lattice-faster-decoder.cc
42.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
// decoder/lattice-faster-decoder.cc
// Copyright 2009-2012 Microsoft Corporation Mirko Hannemann
// 2013-2018 Johns Hopkins University (Author: Daniel Povey)
// 2014 Guoguo Chen
// 2018 Zhehuai Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "decoder/lattice-faster-decoder.h"
#include "lat/lattice-functions.h"
namespace kaldi {
// instantiate this class once for each thing you have to decode.
template <typename FST, typename Token>
LatticeFasterDecoderTpl<FST, Token>::LatticeFasterDecoderTpl(
const FST &fst,
const LatticeFasterDecoderConfig &config):
fst_(&fst), delete_fst_(false), config_(config), num_toks_(0) {
config.Check();
toks_.SetSize(1000); // just so on the first frame we do something reasonable.
}
template <typename FST, typename Token>
LatticeFasterDecoderTpl<FST, Token>::LatticeFasterDecoderTpl(
const LatticeFasterDecoderConfig &config, FST *fst):
fst_(fst), delete_fst_(true), config_(config), num_toks_(0) {
config.Check();
toks_.SetSize(1000); // just so on the first frame we do something reasonable.
}
template <typename FST, typename Token>
LatticeFasterDecoderTpl<FST, Token>::~LatticeFasterDecoderTpl() {
DeleteElems(toks_.Clear());
ClearActiveTokens();
if (delete_fst_) delete fst_;
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::InitDecoding() {
// clean up from last time:
DeleteElems(toks_.Clear());
cost_offsets_.clear();
ClearActiveTokens();
warned_ = false;
num_toks_ = 0;
decoding_finalized_ = false;
final_costs_.clear();
StateId start_state = fst_->Start();
KALDI_ASSERT(start_state != fst::kNoStateId);
active_toks_.resize(1);
Token *start_tok = new Token(0.0, 0.0, NULL, NULL, NULL);
active_toks_[0].toks = start_tok;
toks_.Insert(start_state, start_tok);
num_toks_++;
ProcessNonemitting(config_.beam);
}
// Returns true if any kind of traceback is available (not necessarily from
// a final state). It should only very rarely return false; this indicates
// an unusual search error.
template <typename FST, typename Token>
bool LatticeFasterDecoderTpl<FST, Token>::Decode(DecodableInterface *decodable) {
InitDecoding();
// We use 1-based indexing for frames in this decoder (if you view it in
// terms of features), but note that the decodable object uses zero-based
// numbering, which we have to correct for when we call it.
while (!decodable->IsLastFrame(NumFramesDecoded() - 1)) {
if (NumFramesDecoded() % config_.prune_interval == 0)
PruneActiveTokens(config_.lattice_beam * config_.prune_scale);
BaseFloat cost_cutoff = ProcessEmitting(decodable);
ProcessNonemitting(cost_cutoff);
}
FinalizeDecoding();
// Returns true if we have any kind of traceback available (not necessarily
// to the end state; query ReachedFinal() for that).
return !active_toks_.empty() && active_toks_.back().toks != NULL;
}
// Outputs an FST corresponding to the single best path through the lattice.
template <typename FST, typename Token>
bool LatticeFasterDecoderTpl<FST, Token>::GetBestPath(Lattice *olat,
bool use_final_probs) const {
Lattice raw_lat;
GetRawLattice(&raw_lat, use_final_probs);
ShortestPath(raw_lat, olat);
return (olat->NumStates() != 0);
}
// Outputs an FST corresponding to the raw, state-level lattice
template <typename FST, typename Token>
bool LatticeFasterDecoderTpl<FST, Token>::GetRawLattice(
Lattice *ofst,
bool use_final_probs) const {
typedef LatticeArc Arc;
typedef Arc::StateId StateId;
typedef Arc::Weight Weight;
typedef Arc::Label Label;
// Note: you can't use the old interface (Decode()) if you want to
// get the lattice with use_final_probs = false. You'd have to do
// InitDecoding() and then AdvanceDecoding().
if (decoding_finalized_ && !use_final_probs)
KALDI_ERR << "You cannot call FinalizeDecoding() and then call "
<< "GetRawLattice() with use_final_probs == false";
unordered_map<Token*, BaseFloat> final_costs_local;
const unordered_map<Token*, BaseFloat> &final_costs =
(decoding_finalized_ ? final_costs_ : final_costs_local);
if (!decoding_finalized_ && use_final_probs)
ComputeFinalCosts(&final_costs_local, NULL, NULL);
ofst->DeleteStates();
// num-frames plus one (since frames are one-based, and we have
// an extra frame for the start-state).
int32 num_frames = active_toks_.size() - 1;
KALDI_ASSERT(num_frames > 0);
const int32 bucket_count = num_toks_/2 + 3;
unordered_map<Token*, StateId> tok_map(bucket_count);
// First create all states.
std::vector<Token*> token_list;
for (int32 f = 0; f <= num_frames; f++) {
if (active_toks_[f].toks == NULL) {
KALDI_WARN << "GetRawLattice: no tokens active on frame " << f
<< ": not producing lattice.\n";
return false;
}
TopSortTokens(active_toks_[f].toks, &token_list);
for (size_t i = 0; i < token_list.size(); i++)
if (token_list[i] != NULL)
tok_map[token_list[i]] = ofst->AddState();
}
// The next statement sets the start state of the output FST. Because we
// topologically sorted the tokens, state zero must be the start-state.
ofst->SetStart(0);
KALDI_VLOG(4) << "init:" << num_toks_/2 + 3 << " buckets:"
<< tok_map.bucket_count() << " load:" << tok_map.load_factor()
<< " max:" << tok_map.max_load_factor();
// Now create all arcs.
for (int32 f = 0; f <= num_frames; f++) {
for (Token *tok = active_toks_[f].toks; tok != NULL; tok = tok->next) {
StateId cur_state = tok_map[tok];
for (ForwardLinkT *l = tok->links;
l != NULL;
l = l->next) {
typename unordered_map<Token*, StateId>::const_iterator
iter = tok_map.find(l->next_tok);
StateId nextstate = iter->second;
KALDI_ASSERT(iter != tok_map.end());
BaseFloat cost_offset = 0.0;
if (l->ilabel != 0) { // emitting..
KALDI_ASSERT(f >= 0 && f < cost_offsets_.size());
cost_offset = cost_offsets_[f];
}
Arc arc(l->ilabel, l->olabel,
Weight(l->graph_cost, l->acoustic_cost - cost_offset),
nextstate);
ofst->AddArc(cur_state, arc);
}
if (f == num_frames) {
if (use_final_probs && !final_costs.empty()) {
typename unordered_map<Token*, BaseFloat>::const_iterator
iter = final_costs.find(tok);
if (iter != final_costs.end())
ofst->SetFinal(cur_state, LatticeWeight(iter->second, 0));
} else {
ofst->SetFinal(cur_state, LatticeWeight::One());
}
}
}
}
return (ofst->NumStates() > 0);
}
// This function is now deprecated, since now we do determinization from outside
// the LatticeFasterDecoder class. Outputs an FST corresponding to the
// lattice-determinized lattice (one path per word sequence).
template <typename FST, typename Token>
bool LatticeFasterDecoderTpl<FST, Token>::GetLattice(CompactLattice *ofst,
bool use_final_probs) const {
Lattice raw_fst;
GetRawLattice(&raw_fst, use_final_probs);
Invert(&raw_fst); // make it so word labels are on the input.
// (in phase where we get backward-costs).
fst::ILabelCompare<LatticeArc> ilabel_comp;
ArcSort(&raw_fst, ilabel_comp); // sort on ilabel; makes
// lattice-determinization more efficient.
fst::DeterminizeLatticePrunedOptions lat_opts;
lat_opts.max_mem = config_.det_opts.max_mem;
DeterminizeLatticePruned(raw_fst, config_.lattice_beam, ofst, lat_opts);
raw_fst.DeleteStates(); // Free memory-- raw_fst no longer needed.
Connect(ofst); // Remove unreachable states... there might be
// a small number of these, in some cases.
// Note: if something went wrong and the raw lattice was empty,
// we should still get to this point in the code without warnings or failures.
return (ofst->NumStates() != 0);
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PossiblyResizeHash(size_t num_toks) {
size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks)
* config_.hash_ratio);
if (new_sz > toks_.Size()) {
toks_.SetSize(new_sz);
}
}
/*
A note on the definition of extra_cost.
extra_cost is used in pruning tokens, to save memory.
Define the 'forward cost' of a token as zero for any token on the frame
we're currently decoding; and for other frames, as the shortest-path cost
between that token and a token on the frame we're currently decoding.
(by "currently decoding" I mean the most recently processed frame).
Then define the extra_cost of a token (always >= 0) as the forward-cost of
the token minus the smallest forward-cost of any token on the same frame.
We can use the extra_cost to accurately prune away tokens that we know will
never appear in the lattice. If the extra_cost is greater than the desired
lattice beam, the token would provably never appear in the lattice, so we can
prune away the token.
The advantage of storing the extra_cost rather than the forward-cost, is that
it is less costly to keep the extra_cost up-to-date when we process new frames.
When we process a new frame, *all* the previous frames' forward-costs would change;
but in general the extra_cost will change only for a finite number of frames.
(Actually we don't update all the extra_costs every time we update a frame; we
only do it every 'config_.prune_interval' frames).
*/
// FindOrAddToken either locates a token in hash of toks_,
// or if necessary inserts a new, empty token (i.e. with no forward links)
// for the current frame. [note: it's inserted if necessary into hash toks_
// and also into the singly linked list of tokens active on this frame
// (whose head is at active_toks_[frame]).
template <typename FST, typename Token>
inline typename LatticeFasterDecoderTpl<FST, Token>::Elem*
LatticeFasterDecoderTpl<FST, Token>::FindOrAddToken(
StateId state, int32 frame_plus_one, BaseFloat tot_cost,
Token *backpointer, bool *changed) {
// Returns the Token pointer. Sets "changed" (if non-NULL) to true
// if the token was newly created or the cost changed.
KALDI_ASSERT(frame_plus_one < active_toks_.size());
Token *&toks = active_toks_[frame_plus_one].toks;
Elem *e_found = toks_.Insert(state, NULL);
if (e_found->val == NULL) { // no such token presently.
const BaseFloat extra_cost = 0.0;
// tokens on the currently final frame have zero extra_cost
// as any of them could end up
// on the winning path.
Token *new_tok = new Token (tot_cost, extra_cost, NULL, toks, backpointer);
// NULL: no forward links yet
toks = new_tok;
num_toks_++;
e_found->val = new_tok;
if (changed) *changed = true;
return e_found;
} else {
Token *tok = e_found->val; // There is an existing Token for this state.
if (tok->tot_cost > tot_cost) { // replace old token
tok->tot_cost = tot_cost;
// SetBackpointer() just does tok->backpointer = backpointer in
// the case where Token == BackpointerToken, else nothing.
tok->SetBackpointer(backpointer);
// we don't allocate a new token, the old stays linked in active_toks_
// we only replace the tot_cost
// in the current frame, there are no forward links (and no extra_cost)
// only in ProcessNonemitting we have to delete forward links
// in case we visit a state for the second time
// those forward links, that lead to this replaced token before:
// they remain and will hopefully be pruned later (PruneForwardLinks...)
if (changed) *changed = true;
} else {
if (changed) *changed = false;
}
return e_found;
}
}
// prunes outgoing links for all tokens in active_toks_[frame]
// it's called by PruneActiveTokens
// all links, that have link_extra_cost > lattice_beam are pruned
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PruneForwardLinks(
int32 frame_plus_one, bool *extra_costs_changed,
bool *links_pruned, BaseFloat delta) {
// delta is the amount by which the extra_costs must change
// If delta is larger, we'll tend to go back less far
// toward the beginning of the file.
// extra_costs_changed is set to true if extra_cost was changed for any token
// links_pruned is set to true if any link in any token was pruned
*extra_costs_changed = false;
*links_pruned = false;
KALDI_ASSERT(frame_plus_one >= 0 && frame_plus_one < active_toks_.size());
if (active_toks_[frame_plus_one].toks == NULL) { // empty list; should not happen.
if (!warned_) {
KALDI_WARN << "No tokens alive [doing pruning].. warning first "
"time only for each utterance\n";
warned_ = true;
}
}
// We have to iterate until there is no more change, because the links
// are not guaranteed to be in topological order.
bool changed = true; // difference new minus old extra cost >= delta ?
while (changed) {
changed = false;
for (Token *tok = active_toks_[frame_plus_one].toks;
tok != NULL; tok = tok->next) {
ForwardLinkT *link, *prev_link = NULL;
// will recompute tok_extra_cost for tok.
BaseFloat tok_extra_cost = std::numeric_limits<BaseFloat>::infinity();
// tok_extra_cost is the best (min) of link_extra_cost of outgoing links
for (link = tok->links; link != NULL; ) {
// See if we need to excise this link...
Token *next_tok = link->next_tok;
BaseFloat link_extra_cost = next_tok->extra_cost +
((tok->tot_cost + link->acoustic_cost + link->graph_cost)
- next_tok->tot_cost); // difference in brackets is >= 0
// link_exta_cost is the difference in score between the best paths
// through link source state and through link destination state
KALDI_ASSERT(link_extra_cost == link_extra_cost); // check for NaN
if (link_extra_cost > config_.lattice_beam) { // excise link
ForwardLinkT *next_link = link->next;
if (prev_link != NULL) prev_link->next = next_link;
else tok->links = next_link;
delete link;
link = next_link; // advance link but leave prev_link the same.
*links_pruned = true;
} else { // keep the link and update the tok_extra_cost if needed.
if (link_extra_cost < 0.0) { // this is just a precaution.
if (link_extra_cost < -0.01)
KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
link_extra_cost = 0.0;
}
if (link_extra_cost < tok_extra_cost)
tok_extra_cost = link_extra_cost;
prev_link = link; // move to next link
link = link->next;
}
} // for all outgoing links
if (fabs(tok_extra_cost - tok->extra_cost) > delta)
changed = true; // difference new minus old is bigger than delta
tok->extra_cost = tok_extra_cost;
// will be +infinity or <= lattice_beam_.
// infinity indicates, that no forward link survived pruning
} // for all Token on active_toks_[frame]
if (changed) *extra_costs_changed = true;
// Note: it's theoretically possible that aggressive compiler
// optimizations could cause an infinite loop here for small delta and
// high-dynamic-range scores.
} // while changed
}
// PruneForwardLinksFinal is a version of PruneForwardLinks that we call
// on the final frame. If there are final tokens active, it uses
// the final-probs for pruning, otherwise it treats all tokens as final.
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PruneForwardLinksFinal() {
KALDI_ASSERT(!active_toks_.empty());
int32 frame_plus_one = active_toks_.size() - 1;
if (active_toks_[frame_plus_one].toks == NULL) // empty list; should not happen.
KALDI_WARN << "No tokens alive at end of file";
typedef typename unordered_map<Token*, BaseFloat>::const_iterator IterType;
ComputeFinalCosts(&final_costs_, &final_relative_cost_, &final_best_cost_);
decoding_finalized_ = true;
// We call DeleteElems() as a nicety, not because it's really necessary;
// otherwise there would be a time, after calling PruneTokensForFrame() on the
// final frame, when toks_.GetList() or toks_.Clear() would contain pointers
// to nonexistent tokens.
DeleteElems(toks_.Clear());
// Now go through tokens on this frame, pruning forward links... may have to
// iterate a few times until there is no more change, because the list is not
// in topological order. This is a modified version of the code in
// PruneForwardLinks, but here we also take account of the final-probs.
bool changed = true;
BaseFloat delta = 1.0e-05;
while (changed) {
changed = false;
for (Token *tok = active_toks_[frame_plus_one].toks;
tok != NULL; tok = tok->next) {
ForwardLinkT *link, *prev_link = NULL;
// will recompute tok_extra_cost. It has a term in it that corresponds
// to the "final-prob", so instead of initializing tok_extra_cost to infinity
// below we set it to the difference between the (score+final_prob) of this token,
// and the best such (score+final_prob).
BaseFloat final_cost;
if (final_costs_.empty()) {
final_cost = 0.0;
} else {
IterType iter = final_costs_.find(tok);
if (iter != final_costs_.end())
final_cost = iter->second;
else
final_cost = std::numeric_limits<BaseFloat>::infinity();
}
BaseFloat tok_extra_cost = tok->tot_cost + final_cost - final_best_cost_;
// tok_extra_cost will be a "min" over either directly being final, or
// being indirectly final through other links, and the loop below may
// decrease its value:
for (link = tok->links; link != NULL; ) {
// See if we need to excise this link...
Token *next_tok = link->next_tok;
BaseFloat link_extra_cost = next_tok->extra_cost +
((tok->tot_cost + link->acoustic_cost + link->graph_cost)
- next_tok->tot_cost);
if (link_extra_cost > config_.lattice_beam) { // excise link
ForwardLinkT *next_link = link->next;
if (prev_link != NULL) prev_link->next = next_link;
else tok->links = next_link;
delete link;
link = next_link; // advance link but leave prev_link the same.
} else { // keep the link and update the tok_extra_cost if needed.
if (link_extra_cost < 0.0) { // this is just a precaution.
if (link_extra_cost < -0.01)
KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
link_extra_cost = 0.0;
}
if (link_extra_cost < tok_extra_cost)
tok_extra_cost = link_extra_cost;
prev_link = link;
link = link->next;
}
}
// prune away tokens worse than lattice_beam above best path. This step
// was not necessary in the non-final case because then, this case
// showed up as having no forward links. Here, the tok_extra_cost has
// an extra component relating to the final-prob.
if (tok_extra_cost > config_.lattice_beam)
tok_extra_cost = std::numeric_limits<BaseFloat>::infinity();
// to be pruned in PruneTokensForFrame
if (!ApproxEqual(tok->extra_cost, tok_extra_cost, delta))
changed = true;
tok->extra_cost = tok_extra_cost; // will be +infinity or <= lattice_beam_.
}
} // while changed
}
template <typename FST, typename Token>
BaseFloat LatticeFasterDecoderTpl<FST, Token>::FinalRelativeCost() const {
if (!decoding_finalized_) {
BaseFloat relative_cost;
ComputeFinalCosts(NULL, &relative_cost, NULL);
return relative_cost;
} else {
// we're not allowed to call that function if FinalizeDecoding() has
// been called; return a cached value.
return final_relative_cost_;
}
}
// Prune away any tokens on this frame that have no forward links.
// [we don't do this in PruneForwardLinks because it would give us
// a problem with dangling pointers].
// It's called by PruneActiveTokens if any forward links have been pruned
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PruneTokensForFrame(int32 frame_plus_one) {
KALDI_ASSERT(frame_plus_one >= 0 && frame_plus_one < active_toks_.size());
Token *&toks = active_toks_[frame_plus_one].toks;
if (toks == NULL)
KALDI_WARN << "No tokens alive [doing pruning]";
Token *tok, *next_tok, *prev_tok = NULL;
for (tok = toks; tok != NULL; tok = next_tok) {
next_tok = tok->next;
if (tok->extra_cost == std::numeric_limits<BaseFloat>::infinity()) {
// token is unreachable from end of graph; (no forward links survived)
// excise tok from list and delete tok.
if (prev_tok != NULL) prev_tok->next = tok->next;
else toks = tok->next;
delete tok;
num_toks_--;
} else { // fetch next Token
prev_tok = tok;
}
}
}
// Go backwards through still-alive tokens, pruning them, starting not from
// the current frame (where we want to keep all tokens) but from the frame before
// that. We go backwards through the frames and stop when we reach a point
// where the delta-costs are not changing (and the delta controls when we consider
// a cost to have "not changed").
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::PruneActiveTokens(BaseFloat delta) {
int32 cur_frame_plus_one = NumFramesDecoded();
int32 num_toks_begin = num_toks_;
// The index "f" below represents a "frame plus one", i.e. you'd have to subtract
// one to get the corresponding index for the decodable object.
for (int32 f = cur_frame_plus_one - 1; f >= 0; f--) {
// Reason why we need to prune forward links in this situation:
// (1) we have never pruned them (new TokenList)
// (2) we have not yet pruned the forward links to the next f,
// after any of those tokens have changed their extra_cost.
if (active_toks_[f].must_prune_forward_links) {
bool extra_costs_changed = false, links_pruned = false;
PruneForwardLinks(f, &extra_costs_changed, &links_pruned, delta);
if (extra_costs_changed && f > 0) // any token has changed extra_cost
active_toks_[f-1].must_prune_forward_links = true;
if (links_pruned) // any link was pruned
active_toks_[f].must_prune_tokens = true;
active_toks_[f].must_prune_forward_links = false; // job done
}
if (f+1 < cur_frame_plus_one && // except for last f (no forward links)
active_toks_[f+1].must_prune_tokens) {
PruneTokensForFrame(f+1);
active_toks_[f+1].must_prune_tokens = false;
}
}
KALDI_VLOG(4) << "PruneActiveTokens: pruned tokens from " << num_toks_begin
<< " to " << num_toks_;
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::ComputeFinalCosts(
unordered_map<Token*, BaseFloat> *final_costs,
BaseFloat *final_relative_cost,
BaseFloat *final_best_cost) const {
KALDI_ASSERT(!decoding_finalized_);
if (final_costs != NULL)
final_costs->clear();
const Elem *final_toks = toks_.GetList();
BaseFloat infinity = std::numeric_limits<BaseFloat>::infinity();
BaseFloat best_cost = infinity,
best_cost_with_final = infinity;
while (final_toks != NULL) {
StateId state = final_toks->key;
Token *tok = final_toks->val;
const Elem *next = final_toks->tail;
BaseFloat final_cost = fst_->Final(state).Value();
BaseFloat cost = tok->tot_cost,
cost_with_final = cost + final_cost;
best_cost = std::min(cost, best_cost);
best_cost_with_final = std::min(cost_with_final, best_cost_with_final);
if (final_costs != NULL && final_cost != infinity)
(*final_costs)[tok] = final_cost;
final_toks = next;
}
if (final_relative_cost != NULL) {
if (best_cost == infinity && best_cost_with_final == infinity) {
// Likely this will only happen if there are no tokens surviving.
// This seems the least bad way to handle it.
*final_relative_cost = infinity;
} else {
*final_relative_cost = best_cost_with_final - best_cost;
}
}
if (final_best_cost != NULL) {
if (best_cost_with_final != infinity) { // final-state exists.
*final_best_cost = best_cost_with_final;
} else { // no final-state exists.
*final_best_cost = best_cost;
}
}
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::AdvanceDecoding(DecodableInterface *decodable,
int32 max_num_frames) {
if (std::is_same<FST, fst::Fst<fst::StdArc> >::value) {
// if the type 'FST' is the FST base-class, then see if the FST type of fst_
// is actually VectorFst or ConstFst. If so, call the AdvanceDecoding()
// function after casting *this to the more specific type.
if (fst_->Type() == "const") {
LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, Token> *this_cast =
reinterpret_cast<LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, Token>* >(this);
this_cast->AdvanceDecoding(decodable, max_num_frames);
return;
} else if (fst_->Type() == "vector") {
LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, Token> *this_cast =
reinterpret_cast<LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, Token>* >(this);
this_cast->AdvanceDecoding(decodable, max_num_frames);
return;
}
}
KALDI_ASSERT(!active_toks_.empty() && !decoding_finalized_ &&
"You must call InitDecoding() before AdvanceDecoding");
int32 num_frames_ready = decodable->NumFramesReady();
// num_frames_ready must be >= num_frames_decoded, or else
// the number of frames ready must have decreased (which doesn't
// make sense) or the decodable object changed between calls
// (which isn't allowed).
KALDI_ASSERT(num_frames_ready >= NumFramesDecoded());
int32 target_frames_decoded = num_frames_ready;
if (max_num_frames >= 0)
target_frames_decoded = std::min(target_frames_decoded,
NumFramesDecoded() + max_num_frames);
while (NumFramesDecoded() < target_frames_decoded) {
if (NumFramesDecoded() % config_.prune_interval == 0) {
PruneActiveTokens(config_.lattice_beam * config_.prune_scale);
}
BaseFloat cost_cutoff = ProcessEmitting(decodable);
ProcessNonemitting(cost_cutoff);
}
}
// FinalizeDecoding() is a version of PruneActiveTokens that we call
// (optionally) on the final frame. Takes into account the final-prob of
// tokens. This function used to be called PruneActiveTokensFinal().
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::FinalizeDecoding() {
int32 final_frame_plus_one = NumFramesDecoded();
int32 num_toks_begin = num_toks_;
// PruneForwardLinksFinal() prunes final frame (with final-probs), and
// sets decoding_finalized_.
PruneForwardLinksFinal();
for (int32 f = final_frame_plus_one - 1; f >= 0; f--) {
bool b1, b2; // values not used.
BaseFloat dontcare = 0.0; // delta of zero means we must always update
PruneForwardLinks(f, &b1, &b2, dontcare);
PruneTokensForFrame(f + 1);
}
PruneTokensForFrame(0);
KALDI_VLOG(4) << "pruned tokens from " << num_toks_begin
<< " to " << num_toks_;
}
/// Gets the weight cutoff. Also counts the active tokens.
template <typename FST, typename Token>
BaseFloat LatticeFasterDecoderTpl<FST, Token>::GetCutoff(Elem *list_head, size_t *tok_count,
BaseFloat *adaptive_beam, Elem **best_elem) {
BaseFloat best_weight = std::numeric_limits<BaseFloat>::infinity();
// positive == high cost == bad.
size_t count = 0;
if (config_.max_active == std::numeric_limits<int32>::max() &&
config_.min_active == 0) {
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
BaseFloat w = static_cast<BaseFloat>(e->val->tot_cost);
if (w < best_weight) {
best_weight = w;
if (best_elem) *best_elem = e;
}
}
if (tok_count != NULL) *tok_count = count;
if (adaptive_beam != NULL) *adaptive_beam = config_.beam;
return best_weight + config_.beam;
} else {
tmp_array_.clear();
for (Elem *e = list_head; e != NULL; e = e->tail, count++) {
BaseFloat w = e->val->tot_cost;
tmp_array_.push_back(w);
if (w < best_weight) {
best_weight = w;
if (best_elem) *best_elem = e;
}
}
if (tok_count != NULL) *tok_count = count;
BaseFloat beam_cutoff = best_weight + config_.beam,
min_active_cutoff = std::numeric_limits<BaseFloat>::infinity(),
max_active_cutoff = std::numeric_limits<BaseFloat>::infinity();
KALDI_VLOG(6) << "Number of tokens active on frame " << NumFramesDecoded()
<< " is " << tmp_array_.size();
if (tmp_array_.size() > static_cast<size_t>(config_.max_active)) {
std::nth_element(tmp_array_.begin(),
tmp_array_.begin() + config_.max_active,
tmp_array_.end());
max_active_cutoff = tmp_array_[config_.max_active];
}
if (max_active_cutoff < beam_cutoff) { // max_active is tighter than beam.
if (adaptive_beam)
*adaptive_beam = max_active_cutoff - best_weight + config_.beam_delta;
return max_active_cutoff;
}
if (tmp_array_.size() > static_cast<size_t>(config_.min_active)) {
if (config_.min_active == 0) min_active_cutoff = best_weight;
else {
std::nth_element(tmp_array_.begin(),
tmp_array_.begin() + config_.min_active,
tmp_array_.size() > static_cast<size_t>(config_.max_active) ?
tmp_array_.begin() + config_.max_active :
tmp_array_.end());
min_active_cutoff = tmp_array_[config_.min_active];
}
}
if (min_active_cutoff > beam_cutoff) { // min_active is looser than beam.
if (adaptive_beam)
*adaptive_beam = min_active_cutoff - best_weight + config_.beam_delta;
return min_active_cutoff;
} else {
*adaptive_beam = config_.beam;
return beam_cutoff;
}
}
}
template <typename FST, typename Token>
BaseFloat LatticeFasterDecoderTpl<FST, Token>::ProcessEmitting(
DecodableInterface *decodable) {
KALDI_ASSERT(active_toks_.size() > 0);
int32 frame = active_toks_.size() - 1; // frame is the frame-index
// (zero-based) used to get likelihoods
// from the decodable object.
active_toks_.resize(active_toks_.size() + 1);
Elem *final_toks = toks_.Clear(); // analogous to swapping prev_toks_ / cur_toks_
// in simple-decoder.h. Removes the Elems from
// being indexed in the hash in toks_.
Elem *best_elem = NULL;
BaseFloat adaptive_beam;
size_t tok_cnt;
BaseFloat cur_cutoff = GetCutoff(final_toks, &tok_cnt, &adaptive_beam, &best_elem);
KALDI_VLOG(6) << "Adaptive beam on frame " << NumFramesDecoded() << " is "
<< adaptive_beam;
PossiblyResizeHash(tok_cnt); // This makes sure the hash is always big enough.
BaseFloat next_cutoff = std::numeric_limits<BaseFloat>::infinity();
// pruning "online" before having seen all tokens
BaseFloat cost_offset = 0.0; // Used to keep probabilities in a good
// dynamic range.
// First process the best token to get a hopefully
// reasonably tight bound on the next cutoff. The only
// products of the next block are "next_cutoff" and "cost_offset".
if (best_elem) {
StateId state = best_elem->key;
Token *tok = best_elem->val;
cost_offset = - tok->tot_cost;
for (fst::ArcIterator<FST> aiter(*fst_, state);
!aiter.Done();
aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel != 0) { // propagate..
BaseFloat new_weight = arc.weight.Value() + cost_offset -
decodable->LogLikelihood(frame, arc.ilabel) + tok->tot_cost;
if (new_weight + adaptive_beam < next_cutoff)
next_cutoff = new_weight + adaptive_beam;
}
}
}
// Store the offset on the acoustic likelihoods that we're applying.
// Could just do cost_offsets_.push_back(cost_offset), but we
// do it this way as it's more robust to future code changes.
cost_offsets_.resize(frame + 1, 0.0);
cost_offsets_[frame] = cost_offset;
// the tokens are now owned here, in final_toks, and the hash is empty.
// 'owned' is a complex thing here; the point is we need to call DeleteElem
// on each elem 'e' to let toks_ know we're done with them.
for (Elem *e = final_toks, *e_tail; e != NULL; e = e_tail) {
// loop this way because we delete "e" as we go.
StateId state = e->key;
Token *tok = e->val;
if (tok->tot_cost <= cur_cutoff) {
for (fst::ArcIterator<FST> aiter(*fst_, state);
!aiter.Done();
aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel != 0) { // propagate..
BaseFloat ac_cost = cost_offset -
decodable->LogLikelihood(frame, arc.ilabel),
graph_cost = arc.weight.Value(),
cur_cost = tok->tot_cost,
tot_cost = cur_cost + ac_cost + graph_cost;
if (tot_cost > next_cutoff) continue;
else if (tot_cost + adaptive_beam < next_cutoff)
next_cutoff = tot_cost + adaptive_beam; // prune by best current token
// Note: the frame indexes into active_toks_ are one-based,
// hence the + 1.
Elem *e_next = FindOrAddToken(arc.nextstate,
frame + 1, tot_cost, tok, NULL);
// NULL: no change indicator needed
// Add ForwardLink from tok to next_tok (put on head of list tok->links)
tok->links = new ForwardLinkT(e_next->val, arc.ilabel, arc.olabel,
graph_cost, ac_cost, tok->links);
}
} // for all arcs
}
e_tail = e->tail;
toks_.Delete(e); // delete Elem
}
return next_cutoff;
}
// static inline
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::DeleteForwardLinks(Token *tok) {
ForwardLinkT *l = tok->links, *m;
while (l != NULL) {
m = l->next;
delete l;
l = m;
}
tok->links = NULL;
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::ProcessNonemitting(BaseFloat cutoff) {
KALDI_ASSERT(!active_toks_.empty());
int32 frame = static_cast<int32>(active_toks_.size()) - 2;
// Note: "frame" is the time-index we just processed, or -1 if
// we are processing the nonemitting transitions before the
// first frame (called from InitDecoding()).
// Processes nonemitting arcs for one frame. Propagates within toks_.
// Note-- this queue structure is not very optimal as
// it may cause us to process states unnecessarily (e.g. more than once),
// but in the baseline code, turning this vector into a set to fix this
// problem did not improve overall speed.
KALDI_ASSERT(queue_.empty());
if (toks_.GetList() == NULL) {
if (!warned_) {
KALDI_WARN << "Error, no surviving tokens: frame is " << frame;
warned_ = true;
}
}
for (const Elem *e = toks_.GetList(); e != NULL; e = e->tail) {
StateId state = e->key;
if (fst_->NumInputEpsilons(state) != 0)
queue_.push_back(e);
}
while (!queue_.empty()) {
const Elem *e = queue_.back();
queue_.pop_back();
StateId state = e->key;
Token *tok = e->val; // would segfault if e is a NULL pointer but this can't happen.
BaseFloat cur_cost = tok->tot_cost;
if (cur_cost > cutoff) // Don't bother processing successors.
continue;
// If "tok" has any existing forward links, delete them,
// because we're about to regenerate them. This is a kind
// of non-optimality (remember, this is the simple decoder),
// but since most states are emitting it's not a huge issue.
DeleteForwardLinks(tok); // necessary when re-visiting
tok->links = NULL;
for (fst::ArcIterator<FST> aiter(*fst_, state);
!aiter.Done();
aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel == 0) { // propagate nonemitting only...
BaseFloat graph_cost = arc.weight.Value(),
tot_cost = cur_cost + graph_cost;
if (tot_cost < cutoff) {
bool changed;
Elem *e_new = FindOrAddToken(arc.nextstate, frame + 1, tot_cost,
tok, &changed);
tok->links = new ForwardLinkT(e_new->val, 0, arc.olabel,
graph_cost, 0, tok->links);
// "changed" tells us whether the new token has a different
// cost from before, or is new [if so, add into queue].
if (changed && fst_->NumInputEpsilons(arc.nextstate) != 0)
queue_.push_back(e_new);
}
}
} // for all arcs
} // while queue not empty
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::DeleteElems(Elem *list) {
for (Elem *e = list, *e_tail; e != NULL; e = e_tail) {
e_tail = e->tail;
toks_.Delete(e);
}
}
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::ClearActiveTokens() { // a cleanup routine, at utt end/begin
for (size_t i = 0; i < active_toks_.size(); i++) {
// Delete all tokens alive on this frame, and any forward
// links they may have.
for (Token *tok = active_toks_[i].toks; tok != NULL; ) {
DeleteForwardLinks(tok);
Token *next_tok = tok->next;
delete tok;
num_toks_--;
tok = next_tok;
}
}
active_toks_.clear();
KALDI_ASSERT(num_toks_ == 0);
}
// static
template <typename FST, typename Token>
void LatticeFasterDecoderTpl<FST, Token>::TopSortTokens(
Token *tok_list, std::vector<Token*> *topsorted_list) {
unordered_map<Token*, int32> token2pos;
typedef typename unordered_map<Token*, int32>::iterator IterType;
int32 num_toks = 0;
for (Token *tok = tok_list; tok != NULL; tok = tok->next)
num_toks++;
int32 cur_pos = 0;
// We assign the tokens numbers num_toks - 1, ... , 2, 1, 0.
// This is likely to be in closer to topological order than
// if we had given them ascending order, because of the way
// new tokens are put at the front of the list.
for (Token *tok = tok_list; tok != NULL; tok = tok->next)
token2pos[tok] = num_toks - ++cur_pos;
unordered_set<Token*> reprocess;
for (IterType iter = token2pos.begin(); iter != token2pos.end(); ++iter) {
Token *tok = iter->first;
int32 pos = iter->second;
for (ForwardLinkT *link = tok->links; link != NULL; link = link->next) {
if (link->ilabel == 0) {
// We only need to consider epsilon links, since non-epsilon links
// transition between frames and this function only needs to sort a list
// of tokens from a single frame.
IterType following_iter = token2pos.find(link->next_tok);
if (following_iter != token2pos.end()) { // another token on this frame,
// so must consider it.
int32 next_pos = following_iter->second;
if (next_pos < pos) { // reassign the position of the next Token.
following_iter->second = cur_pos++;
reprocess.insert(link->next_tok);
}
}
}
}
// In case we had previously assigned this token to be reprocessed, we can
// erase it from that set because it's "happy now" (we just processed it).
reprocess.erase(tok);
}
size_t max_loop = 1000000, loop_count; // max_loop is to detect epsilon cycles.
for (loop_count = 0;
!reprocess.empty() && loop_count < max_loop; ++loop_count) {
std::vector<Token*> reprocess_vec;
for (typename unordered_set<Token*>::iterator iter = reprocess.begin();
iter != reprocess.end(); ++iter)
reprocess_vec.push_back(*iter);
reprocess.clear();
for (typename std::vector<Token*>::iterator iter = reprocess_vec.begin();
iter != reprocess_vec.end(); ++iter) {
Token *tok = *iter;
int32 pos = token2pos[tok];
// Repeat the processing we did above (for comments, see above).
for (ForwardLinkT *link = tok->links; link != NULL; link = link->next) {
if (link->ilabel == 0) {
IterType following_iter = token2pos.find(link->next_tok);
if (following_iter != token2pos.end()) {
int32 next_pos = following_iter->second;
if (next_pos < pos) {
following_iter->second = cur_pos++;
reprocess.insert(link->next_tok);
}
}
}
}
}
}
KALDI_ASSERT(loop_count < max_loop && "Epsilon loops exist in your decoding "
"graph (this is not allowed!)");
topsorted_list->clear();
topsorted_list->resize(cur_pos, NULL); // create a list with NULLs in between.
for (IterType iter = token2pos.begin(); iter != token2pos.end(); ++iter)
(*topsorted_list)[iter->second] = iter->first;
}
// Instantiate the template for the combination of token types and FST types
// that we'll need.
template class LatticeFasterDecoderTpl<fst::Fst<fst::StdArc>, decoder::StdToken>;
template class LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, decoder::StdToken >;
template class LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, decoder::StdToken >;
template class LatticeFasterDecoderTpl<fst::GrammarFst, decoder::StdToken>;
template class LatticeFasterDecoderTpl<fst::Fst<fst::StdArc> , decoder::BackpointerToken>;
template class LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, decoder::BackpointerToken >;
template class LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, decoder::BackpointerToken >;
template class LatticeFasterDecoderTpl<fst::GrammarFst, decoder::BackpointerToken>;
} // end namespace kaldi.