32 frame_plus_one) {
  KALDI_ASSERT(frame_plus_one >= 0 && frame_plus_one < active_toks_.size());
  Token *&toks = active_toks_[frame_plus_one].toks;
  if (toks == NULL)
    KALDI_WARN << "No tokens alive [doing pruning]";
  Token *tok, *next_tok, *prev_tok = NULL;
  for (tok = toks; tok != NULL; tok = next_tok) {
    next_tok = tok->next;
    if (tok->extra_cost == std::numeric_limits<BaseFloat>::infinity()) {
      // token is unreachable from end of graph; (no forward links survived)
      // excise tok from list and delete tok.
      if (prev_tok != NULL) prev_tok->next = tok->next;
      else toks = tok->next;
      delete tok;
      num_toks_--;
    } else {  // fetch next Token
      prev_tok = tok;
    }
  }
}

// Go backwards through still-alive tokens, pruning them, starting not from
// the current frame (where we want to keep all tokens) but from the frame before
// that.  We go backwards through the frames and stop when we reach a point
// where the delta-costs are not changing (and the delta controls when we consider
// a cost to have "not changed").
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PruneActiveTokens(BaseFloat delta) {
  int32 cur_frame_plus_one = NumFramesDecoded();
  int32 num_toks_begin = num_toks_;
  // The index "f" below represents a "frame plus one", i.e. you'd have to subtract
  // one to get the corresponding index for the decodable object.
  for (int32 f = cur_frame_plus_one - 1; f >= 0; f--) {
    // Reason why we need to prune forward links in this situation:
    // (1) we have never pruned them (new TokenList)
    // (2) we have not yet pruned the forward links to the next f,
    // after any of those tokens have changed their extra_cost.
    if (active_toks_[f].must_prune_forward_links) {
      bool extra_costs_changed = false, links_pruned = false;
      PruneForwardLinks(f, &extra_costs_changed, &links_pruned, delta);
      if (extra_costs_changed && f > 0) // any token has changed extra_cost
        active_toks_[f-1].must_prune_forward_links = true;
      if (links_pruned) // any link was pruned
        active_toks_[f].must_prune_tokens = true;
      active_toks_[f].must_prune_forward_links = false; // job done
    }
    if (f+1 < cur_frame_plus_one &&      // except for last f (no forward links)
        active_toks_[f+1].must_prune_tokens) {
      PruneTokensForFrame(f+1);
      active_toks_[f+1].must_prune_tokens = false;
    }
  }
  KALDI_VLOG(4) << "PruneActiveTokens: pruned tokens from " << num_toks_begin
                << " to " << num_toks_;
}

template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::ComputeFinalCosts(
    unordered_map<Token*, BaseFloat> *final_costs,
    BaseFloat *final_relative_cost,
    BaseFloat *final_best_cost) const {
  KALDI_ASSERT(!decoding_finalized_);
  if (final_costs != NULL)
    final_costs->clear();
  const Elem *final_toks = toks_.GetList();
  BaseFloat infinity = std::numeric_limits<BaseFloat>::infinity();
  BaseFloat best_cost = infinity,
      best_cost_with_final = infinity;

  while (final_toks != NULL) {
    StateId state = final_toks->key;
    Token *tok = final_toks->val;
    const Elem *next = final_toks->tail;
    BaseFloat final_cost = fst_->Final(state).Value();
    BaseFloat cost = tok->tot_cost,
        cost_with_final = cost + final_cost;
    best_cost = std::min(cost, best_cost);
    best_cost_with_final = std::min(cost_with_final, best_cost_with_final);
    if (final_costs != NULL && final_cost != infinity)
      (*final_costs)[tok] = final_cost;
    final_toks = next;
  }
  if (final_relative_cost != NULL) {
    if (best_cost == infinity && best_cost_with_final == infinity) {
      // Likely this will only happen if there are no tokens surviving.
      // This seems the least bad way to handle it.
      *final_relative_cost = infinity;
    } else {
      *final_relative_cost = best_cost_with_final - best_cost;
    }
  }
  if (final_best_cost != NULL) {
    if (best_cost_with_final != infinity) { // final-state exists.
      *final_best_cost = best_cost_with_final;
    } else { // no final-state exists.
      *final_best_cost = best_cost;
    }
  }
}

template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::AdvanceDecoding(DecodableInterface *decodable,
                                                int32 max_num_frames) {
  if (std::is_same<FST, fst::Fst<fst::StdArc> >::value) {
    // if the type 'FST' is the FST base-class, then see if the FST type of fst_
    // is actually VectorFst or ConstFst.  If so, call the AdvanceDecoding()
    // function after casting *this to the more specific type.
    if (fst_->Type() == "const") {
      LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, Token> *this_cast =
          reinterpret_cast<LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, Token>* >(this);
      this_cast->AdvanceDecoding(decodable, max_num_frames);
      return;
    } else if (fst_->Type() == "vector") {
      LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, Token> *this_cast =
          reinterpret_cast<LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, Token>* >(this);
      this_cast->AdvanceDecoding(decodable, max_num_frames);
      return;
    }
  }


  KALDI_ASSERT(!active_toks_.empty() && !decoding_finalized_ &&
               "You must call InitDecoding() before AdvanceDecoding");
  int32 num_frames_ready = decodable->NumFramesReady();
  // num_frames_ready must be >= num_frames_decoded, or else
  // the number of frames ready must have decreased (which doesn't
  // make sense) or the decodable object changed between calls
  // (which isn't allowed).
  KALDI_ASSERT(num_frames_ready >= NumFramesDecoded());
  int32 target_frames_decoded = num_frames_ready;
  if (max_num_frames >= 0)
    target_frames_decoded = std::min(target_frames_decoded,
                                     NumFramesDecoded() + max_num_frames);
  while (NumFramesDecoded() < target_frames_decoded) {
    if (NumFramesDecoded() % config_.prune_interval == 0) {
      PruneActiveTokens(config_.lattice_beam * config_.prune_scale);
    }
    BaseFloat cost_cutoff = ProcessEmitting(decodable);
    ProcessNonemitting(cost_cutoff);
  }
}

// FinalizeDecoding() is a version of PruneActiveTokens that we call
// (optionally) on the final frame.  Takes into account the final-prob of
// tokens.  This function used to be called PruneActiveTokensFinal().
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::FinalizeDecoding() {
  int32 final_frame_plus_one = NumFramesDecoded();
  int32 num_toks_begin = num_toks_;
  // PruneForwardLinksFinal() prunes final frame (with final-probs), and
  // sets decoding_finalized_.
  PruneForwardLinksFinal();
  for (int32 f = final_frame_plus_one - 1; f >= 0; f--) {
    bool b1, b2; // values not used.
    BaseFloat dontcare = 0.0; // delta of zero means we must always update
    PruneForwardLinks(f, &b1, &b2, dontcare);
    PruneTokensForFrame(f + 1);
  }
  PruneTokensForFrame(0);
  KALDI_VLOG(4) << "pruned tokens from " << num_toks_begin
                << " to " << num_toks_;
}

/// Gets the weight cutoff.  Also counts the active tokens.
template <typename FST, typename Token>
BaseFloat LatticeFasterDecoderTpl<FST, Token>::GetCutoff(Elem *list_head, size_t *tok_count,
                                          BaseFloat *adaptive_beam, Elem **best_elem) {
  BaseFloat best_weight = std::numeric_limits<BaseFloat>::infinity();
  // positive == high cost == bad.
  size_t count = 0;
  if (config_.max_active == std::numeric_limits<int32>::max() &&
      config_.min_active == 0) {
    for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
      BaseFloat w = static_cast<BaseFloat>(e->val->tot_cost);
      if (w < best_weight) {
        best_weight = w;
        if (best_elem) *best_elem = e;
      }
    }
    if (tok_count != NULL) *tok_count = count;
    if (adaptive_beam != NULL) *adaptive_beam = config_.beam;
    return best_weight + config_.beam;
  } else {
    tmp_array_.clear();
    for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
      BaseFloat w = e->val->tot_cost;
      tmp_array_.push_back(w);
      if (w < best_weight) {
        best_weight = w;
        if (best_elem) *best_elem = e;
      }
    }
    if (tok_count != NULL) *tok_count = count;

    BaseFloat beam_cutoff = best_weight + config_.beam,
        min_active_cutoff = std::numeric_limits<BaseFloat>::infinity(),
        max_active_cutoff = std::numeric_limits<BaseFloat>::infinity();

    KALDI_VLOG(6) << "Number of tokens active on frame " << NumFramesDecoded()
                  << " is " << tmp_array_.size();

    if (tmp_array_.size() > static_cast<size_t>(config_.max_active)) {
      std::nth_element(tmp_array_.begin(),
                       tmp_array_.begin() + config_.max_active,
                       tmp_array_.end());
      max_active_cutoff = tmp_array_[config_.max_active];
    }
    if (max_active_cutoff < beam_cutoff) { // max_active is tighter than beam.
      if (adaptive_beam)
        *adaptive_beam = max_active_cutoff - best_weight + config_.beam_delta;
      return max_active_cutoff;
    }
    if (tmp_array_.size() > static_cast<size_t>(config_.min_active)) {
      if (config_.min_active == 0) min_active_cutoff = best_weight;
      else {
        std::nth_element(tmp_array_.begin(),
                         tmp_array_.begin() + config_.min_active,
                         tmp_array_.size() > static_cast<size_t>(config_.max_active) ?
                         tmp_array_.begin() + config_.max_active :
                         tmp_array_.end());
        min_active_cutoff = tmp_array_[config_.min_active];
      }
    }
    if (min_active_cutoff > beam_cutoff) { // min_active is looser than beam.
      if (adaptive_beam)
        *adaptive_beam = min_active_cutoff - best_weight + config_.beam_delta;
      return min_active_cutoff;
    } else {
      *adaptive_beam = config_.beam;
      return beam_cutoff;
    }
  }
}

template <typename FST, typename Token>
BaseFloat LatticeFasterDecoderTpl<FST, Token>::ProcessEmitting(
    DecodableInterface *decodable) {
  KALDI_ASSERT(active_toks_.size() > 0);
  int32 frame = active_toks_.size() - 1; // frame is the frame-index
                                         // (zero-based) used to get likelihoods
                                         // from the decodable object.
  active_toks_.resize(active_toks_.size() + 1);

  Elem *final_toks = toks_.Clear(); // analogous to swapping prev_toks_ / cur_toks_
                                   // in simple-decoder.h.   Removes the Elems from
                                   // being indexed in the hash in toks_.
  Elem *best_elem = NULL;
  BaseFloat adaptive_beam;
  size_t tok_cnt;
  BaseFloat cur_cutoff = GetCutoff(final_toks, &tok_cnt, &adaptive_beam, &best_elem);
  KALDI_VLOG(6) << "Adaptive beam on frame " << NumFramesDecoded() << " is "
                << adaptive_beam;

  PossiblyResizeHash(tok_cnt);  // This makes sure the hash is always big enough.

  BaseFloat next_cutoff = std::numeric_limits<BaseFloat>::infinity();
  // pruning "online" before having seen all tokens

  BaseFloat cost_offset = 0.0; // Used to keep probabilities in a good
                               // dynamic range.


  // First process the best token to get a hopefully
  // reasonably tight bound on the next cutoff.  The only
  // products of the next block are "next_cutoff" and "cost_offset".
  if (best_elem) {
    StateId state = best_elem->key;
    Token *tok = best_elem->val;
    cost_offset = - tok->tot_cost;
    for (fst::ArcIterator<FST> aiter(*fst_, state);
         !aiter.Done();
         aiter.Next()) {
      const Arc &arc = aiter.Value();
      if (arc.ilabel != 0) {  // propagate..
        BaseFloat new_weight = arc.weight.Value() + cost_offset -
            decodable->LogLikelihood(frame, arc.ilabel) + tok->tot_cost;
        if (new_weight + adaptive_beam < next_cutoff)
          next_cutoff = new_weight + adaptive_beam;
      }
    }
  }

  // Store the offset on the acoustic likelihoods that we're applying.
  // Could just do cost_offsets_.push_back(cost_offset), but we
  // do it this way as it's more robust to future code changes.
  cost_offsets_.resize(frame + 1, 0.0);
  cost_offsets_[frame] = cost_offset;

  // the tokens are now owned here, in final_toks, and the hash is empty.
  // 'owned' is a complex thing here; the point is we need to call DeleteElem
  // on each elem 'e' to let toks_ know we're done with them.
  for (Elem *e = final_toks, *e_tail; e != NULL; e = e_tail) {
    // loop this way because we delete "e" as we go.
    StateId state = e->key;
    Token *tok = e->val;
    if (tok->tot_cost <= cur_cutoff) {
      for (fst::ArcIterator<FST> aiter(*fst_, state);
           !aiter.Done();
           aiter.Next()) {
        const Arc &arc = aiter.Value();
        if (arc.ilabel != 0) {  // propagate..
          BaseFloat ac_cost = cost_offset -
              decodable->LogLikelihood(frame, arc.ilabel),
              graph_cost = arc.weight.Value(),
              cur_cost = tok->tot_cost,
              tot_cost = cur_cost + ac_cost + graph_cost;
          if (tot_cost > next_cutoff) continue;
          else if (tot_cost + adaptive_beam < next_cutoff)
            next_cutoff = tot_cost + adaptive_beam; // prune by best current token
          // Note: the frame indexes into active_toks_ are one-based,
          // hence the + 1.
          Elem *e_next = FindOrAddToken(arc.nextstate,
                                        frame + 1, tot_cost, tok, NULL);
          // NULL: no change indicator needed

          // Add ForwardLink from tok to next_tok (put on head of list tok->links)
          tok->links = new ForwardLinkT(e_next->val, arc.ilabel, arc.olabel,
                                        graph_cost, ac_cost, tok->links);
        }
      } // for all arcs
    }
    e_tail = e->tail;
    toks_.Delete(e); // delete Elem
  }
  return next_cutoff;
}

// static inline
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::DeleteForwardLinks(Token *tok) {
  ForwardLinkT *l = tok->links, *m;
  while (l != NULL) {
    m = l->next;
    delete l;
    l = m;
  }
  tok->links = NULL;
}


template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::ProcessNonemitting(BaseFloat cutoff) {
  KALDI_ASSERT(!active_toks_.empty());
  int32 frame = static_cast<int32>(active_toks_.size()) - 2;
  // Note: "frame" is the time-index we just processed, or -1 if
  // we are processing the nonemitting transitions before the
  // first frame (called from InitDecoding()).

  // Processes nonemitting arcs for one frame.  Propagates within toks_.
  // Note-- this queue structure is not very optimal as
  // it may cause us to process states unnecessarily (e.g. more than once),
  // but in the baseline code, turning this vector into a set to fix this
  // problem did not improve overall speed.

  KALDI_ASSERT(queue_.empty());

  if (toks_.GetList() == NULL) {
    if (!warned_) {
      KALDI_WARN << "Error, no surviving tokens: frame is " << frame;
      warned_ = true;
    }
  }

  for (const Elem *e = toks_.GetList(); e != NULL;  e = e->tail) {
    StateId state = e->key;
    if (fst_->NumInputEpsilons(state) != 0)
      queue_.push_back(e);
  }

  while (!queue_.empty()) {
    const Elem *e = queue_.back();
    queue_.pop_back();

    StateId state = e->key;
    Token *tok = e->val;  // would segfault if e is a NULL pointer but this can't happen.
    BaseFloat cur_cost = tok->tot_cost;
    if (cur_cost > cutoff) // Don't bother processing successors.
      continue;
    // If "tok" has any existing forward links, delete them,
    // because we're about to regenerate them.  This is a kind
    // of non-optimality (remember, this is the simple decoder),
    // but since most states are emitting it's not a huge issue.
    DeleteForwardLinks(tok); // necessary when re-visiting
    tok->links = NULL;
    for (fst::ArcIterator<FST> aiter(*fst_, state);
         !aiter.Done();
         aiter.Next()) {
      const Arc &arc = aiter.Value();
      if (arc.ilabel == 0) {  // propagate nonemitting only...
        BaseFloat graph_cost = arc.weight.Value(),
            tot_cost = cur_cost + graph_cost;
        if (tot_cost < cutoff) {
          bool changed;

          Elem *e_new = FindOrAddToken(arc.nextstate, frame + 1, tot_cost,
                                          tok, &changed);

          tok->links = new ForwardLinkT(e_new->val, 0, arc.olabel,
                                        graph_cost, 0, tok->links);

          // "changed" tells us whether the new token has a different
          // cost from before, or is new [if so, add into queue].
          if (changed && fst_->NumInputEpsilons(arc.nextstate) != 0)
            queue_.push_back(e_new);
        }
      }
    } // for all arcs
  } // while queue not empty
}


template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::DeleteElems(Elem *list) {
  for (Elem *e = list, *e_tail; e != NULL; e = e_tail) {
    e_tail = e->tail;
    toks_.Delete(e);
  }
}

template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::ClearActiveTokens() { // a cleanup routine, at utt end/begin
  for (size_t i = 0; i < active_toks_.size(); i++) {
    // Delete all tokens alive on this frame, and any forward
    // links they may have.
    for (Token *tok = active_toks_[i].toks; tok != NULL; ) {
      DeleteForwardLinks(tok);
      Token *next_tok = tok->next;
      delete tok;
      num_toks_--;
      tok = next_tok;
    }
  }
  active_toks_.clear();
  KALDI_ASSERT(num_toks_ == 0);
}

// static
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::TopSortTokens(
    Token *tok_list, std::vector<Token*> *topsorted_list) {
  unordered_map<Token*, int32> token2pos;
  typedef typename unordered_map<Token*, int32>::iterator IterType;
  int32 num_toks = 0;
  for (Token *tok = tok_list; tok != NULL; tok = tok->next)
    num_toks++;
  int32 cur_pos = 0;
  // We assign the tokens numbers num_toks - 1, ... , 2, 1, 0.
  // This is likely to be in closer to topological order than
  // if we had given them ascending order, because of the way
  // new tokens are put at the front of the list.
  for (Token *tok = tok_list; tok != NULL; tok = tok->next)
    token2pos[tok] = num_toks - ++cur_pos;

  unordered_set<Token*> reprocess;

  for (IterType iter = token2pos.begin(); iter != token2pos.end(); ++iter) {
    Token *tok = iter->first;
    int32 pos = iter->second;
    for (ForwardLinkT *link = tok->links; link != NULL; link = link->next) {
      if (link->ilabel == 0) {
        // We only need to consider epsilon links, since non-epsilon links
        // transition between frames and this function only needs to sort a list
        // of tokens from a single frame.
        IterType following_iter = token2pos.find(link->next_tok);
        if (following_iter != token2pos.end()) { // another token on this frame,
                                                 // so must consider it.
          int32 next_pos = following_iter->second;
          if (next_pos < pos) { // reassign the position of the next Token.
            following_iter->second = cur_pos++;
            reprocess.insert(link->next_tok);
          }
        }
      }
    }
    // In case we had previously assigned this token to be reprocessed, we can
    // erase it from that set because it's "happy now" (we just processed it).
    reprocess.erase(tok);
  }

  size_t max_loop = 1000000, loop_count; // max_loop is to detect epsilon cycles.
  for (loop_count = 0;
       !reprocess.empty() && loop_count < max_loop; ++loop_count) {
    std::vector<Token*> reprocess_vec;
    for (typename unordered_set<Token*>::iterator iter = reprocess.begin();
         iter != reprocess.end(); ++iter)
      reprocess_vec.push_back(*iter);
    reprocess.clear();
    for (typename std::vector<Token*>::iterator iter = reprocess_vec.begin();
         iter != reprocess_vec.end(); ++iter) {
      Token *tok = *iter;
      int32 pos = token2pos[tok];
      // Repeat the processing we did above (for comments, see above).
      for (ForwardLinkT *link = tok->links; link != NULL; link = link->next) {
        if (link->ilabel == 0) {
          IterType following_iter = token2pos.find(link->next_tok);
          if (following_iter != token2pos.end()) {
            int32 next_pos = following_iter->second;
            if (next_pos < pos) {
              following_iter->second = cur_pos++;
              reprocess.insert(link->next_tok);
            }
          }
        }
      }
    }
  }
  KALDI_ASSERT(loop_count < max_loop && "Epsilon loops exist in your decoding "
               "graph (this is not allowed!)");

  topsorted_list->clear();
  topsorted_list->resize(cur_pos, NULL);  // create a list with NULLs in between.
  for (IterType iter = token2pos.begin(); iter != token2pos.end(); ++iter)
    (*topsorted_list)[iter->second] = iter->first;
}

// Instantiate the template for the combination of token types and FST types
// that we'll need.
template class LatticeFasterDecoderTpl<fst::Fst<fst::StdArc>, decoder::StdToken>;
template class LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, decoder::StdToken >;
template class LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, decoder::StdToken >;
template class LatticeFasterDecoderTpl<fst::GrammarFst, decoder::StdToken>;

template class LatticeFasterDecoderTpl<fst::Fst<fst::StdArc> , decoder::BackpointerToken>;
template class LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, decoder::BackpointerToken >;
template class LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, decoder::BackpointerToken >;
template class LatticeFasterDecoderTpl<fst::GrammarFst, decoder::BackpointerToken>;


} // end namespace kaldi.