examples.dox
18.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
// doc/examples.dox
// Copyright 2016 Fred Richardson Allen Guo
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
/**
\page examples Examples included with Kaldi
When you check out the Kaldi source tree (see \ref install), you will find many
sets of example scripts in the egs/ directory. This table summarizes some key
facts about some of those example scripts; however, it it not an exhaustive
list.
<table><tr>
<th>Name</th>
<th>BW</th>
<th>Lang</th>
<th>Train Domain</th>
<th>Train Hours</th>
<th>Train Speakers</th>
<th>License and Availability</th>
<th>Year Released</th>
<th>Speech Style</th>
<th>Test Domain</th>
<th>Kaldi Aprox Perf</th>
<th>Model Type</th>
<th>LM Data</th>
<th>Lexicon</th>
</tr>
<tr>
<!-- Name --> <td>AMI</td>
<!-- BW --> <td>16k</td>
<!-- Lang --> <td>English<br>(+non-native)</td>
<!-- Train Domain --> <td>Microphone: head-mike,<br>single and multiple<br>distance mikes</td>
<!-- Train Hours --> <td>100</td>
<!-- Train Speakers --> <td>123 M<br>66 F</td>
<!-- License/Availability --> <td>Free /<br>Download<br>http://groups.inf.ed.ac.uk/ami/corpus/</td>
<!-- Year Released --> <td>2014</td>
<!-- Speech Style --> <td>Meeting room</td>
<!-- Test Domain --> <td>Same as train<br>no overlap(?)</td>
<!-- Kaldi Aprox Perf --> <td>~25% WER head (T)DNN<br>~45% WER distant (B)LSTM</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>AMI + (opt) Fisher</td>
<!-- Lexicon --> <td>50K (CMU dict +<br>kaldi sources)</td>
</tr>
<tr>
<!-- Name --> <td>Aspire</td>
<!-- BW --> <td></td>
<!-- Lang --> <td>English</td>
<!-- Train Domain --> <td>Conversational microphone<br>developed on telephone</td>
<!-- Train Hours --> <td>see Fisher</td>
<!-- Train Speakers --> <td></td>
<!-- License/Availability --> <td></td>
<!-- Year Released --> <td>2015</td>
<!-- Speech Style --> <td></td>
<!-- Test Domain --> <td></td>
<!-- Kaldi Aprox Perf --> <td>30.8% WER (dev or eval?)</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td></td>
<!-- Lexicon --> <td></td>
</tr>
<tr>
<!-- Name --> <td>WSJ</td>
<!-- BW --> <td>16k</td>
<!-- Lang --> <td>English</td>
<!-- Train Domain --> <td>Clean close-mic<br>read speech</td>
<!-- Train Hours --> <td>80</td>
<!-- Train Speakers --> <td></td>
<!-- License/Availability --> <td>LDC<br>LDC93S6B (WSJ0) and LDC94S13B (WSJ1)</td>
<!-- Year Released --> <td>1993</td>
<!-- Speech Style --> <td>Read speech</td>
<!-- Test Domain --> <td>Same</td>
<!-- Kaldi Aprox Perf --> <td>6-7% WER</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>same as train</td>
<!-- Lexicon --> <td>20k (CMU dict)</td>
</tr>
<tr>
<!-- Name --> <td>RM</td>
<!-- BW --> <td></td>
<!-- Lang --> <td>English</td>
<!-- Train Domain --> <td>read transcript<br>limited vocab and grammar</td>
<!-- Train Hours --> <td></td>
<!-- Train Speakers --> <td></td>
<!-- License/Availability --> <td>LDC<br>LDC93S3A</td>
<!-- Year Released --> <td>1987-1989</td>
<!-- Speech Style --> <td>read speech</td>
<!-- Test Domain --> <td>same</td>
<!-- Kaldi Aprox Perf --> <td>1-2% WER</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>predefined grammar</td>
<!-- Lexicon --> <td><1K<br>RM dict</td>
</tr>
<tr>
<!-- Name --> <td>Timit</td>
<!-- BW --> <td>16k</td>
<!-- Lang --> <td>English</td>
<!-- Train Domain --> <td>read transcript<br>very limited grammar</td>
<!-- Train Hours --> <td></td>
<!-- Train Speakers --> <td>630</td>
<!-- License/Availability --> <td></td>
<!-- Year Released --> <td>1986</td>
<!-- Speech Style --> <td>read speech</td>
<!-- Test Domain --> <td>same</td>
<!-- Kaldi Aprox Perf --> <td>~30-40% PER</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>none</td>
<!-- Lexicon --> <td>~47 phones</td>
</tr>
<tr>
<!-- Name --> <td>fisher_english</td>
<!-- BW --> <td>8k</td>
<!-- Lang --> <td>English</td>
<!-- Train Domain --> <td>Telephone speech<br>Auto-transcribed<br>(errorful transcriptions)</td>
<!-- Train Hours --> <td>1,600</td>
<!-- Train Speakers --> <td>5203 M<br>7198 F</td>
<!-- License/Availability --> <td>LDC<br>speech: LDC2004S13, LDC2005S13<br>transcript: LDC2004T19, LDC2005T19</td>
<!-- Year Released --> <td>2004/2005</td>
<!-- Speech Style --> <td>CTS</td>
<!-- Test Domain --> <td>Fisher (may<br>overlap witb<br>train)</td>
<!-- Kaldi Aprox Perf --> <td>~22% WER (DNN)</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>LDC Fisher</td>
<!-- Lexicon --> <td>CMU dict<br>Size UNK</td>
</tr>
<tr>
<!-- Name --> <td>Switchboard 1</td>
<!-- BW --> <td>8k</td>
<!-- Lang --> <td>English</td>
<!-- Train Domain --> <td>CTS</td>
<!-- Train Hours --> <td>300</td>
<!-- Train Speakers --> <td></td>
<!-- License/Availability --> <td>LDC<br>Train: LDC97S62<br>Mississippi State transcriptions<br>Eval: LDC2002S09 and LDC2002T43</td>
<!-- Year Released --> <td>1993/1997/2000</td>
<!-- Speech Style --> <td>CTS</td>
<!-- Test Domain --> <td>CTS<br>eval2000 (hub5)</td>
<!-- Kaldi Aprox Perf --> <td>~10% WER (LSTM)</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>Mississippi Trans<br>+ (opt) Fisher</td>
<!-- Lexicon --> <td>30K (CMU dict)</td>
</tr>
<tr>
<!-- Name --> <td>Switchboard 1<br>+ Fisher</td>
<!-- BW --> <td>8k</td>
<!-- Lang --> <td>English</td>
<!-- Train Domain --> <td>CTS</td>
<!-- Train Hours --> <td>see above</td>
<!-- Train Speakers --> <td>see above</td>
<!-- License/Availability --> <td>see above</td>
<!-- Year Released --> <td>see above</td>
<!-- Speech Style --> <td>CTS</td>
<!-- Test Domain --> <td>eval2000<br>rt03</td>
<!-- Kaldi Aprox Perf --> <td>~12% eval2000<br>~19% rt03</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>see above</td>
<!-- Lexicon --> <td>see above</td>
</tr>
<tr>
<!-- Name --> <td>Callhome<br>Egyptian</td>
<!-- BW --> <td></td>
<!-- Lang --> <td>Egyptian<br>Colloquial<br>Arabic</td>
<!-- Train Domain --> <td>CTS</td>
<!-- Train Hours --> <td>120 conv</td>
<!-- Train Speakers --> <td></td>
<!-- License/Availability --> <td>LDC<br>Speech : LDC97S45<br>Transcripts : LDC97T19<br>Lexicon : LDC99L22</td>
<!-- Year Released --> <td>1997</td>
<!-- Speech Style --> <td>CTS</td>
<!-- Test Domain --> <td>hub5 arabic<br>LDC2002S22<br>LDC2002T39</td>
<!-- Kaldi Aprox Perf --> <td>50-60% WER</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>Train trans</td>
<!-- Lexicon --> <td>LDC dict</td>
</tr>
<tr>
<!-- Name --> <td>Corpus of<br>Spontaneous<br>Japanese</td>
<!-- BW --> <td></td>
<!-- Lang --> <td>Japanese</td>
<!-- Train Domain --> <td>Mixed style<br>Close-talking mic</td>
<!-- Train Hours --> <td>650 hours<br>(240 hr train)</td>
<!-- Train Speakers --> <td>>1,400</td>
<!-- License/Availability --> <td>Unclear how to get this<br>http://www.ninjal.ac.jp/english/products/csj/<br>http://pj.ninjal.ac.jp/corpus_center/csj/</td>
<!-- Year Released --> <td>2004</td>
<!-- Speech Style --> <td>Mixed</td>
<!-- Test Domain --> <td></td>
<!-- Kaldi Aprox Perf --> <td>9-10% WER</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>UNK</td>
<!-- Lexicon --> <td>UNK</td>
</tr>
<tr>
<!-- Name --> <td>Fisher Spanish<br>Callhome Spanish</td>
<!-- BW --> <td></td>
<!-- Lang --> <td>Caribbean<br>Spanish</td>
<!-- Train Domain --> <td>CTS</td>
<!-- Train Hours --> <td>Fisher: 163 hrs<br>Callhome: 60 hrs?<br>120 30min conv</td>
<!-- Train Speakers --> <td>Fisher: 136<br>Callhome:</td>
<!-- License/Availability --> <td>LDC<br>Fisher speech : LDC96S35<br>Fisher transcripts : LDC96T17<br>Callhome Speech : LDC96S35<br>Callhome Transcripts : LDC96T17</td>
<!-- Year Released --> <td>Fisher: 2010<br>Callhome: 1996</td>
<!-- Speech Style --> <td>CTS</td>
<!-- Test Domain --> <td>Kaldi subset<br>of Fisher</td>
<!-- Kaldi Aprox Perf --> <td>29-30% WER</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>Fisher trans</td>
<!-- Lexicon --> <td>LDC96L16</td>
</tr>
<tr>
<!-- Name --> <td>Gale Arabic<br>Phase 2</td>
<!-- BW --> <td>16K</td>
<!-- Lang --> <td>Arabic</td>
<!-- Train Domain --> <td>Broadcast<br>Conversational/Report</td>
<!-- Train Hours --> <td>320 train<br>9.3 test</td>
<!-- Train Speakers --> <td></td>
<!-- License/Availability --> <td>LDC2013S02 LDC2014S07<br>LDC2013S07 LDC2014T17<br>LDC2013T17<br>LDC2013T04</td>
<!-- Year Released --> <td>Collected<br>2006/2007</td>
<!-- Speech Style --> <td>Broadcast<br>Conversational<br>and Report</td>
<!-- Test Domain --> <td></td>
<!-- Kaldi Aprox Perf --> <td>Report: 13% WER (LSTM)<br>Conver: 28% WER (LSTM)<br>Comb: 24% WER (LSTM)</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>LDC2013T17<br>LDC2013T04<br>LDC2014T17</td>
<!-- Lexicon --> <td>http://alt.qcri.org/</td>
</tr>
<tr>
<!-- Name --> <td>Gale Mandarin</td>
<!-- BW --> <td>16K</td>
<!-- Lang --> <td>Mandarin<br>Chinese</td>
<!-- Train Domain --> <td>Broadcast</td>
<!-- Train Hours --> <td>126</td>
<!-- Train Speakers --> <td></td>
<!-- License/Availability --> <td>LDC2013S08 LDC2013T20</td>
<!-- Year Released --> <td>2006-2007</td>
<!-- Speech Style --> <td>Broadcast</td>
<!-- Test Domain --> <td>Same as train</td>
<!-- Kaldi Aprox Perf --> <td>17.5% WER [1]</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>LDC2013S08<br>LDC2013T20</td>
<!-- Lexicon --> <td>Same as HKUST below</td>
</tr>
<tr>
<!-- Name --> <td>hkust<br>EARS RT04F data<br>dev and train [2]</td>
<!-- BW --> <td>8K</td>
<!-- Lang --> <td>Mandarin<br>Chinese</td>
<!-- Train Domain --> <td>Telephone Conversational</td>
<!-- Train Hours --> <td>~145</td>
<!-- Train Speakers --> <td>~873</td>
<!-- License/Availability --> <td>LDC2005S15 LDC2005T32</td>
<!-- Year Released --> <td>2004</td>
<!-- Speech Style --> <td>Conversational</td>
<!-- Test Domain --> <td>Same as train</td>
<!-- Kaldi Aprox Perf --> <td>33.5% CER</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>Acoustic trans<br>(very little)</td>
<!-- Lexicon --> <td>Both Eng and Man.<br>CMU dict use for Eng<br>mdbg dict use for Man<br>http://www.mdbg.net</td>
</tr>
<tr>
<!-- Name --> <td>librispeech [3]</td>
<!-- BW --> <td>16K</td>
<!-- Lang --> <td>English</td>
<!-- Train Domain --> <td>Read transcription</td>
<!-- Train Hours --> <td>100 - 960<br>(460 </td>
<!-- Train Speakers --> <td>F: 125-1128<br>M: 126-1167</td>
<!-- License/Availability --> <td>http://www.openslr.org/12/</td>
<!-- Year Released --> <td>2015</td>
<!-- Speech Style --> <td>Read trans</td>
<!-- Test Domain --> <td>Librispeech<br></td>
<!-- Kaldi Aprox Perf --> <td>~5% </td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>Large (books)</td>
<!-- Lexicon --> <td>cmu (with sequitur)<br>G2P)</td>
</tr>
<tr>
<!-- Name --> <td>reverb</td>
<!-- BW --> <td></td>
<!-- Lang --> <td></td>
<!-- Train Domain --> <td></td>
<!-- Train Hours --> <td></td>
<!-- Train Speakers --> <td></td>
<!-- License/Availability --> <td></td>
<!-- Year Released --> <td></td>
<!-- Speech Style --> <td></td>
<!-- Test Domain --> <td></td>
<!-- Kaldi Aprox Perf --> <td></td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td></td>
<!-- Lexicon --> <td></td>
</tr>
<tr>
<!-- Name --> <td>sprakbanken</td>
<!-- BW --> <td></td>
<!-- Lang --> <td>Danish</td>
<!-- Train Domain --> <td>Read transcript?</td>
<!-- Train Hours --> <td>350</td>
<!-- Train Speakers --> <td></td>
<!-- License/Availability --> <td>Free download<br>http://www.nb.no/sprakbanken/#ticketsfrom?lang=en</td>
<!-- Year Released --> <td>2012</td>
<!-- Speech Style --> <td>Read/Dictation</td>
<!-- Test Domain --> <td>Same as train</td>
<!-- Kaldi Aprox Perf --> <td>14% WER</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>NST Provided</td>
<!-- Lexicon --> <td>NST Provided?</td>
</tr>
<tr>
<!-- Name --> <td>vystadial_en [4]</td>
<!-- BW --> <td>8Khz</td>
<!-- Lang --> <td>English</td>
<!-- Train Domain --> <td>Telephone, dialog system</td>
<!-- Train Hours --> <td>41</td>
<!-- Train Speakers --> <td>unk</td>
<!-- License/Availability --> <td>Free</td>
<!-- Year Released --> <td>2014</td>
<!-- Speech Style --> <td>Dialog sys</td>
<!-- Test Domain --> <td>Same as train</td>
<!-- Kaldi Aprox Perf --> <td>~11% WER (GMM/HMM)</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>Train trans</td>
<!-- Lexicon --> <td>CMU + 250</td>
</tr>
<tr>
<!-- Name --> <td>vystadial_cz [4]</td>
<!-- BW --> <td>8Khz</td>
<!-- Lang --> <td>Czech</td>
<!-- Train Domain --> <td>Telephone, dialog system</td>
<!-- Train Hours --> <td>15</td>
<!-- Train Speakers --> <td>unk</td>
<!-- License/Availability --> <td>Free</td>
<!-- Year Released --> <td>2014</td>
<!-- Speech Style --> <td>Dialog sys</td>
<!-- Test Domain --> <td>Same as train</td>
<!-- Kaldi Aprox Perf --> <td>~50% WER (GMM/HMM)</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>Train trans</td>
<!-- Lexicon --> <td>Rule derived</td>
</tr>
<tr>
<!-- Name --> <td>chime3</td>
<!-- BW --> <td>16Khz</td>
<!-- Lang --> <td>English</td>
<!-- Train Domain --> <td>Read trans, simulated<br>and real noise</td>
<!-- Train Hours --> <td>18</td>
<!-- Train Speakers --> <td>WSJ0 + 4</td>
<!-- License/Availability --> <td>Not clear (Chime performers)</td>
<!-- Year Released --> <td>2015</td>
<!-- Speech Style --> <td>Read<br>transcript</td>
<!-- Test Domain --> <td>Same as train<br>(same channels!)</td>
<!-- Kaldi Aprox Perf --> <td>~12% WER real (4 spkrs)<br>~12% WER simu</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>Official WSJ0 5K<br>trans</td>
<!-- Lexicon --> <td>WSJ0</td>
</tr>
<tr>
<!-- Name --> <td>voxforge</td>
<!-- BW --> <td>16Khz</td>
<!-- Lang --> <td>English</td>
<!-- Train Domain --> <td>Read trans</td>
<!-- Train Hours --> <td>>75hrs</td>
<!-- Train Speakers --> <td>unk</td>
<!-- License/Availability --> <td>Free GPL</td>
<!-- Year Released --> <td>2008?</td>
<!-- Speech Style --> <td>Read trans</td>
<!-- Test Domain --> <td>unk</td>
<!-- Kaldi Aprox Perf --> <td>unk</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>Train</td>
<!-- Lexicon --> <td>cmu + g2p for oov</td>
</tr>
<tr>
<!-- Name --> <td>Tedlium</td>
<!-- BW --> <td>16KHz</td>
<!-- Lang --> <td>English</td>
<!-- Train Domain --> <td>Presentation/talk</td>
<!-- Train Hours --> <td>118</td>
<!-- Train Speakers --> <td>666</td>
<!-- License/Availability --> <td>Free download</td>
<!-- Year Released --> <td>2014?</td>
<!-- Speech Style --> <td>Presentation</td>
<!-- Test Domain --> <td>Same as train</td>
<!-- Kaldi Aprox Perf --> <td>~10% WER</td>
<!-- Model Type --> <td></td>
<!-- LM Data --> <td>Cantab provided LM</td>
<!-- Lexicon --> <td>Cantab provided dict</td>
</tr>
<!-- Add a new row by copying a <tr></tr> block from above
and pasting it above this message. -->
</table>
[1] "Audio Augmentation for Speech Recognition" Tom Ko, Vijayaditya Peddinti, Daniel Povey, Sanjeev Khudanpur.<br>
[2] There should be more Mandarin data from rt04f - 50 hours of dev data I believe (see LDC2004E67, LDC2004E68). There should also be eval data. See https://www.ldc.upenn.edu/collaborations/past-projects/gale/data/gale-pubs.<br>
[3] See http://www.danielpovey.com/files/2015_icassp_librispeech.pdf for details. Acoustic and language models are available online.<br>
[4] See http://www.lrec-conf.org/proceedings/lrec2014/pdf/535_Paper.pdf.
*/