fstext-utils-inl.h
44 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
// fstext/fstext-utils-inl.h
// Copyright 2009-2012 Microsoft Corporation Johns Hopkins University (Author: Daniel Povey)
// 2014 Telepoint Global Hosting Service, LLC. (Author: David Snyder)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_FSTEXT_FSTEXT_UTILS_INL_H_
#define KALDI_FSTEXT_FSTEXT_UTILS_INL_H_
#include <cstring>
#include "base/kaldi-common.h"
#include "util/stl-utils.h"
#include "util/text-utils.h"
#include "util/kaldi-io.h"
#include "fstext/factor.h"
#include "fstext/pre-determinize.h"
#include "fstext/determinize-star.h"
#include <sstream>
#include <algorithm>
#include <string>
namespace fst {
template<class Arc>
typename Arc::Label HighestNumberedOutputSymbol(const Fst<Arc> &fst) {
typename Arc::Label ans = 0;
for (StateIterator<Fst<Arc> > siter(fst); !siter.Done(); siter.Next()) {
typename Arc::StateId s = siter.Value();
for (ArcIterator<Fst<Arc> > aiter(fst, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
ans = std::max(ans, arc.olabel);
}
}
return ans;
}
template<class Arc>
typename Arc::Label HighestNumberedInputSymbol(const Fst<Arc> &fst) {
typename Arc::Label ans = 0;
for (StateIterator<Fst<Arc> > siter(fst); !siter.Done(); siter.Next()) {
typename Arc::StateId s = siter.Value();
for (ArcIterator<Fst<Arc> > aiter(fst, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
ans = std::max(ans, arc.ilabel);
}
}
return ans;
}
template<class Arc>
typename Arc::StateId NumArcs(const ExpandedFst<Arc> &fst) {
typedef typename Arc::StateId StateId;
StateId num_arcs = 0;
for (StateId s = 0; s < fst.NumStates(); s++)
num_arcs += fst.NumArcs(s);
return num_arcs;
}
template<class Arc, class I>
void GetOutputSymbols(const Fst<Arc> &fst,
bool include_eps,
vector<I> *symbols) {
KALDI_ASSERT_IS_INTEGER_TYPE(I);
std::set<I> all_syms;
for (StateIterator<Fst<Arc> > siter(fst); !siter.Done(); siter.Next()) {
typename Arc::StateId s = siter.Value();
for (ArcIterator<Fst<Arc> > aiter(fst, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
all_syms.insert(arc.olabel);
}
}
// Remove epsilon, if instructed.
if (!include_eps && !all_syms.empty() && *all_syms.begin() == 0)
all_syms.erase(0);
KALDI_ASSERT(symbols != NULL);
kaldi::CopySetToVector(all_syms, symbols);
}
template<class Arc, class I>
void GetInputSymbols(const Fst<Arc> &fst,
bool include_eps,
vector<I> *symbols) {
KALDI_ASSERT_IS_INTEGER_TYPE(I);
unordered_set<I> all_syms;
for (StateIterator<Fst<Arc> > siter(fst); !siter.Done(); siter.Next()) {
typename Arc::StateId s = siter.Value();
for (ArcIterator<Fst<Arc> > aiter(fst, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
all_syms.insert(arc.ilabel);
}
}
// Remove epsilon, if instructed.
if (!include_eps && all_syms.count(0) != 0)
all_syms.erase(0);
KALDI_ASSERT(symbols != NULL);
kaldi::CopySetToVector(all_syms, symbols);
std::sort(symbols->begin(), symbols->end());
}
template<class Arc, class I>
void RemoveSomeInputSymbols(const vector<I> &to_remove,
MutableFst<Arc> *fst) {
KALDI_ASSERT_IS_INTEGER_TYPE(I);
RemoveSomeInputSymbolsMapper<Arc, I> mapper(to_remove);
Map(fst, mapper);
}
template<class Arc, class I>
class MapInputSymbolsMapper {
public:
Arc operator ()(const Arc &arc_in) {
Arc ans = arc_in;
if (ans.ilabel > 0 &&
ans.ilabel < static_cast<typename Arc::Label>((*symbol_mapping_).size()))
ans.ilabel = (*symbol_mapping_)[ans.ilabel];
return ans;
}
MapFinalAction FinalAction() { return MAP_NO_SUPERFINAL; }
MapSymbolsAction InputSymbolsAction() { return MAP_CLEAR_SYMBOLS; }
MapSymbolsAction OutputSymbolsAction() { return MAP_COPY_SYMBOLS; }
uint64 Properties(uint64 props) const { // Not tested.
bool remove_epsilons = (symbol_mapping_->size() > 0 && (*symbol_mapping_)[0] != 0);
bool add_epsilons = (symbol_mapping_->size() > 1 &&
*std::min_element(symbol_mapping_->begin()+1, symbol_mapping_->end()) == 0);
// remove the following as we don't know now if any of them are true.
uint64 props_to_remove = kAcceptor|kNotAcceptor|kIDeterministic|kNonIDeterministic|
kILabelSorted|kNotILabelSorted;
if (remove_epsilons) props_to_remove |= kEpsilons|kIEpsilons;
if (add_epsilons) props_to_remove |= kNoEpsilons|kNoIEpsilons;
uint64 props_to_add = 0;
if (remove_epsilons && !add_epsilons) props_to_add |= kNoEpsilons|kNoIEpsilons;
return (props & ~props_to_remove) | props_to_add;
}
// initialize with copy = false only if the "to_remove" argument will not be deleted
// in the lifetime of this object.
MapInputSymbolsMapper(const vector<I> &to_remove, bool copy) {
KALDI_ASSERT_IS_INTEGER_TYPE(I);
if (copy) symbol_mapping_ = new vector<I> (to_remove);
else symbol_mapping_ = &to_remove;
owned = copy;
}
~MapInputSymbolsMapper() { if (owned && symbol_mapping_ != NULL) delete symbol_mapping_; }
private:
bool owned;
const vector<I> *symbol_mapping_;
};
template<class Arc, class I>
void MapInputSymbols(const vector<I> &symbol_mapping,
MutableFst<Arc> *fst) {
KALDI_ASSERT_IS_INTEGER_TYPE(I);
// false == don't copy the "symbol_mapping", retain pointer--
// safe since short-lived object.
MapInputSymbolsMapper<Arc, I> mapper(symbol_mapping, false);
Map(fst, mapper);
}
template<class Arc, class I>
bool GetLinearSymbolSequence(const Fst<Arc> &fst,
vector<I> *isymbols_out,
vector<I> *osymbols_out,
typename Arc::Weight *tot_weight_out) {
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
Weight tot_weight = Weight::One();
vector<I> ilabel_seq;
vector<I> olabel_seq;
StateId cur_state = fst.Start();
if (cur_state == kNoStateId) { // empty sequence.
if (isymbols_out != NULL) isymbols_out->clear();
if (osymbols_out != NULL) osymbols_out->clear();
if (tot_weight_out != NULL) *tot_weight_out = Weight::Zero();
return true;
}
while (1) {
Weight w = fst.Final(cur_state);
if (w != Weight::Zero()) { // is final..
tot_weight = Times(w, tot_weight);
if (fst.NumArcs(cur_state) != 0) return false;
if (isymbols_out != NULL) *isymbols_out = ilabel_seq;
if (osymbols_out != NULL) *osymbols_out = olabel_seq;
if (tot_weight_out != NULL) *tot_weight_out = tot_weight;
return true;
} else {
if (fst.NumArcs(cur_state) != 1) return false;
ArcIterator<Fst<Arc> > iter(fst, cur_state); // get the only arc.
const Arc &arc = iter.Value();
tot_weight = Times(arc.weight, tot_weight);
if (arc.ilabel != 0) ilabel_seq.push_back(arc.ilabel);
if (arc.olabel != 0) olabel_seq.push_back(arc.olabel);
cur_state = arc.nextstate;
}
}
}
// see fstext-utils.h for comment.
template<class Arc>
void ConvertNbestToVector(const Fst<Arc> &fst,
vector<VectorFst<Arc> > *fsts_out) {
typedef typename Arc::Weight Weight;
typedef typename Arc::StateId StateId;
fsts_out->clear();
StateId start_state = fst.Start();
if (start_state == kNoStateId) return; // No output.
size_t n_arcs = fst.NumArcs(start_state);
bool start_is_final = (fst.Final(start_state) != Weight::Zero());
fsts_out->reserve(n_arcs + (start_is_final ? 1 : 0));
if (start_is_final) {
fsts_out->resize(fsts_out->size() + 1);
StateId start_state_out = fsts_out->back().AddState();
fsts_out->back().SetFinal(start_state_out, fst.Final(start_state));
}
for (ArcIterator<Fst<Arc> > start_aiter(fst, start_state);
!start_aiter.Done();
start_aiter.Next()) {
fsts_out->resize(fsts_out->size() + 1);
VectorFst<Arc> &ofst = fsts_out->back();
const Arc &first_arc = start_aiter.Value();
StateId cur_state = start_state,
cur_ostate = ofst.AddState();
ofst.SetStart(cur_ostate);
StateId next_ostate = ofst.AddState();
ofst.AddArc(cur_ostate, Arc(first_arc.ilabel, first_arc.olabel,
first_arc.weight, next_ostate));
cur_state = first_arc.nextstate;
cur_ostate = next_ostate;
while (1) {
size_t this_n_arcs = fst.NumArcs(cur_state);
KALDI_ASSERT(this_n_arcs <= 1); // or it violates our assumptions
// about the input.
if (this_n_arcs == 1) {
KALDI_ASSERT(fst.Final(cur_state) == Weight::Zero());
// or problem with ShortestPath.
ArcIterator<Fst<Arc> > aiter(fst, cur_state);
const Arc &arc = aiter.Value();
next_ostate = ofst.AddState();
ofst.AddArc(cur_ostate, Arc(arc.ilabel, arc.olabel,
arc.weight, next_ostate));
cur_state = arc.nextstate;
cur_ostate = next_ostate;
} else {
KALDI_ASSERT(fst.Final(cur_state) != Weight::Zero());
// or problem with ShortestPath.
ofst.SetFinal(cur_ostate, fst.Final(cur_state));
break;
}
}
}
}
// see fstext-utils.sh for comment.
template<class Arc>
void NbestAsFsts(const Fst<Arc> &fst,
size_t n,
vector<VectorFst<Arc> > *fsts_out) {
KALDI_ASSERT(n > 0);
KALDI_ASSERT(fsts_out != NULL);
VectorFst<Arc> nbest_fst;
ShortestPath(fst, &nbest_fst, n);
ConvertNbestToVector(nbest_fst, fsts_out);
}
template<class Arc, class I>
void MakeLinearAcceptorWithAlternatives(const vector<vector<I> > &labels,
MutableFst<Arc> *ofst) {
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
ofst->DeleteStates();
StateId cur_state = ofst->AddState();
ofst->SetStart(cur_state);
for (size_t i = 0; i < labels.size(); i++) {
KALDI_ASSERT(labels[i].size() != 0);
StateId next_state = ofst->AddState();
for (size_t j = 0; j < labels[i].size(); j++) {
Arc arc(labels[i][j], labels[i][j], Weight::One(), next_state);
ofst->AddArc(cur_state, arc);
}
cur_state = next_state;
}
ofst->SetFinal(cur_state, Weight::One());
}
template<class Arc, class I>
void MakeLinearAcceptor(const vector<I> &labels, MutableFst<Arc> *ofst) {
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
ofst->DeleteStates();
StateId cur_state = ofst->AddState();
ofst->SetStart(cur_state);
for (size_t i = 0; i < labels.size(); i++) {
StateId next_state = ofst->AddState();
Arc arc(labels[i], labels[i], Weight::One(), next_state);
ofst->AddArc(cur_state, arc);
cur_state = next_state;
}
ofst->SetFinal(cur_state, Weight::One());
}
template<class I>
void GetSymbols(const SymbolTable &symtab,
bool include_eps,
vector<I> *syms_out) {
KALDI_ASSERT(syms_out != NULL);
syms_out->clear();
for (SymbolTableIterator iter(symtab);
!iter.Done();
iter.Next()) {
if (include_eps || iter.Value() != 0) {
syms_out->push_back(iter.Value());
KALDI_ASSERT(syms_out->back() == iter.Value()); // an integer-range thing.
}
}
}
template<class Arc>
void SafeDeterminizeWrapper(MutableFst<Arc> *ifst, MutableFst<Arc> *ofst, float delta) {
typename Arc::Label highest_sym = HighestNumberedInputSymbol(*ifst);
vector<typename Arc::Label> extra_syms;
PreDeterminize(ifst,
(typename Arc::Label)(highest_sym+1),
&extra_syms);
DeterminizeStar(*ifst, ofst, delta);
RemoveSomeInputSymbols(extra_syms, ofst); // remove the extra symbols.
}
template<class Arc>
void SafeDeterminizeMinimizeWrapper(MutableFst<Arc> *ifst, VectorFst<Arc> *ofst, float delta) {
typename Arc::Label highest_sym = HighestNumberedInputSymbol(*ifst);
vector<typename Arc::Label> extra_syms;
PreDeterminize(ifst,
(typename Arc::Label)(highest_sym+1),
&extra_syms);
DeterminizeStar(*ifst, ofst, delta);
RemoveSomeInputSymbols(extra_syms, ofst); // remove the extra symbols.
RemoveEpsLocal(ofst); // this is "safe" and will never hurt.
MinimizeEncoded(ofst, delta);
}
inline
void DeterminizeStarInLog(VectorFst<StdArc> *fst, float delta, bool *debug_ptr, int max_states) {
// DeterminizeStarInLog determinizes 'fst' in the log semiring, using
// the DeterminizeStar algorithm (which also removes epsilons).
ArcSort(fst, ILabelCompare<StdArc>()); // helps DeterminizeStar to be faster.
VectorFst<LogArc> *fst_log = new VectorFst<LogArc>; // Want to determinize in log semiring.
Cast(*fst, fst_log);
VectorFst<StdArc> tmp;
*fst = tmp; // make fst empty to free up memory. [actually may make no difference..]
VectorFst<LogArc> *fst_det_log = new VectorFst<LogArc>;
DeterminizeStar(*fst_log, fst_det_log, delta, debug_ptr, max_states);
Cast(*fst_det_log, fst);
delete fst_log;
delete fst_det_log;
}
inline
void DeterminizeInLog(VectorFst<StdArc> *fst) {
// DeterminizeInLog determinizes 'fst' in the log semiring.
ArcSort(fst, ILabelCompare<StdArc>()); // helps DeterminizeStar to be faster.
VectorFst<LogArc> *fst_log = new VectorFst<LogArc>; // Want to determinize in log semiring.
Cast(*fst, fst_log);
VectorFst<StdArc> tmp;
*fst = tmp; // make fst empty to free up memory. [actually may make no difference..]
VectorFst<LogArc> *fst_det_log = new VectorFst<LogArc>;
Determinize(*fst_log, fst_det_log);
Cast(*fst_det_log, fst);
delete fst_log;
delete fst_det_log;
}
// make it inline to avoid having to put it in a .cc file.
// destructive algorithm (changes ifst as well as ofst).
inline
void SafeDeterminizeMinimizeWrapperInLog(VectorFst<StdArc> *ifst, VectorFst<StdArc> *ofst, float delta) {
VectorFst<LogArc> *ifst_log = new VectorFst<LogArc>; // Want to determinize in log semiring.
Cast(*ifst, ifst_log);
VectorFst<LogArc> *ofst_log = new VectorFst<LogArc>;
SafeDeterminizeWrapper(ifst_log, ofst_log, delta);
Cast(*ofst_log, ofst);
delete ifst_log;
delete ofst_log;
RemoveEpsLocal(ofst); // this is "safe" and will never hurt. Do this in tropical, which is important.
MinimizeEncoded(ofst, delta); // Non-deterministic minimization will fail in log semiring so do it with StdARc.
}
inline
void SafeDeterminizeWrapperInLog(VectorFst<StdArc> *ifst, VectorFst<StdArc> *ofst, float delta) {
VectorFst<LogArc> *ifst_log = new VectorFst<LogArc>; // Want to determinize in log semiring.
Cast(*ifst, ifst_log);
VectorFst<LogArc> *ofst_log = new VectorFst<LogArc>;
SafeDeterminizeWrapper(ifst_log, ofst_log, delta);
Cast(*ofst_log, ofst);
delete ifst_log;
delete ofst_log;
}
template<class Arc>
void RemoveWeights(MutableFst<Arc> *ifst) {
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
for (StateIterator<MutableFst<Arc> > siter(*ifst); !siter.Done(); siter.Next()) {
StateId s = siter.Value();
for (MutableArcIterator<MutableFst<Arc> > aiter(ifst, s); !aiter.Done(); aiter.Next()) {
Arc arc(aiter.Value());
arc.weight = Weight::One();
aiter.SetValue(arc);
}
if (ifst->Final(s) != Weight::Zero())
ifst->SetFinal(s, Weight::One());
}
ifst->SetProperties(kUnweighted, kUnweighted);
}
// Used in PrecedingInputSymbolsAreSame (non-functor version), and
// similar routines.
template<class T> struct IdentityFunction {
typedef T Arg;
typedef T Result;
T operator () (const T &t) const { return t; }
};
template<class Arc>
bool PrecedingInputSymbolsAreSame(bool start_is_epsilon, const Fst<Arc> &fst) {
IdentityFunction<typename Arc::Label> f;
return PrecedingInputSymbolsAreSameClass(start_is_epsilon, fst, f);
}
template<class Arc, class F> // F is functor type from labels to classes.
bool PrecedingInputSymbolsAreSameClass(bool start_is_epsilon, const Fst<Arc> &fst, const F &f) {
typedef typename F::Result ClassType;
typedef typename Arc::StateId StateId;
vector<ClassType> classes;
ClassType noClass = f(kNoLabel);
if (start_is_epsilon) {
StateId start_state = fst.Start();
if (start_state < 0 || start_state == kNoStateId)
return true; // empty fst-- doesn't matter.
classes.resize(start_state+1, noClass);
classes[start_state] = 0;
}
for (StateIterator<Fst<Arc> > siter(fst); !siter.Done(); siter.Next()) {
StateId s = siter.Value();
for (ArcIterator<Fst<Arc> > aiter(fst, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
if (classes.size() <= arc.nextstate)
classes.resize(arc.nextstate+1, noClass);
if (classes[arc.nextstate] == noClass)
classes[arc.nextstate] = f(arc.ilabel);
else
if (classes[arc.nextstate] != f(arc.ilabel))
return false;
}
}
return true;
}
template<class Arc>
bool FollowingInputSymbolsAreSame(bool end_is_epsilon, const Fst<Arc> &fst) {
IdentityFunction<typename Arc::Label> f;
return FollowingInputSymbolsAreSameClass(end_is_epsilon, fst, f);
}
template<class Arc, class F>
bool FollowingInputSymbolsAreSameClass(bool end_is_epsilon, const Fst<Arc> &fst, const F &f) {
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
typedef typename F::Result ClassType;
const ClassType noClass = f(kNoLabel), epsClass = f(0);
for (StateIterator<Fst<Arc> > siter(fst); !siter.Done(); siter.Next()) {
StateId s = siter.Value();
ClassType c = noClass;
for (ArcIterator<Fst<Arc> > aiter(fst, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
if (c == noClass)
c = f(arc.ilabel);
else
if (c != f(arc.ilabel))
return false;
}
if (end_is_epsilon && c != noClass &&
c != epsClass && fst.Final(s) != Weight::Zero())
return false;
}
return true;
}
template<class Arc>
void MakePrecedingInputSymbolsSame(bool start_is_epsilon, MutableFst<Arc> *fst) {
IdentityFunction<typename Arc::Label> f;
MakePrecedingInputSymbolsSameClass(start_is_epsilon, fst, f);
}
template<class Arc, class F>
void MakePrecedingInputSymbolsSameClass(bool start_is_epsilon, MutableFst<Arc> *fst, const F &f) {
typedef typename F::Result ClassType;
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
vector<ClassType> classes;
ClassType noClass = f(kNoLabel);
ClassType epsClass = f(0);
if (start_is_epsilon) { // treat having-start-state as epsilon in-transition.
StateId start_state = fst->Start();
if (start_state < 0 || start_state == kNoStateId) // empty FST.
return;
classes.resize(start_state+1, noClass);
classes[start_state] = epsClass;
}
// Find bad states (states with multiple input-symbols into them).
std::set<StateId> bad_states; // states that we need to change.
for (StateIterator<Fst<Arc> > siter(*fst); !siter.Done(); siter.Next()) {
StateId s = siter.Value();
for (ArcIterator<Fst<Arc> > aiter(*fst, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
if (classes.size() <= static_cast<size_t>(arc.nextstate))
classes.resize(arc.nextstate+1, noClass);
if (classes[arc.nextstate] == noClass)
classes[arc.nextstate] = f(arc.ilabel);
else
if (classes[arc.nextstate] != f(arc.ilabel))
bad_states.insert(arc.nextstate);
}
}
if (bad_states.empty()) return; // Nothing to do.
kaldi::ConstIntegerSet<StateId> bad_states_ciset(bad_states); // faster lookup.
// Work out list of arcs we have to change as (state, arc-offset).
// Can't do the actual changes in this pass, since we have to add new
// states which invalidates the iterators.
vector<pair<StateId, size_t> > arcs_to_change;
for (StateIterator<Fst<Arc> > siter(*fst); !siter.Done(); siter.Next()) {
StateId s = siter.Value();
for (ArcIterator<Fst<Arc> > aiter(*fst, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel != 0 &&
bad_states_ciset.count(arc.nextstate) != 0)
arcs_to_change.push_back(std::make_pair(s, aiter.Position()));
}
}
KALDI_ASSERT(!arcs_to_change.empty()); // since !bad_states.empty().
std::map<pair<StateId, ClassType>, StateId> state_map;
// state_map is a map from (bad-state, input-symbol-class) to dummy-state.
for (size_t i = 0; i < arcs_to_change.size(); i++) {
StateId s = arcs_to_change[i].first;
ArcIterator<MutableFst<Arc> > aiter(*fst, s);
aiter.Seek(arcs_to_change[i].second);
Arc arc = aiter.Value();
// Transition is non-eps transition to "bad" state. Introduce new state (or find
// existing one).
pair<StateId, ClassType> p(arc.nextstate, f(arc.ilabel));
if (state_map.count(p) == 0) {
StateId newstate = state_map[p] = fst->AddState();
fst->AddArc(newstate, Arc(0, 0, Weight::One(), arc.nextstate));
}
StateId dst_state = state_map[p];
arc.nextstate = dst_state;
// Initialize the MutableArcIterator only now, as the call to NewState()
// may have invalidated the first arc iterator.
MutableArcIterator<MutableFst<Arc> > maiter(fst, s);
maiter.Seek(arcs_to_change[i].second);
maiter.SetValue(arc);
}
}
template<class Arc>
void MakeFollowingInputSymbolsSame(bool end_is_epsilon, MutableFst<Arc> *fst) {
IdentityFunction<typename Arc::Label> f;
MakeFollowingInputSymbolsSameClass(end_is_epsilon, fst, f);
}
template<class Arc, class F>
void MakeFollowingInputSymbolsSameClass(bool end_is_epsilon, MutableFst<Arc> *fst, const F &f) {
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
typedef typename F::Result ClassType;
vector<StateId> bad_states;
ClassType noClass = f(kNoLabel);
ClassType epsClass = f(0);
for (StateIterator<Fst<Arc> > siter(*fst); !siter.Done(); siter.Next()) {
StateId s = siter.Value();
ClassType c = noClass;
bool bad = false;
for (ArcIterator<Fst<Arc> > aiter(*fst, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
if (c == noClass)
c = f(arc.ilabel);
else
if (c != f(arc.ilabel)) {
bad = true;
break;
}
}
if (end_is_epsilon && c != noClass &&
c != epsClass && fst->Final(s) != Weight::Zero())
bad = true;
if (bad)
bad_states.push_back(s);
}
vector<Arc> my_arcs;
for (size_t i = 0; i < bad_states.size(); i++) {
StateId s = bad_states[i];
my_arcs.clear();
for (ArcIterator<MutableFst<Arc> > aiter(*fst, s); !aiter.Done(); aiter.Next())
my_arcs.push_back(aiter.Value());
for (size_t j = 0; j < my_arcs.size(); j++) {
Arc &arc = my_arcs[j];
if (arc.ilabel != 0) {
StateId newstate = fst->AddState();
// Create a new state for each non-eps arc in original FST, out of each bad state.
// Not as optimal as it could be, but does avoid some complicated weight-pushing
// issues in which, to maintain stochasticity, we would have to know which semiring
// we want to maintain stochasticity in.
fst->AddArc(newstate, Arc(arc.ilabel, 0, Weight::One(), arc.nextstate));
MutableArcIterator<MutableFst<Arc> > maiter(fst, s);
maiter.Seek(j);
maiter.SetValue(Arc(0, arc.olabel, arc.weight, newstate));
}
}
}
}
template<class Arc>
VectorFst<Arc>* MakeLoopFst(const vector<const ExpandedFst<Arc> *> &fsts) {
typedef typename Arc::Weight Weight;
typedef typename Arc::StateId StateId;
typedef typename Arc::Label Label;
VectorFst<Arc> *ans = new VectorFst<Arc>;
StateId loop_state = ans->AddState(); // = 0.
ans->SetStart(loop_state);
ans->SetFinal(loop_state, Weight::One());
// "cache" is used as an optimization when some of the pointers in "fsts"
// may have the same value.
unordered_map<const ExpandedFst<Arc> *, Arc> cache;
for (Label i = 0; i < static_cast<Label>(fsts.size()); i++) {
const ExpandedFst<Arc> *fst = fsts[i];
if (fst == NULL) continue;
{ // optimization with cache: helpful if some members of "fsts" may
// contain the same pointer value (e.g. in GetHTransducer).
typename unordered_map<const ExpandedFst<Arc> *, Arc>::iterator
iter = cache.find(fst);
if (iter != cache.end()) {
Arc arc = iter->second;
arc.olabel = i;
ans->AddArc(0, arc);
continue;
}
}
KALDI_ASSERT(fst->Properties(kAcceptor, true) == kAcceptor); // expect acceptor.
StateId fst_num_states = fst->NumStates();
StateId fst_start_state = fst->Start();
if (fst_start_state == kNoStateId)
continue; // empty fst.
bool share_start_state =
fst->Properties(kInitialAcyclic, true) == kInitialAcyclic
&& fst->NumArcs(fst_start_state) == 1
&& fst->Final(fst_start_state) == Weight::Zero();
vector<StateId> state_map(fst_num_states); // fst state -> ans state
for (StateId s = 0; s < fst_num_states; s++) {
if (s == fst_start_state && share_start_state) state_map[s] = loop_state;
else state_map[s] = ans->AddState();
}
if (!share_start_state) {
Arc arc(0, i, Weight::One(), state_map[fst_start_state]);
cache[fst] = arc;
ans->AddArc(0, arc);
}
for (StateId s = 0; s < fst_num_states; s++) {
// Add arcs out of state s.
for (ArcIterator<ExpandedFst<Arc> > aiter(*fst, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
Label olabel = (s == fst_start_state && share_start_state ? i : 0);
Arc newarc(arc.ilabel, olabel, arc.weight, state_map[arc.nextstate]);
ans->AddArc(state_map[s], newarc);
if (s == fst_start_state && share_start_state)
cache[fst] = newarc;
}
if (fst->Final(s) != Weight::Zero()) {
KALDI_ASSERT(!(s == fst_start_state && share_start_state));
ans->AddArc(state_map[s], Arc(0, 0, fst->Final(s), loop_state));
}
}
}
return ans;
}
template<class Arc>
void ClearSymbols(bool clear_input,
bool clear_output,
MutableFst<Arc> *fst) {
for (StateIterator<MutableFst<Arc> > siter(*fst);
!siter.Done();
siter.Next()) {
typename Arc::StateId s = siter.Value();
for (MutableArcIterator<MutableFst<Arc> > aiter(fst, s);
!aiter.Done();
aiter.Next()) {
Arc arc = aiter.Value();
bool change = false;
if (clear_input && arc.ilabel != 0) {
arc.ilabel = 0;
change = true;
}
if (clear_output && arc.olabel != 0) {
arc.olabel = 0;
change = true;
}
if (change) {
aiter.SetValue(arc);
}
}
}
}
template<class Arc>
void ApplyProbabilityScale(float scale, MutableFst<Arc> *fst) {
typedef typename Arc::Weight Weight;
typedef typename Arc::StateId StateId;
for (StateIterator<MutableFst<Arc> > siter(*fst);
!siter.Done();
siter.Next()) {
StateId s = siter.Value();
for (MutableArcIterator<MutableFst<Arc> > aiter(fst, s);
!aiter.Done();
aiter.Next()) {
Arc arc = aiter.Value();
arc.weight = Weight(arc.weight.Value() * scale);
aiter.SetValue(arc);
}
if (fst->Final(s) != Weight::Zero())
fst->SetFinal(s, Weight(fst->Final(s).Value() * scale));
}
}
// return arc-offset of self-loop with ilabel (or -1 if none exists).
// if more than one such self-loop, pick first one.
template<class Arc>
ssize_t FindSelfLoopWithILabel(const Fst<Arc> &fst, typename Arc::StateId s) {
for (ArcIterator<Fst<Arc> > aiter(fst, s); !aiter.Done(); aiter.Next())
if (aiter.Value().nextstate == s
&& aiter.Value().ilabel != 0) return static_cast<ssize_t>(aiter.Position());
return static_cast<ssize_t>(-1);
}
template<class Arc>
bool EqualAlign(const Fst<Arc> &ifst,
typename Arc::StateId length,
int rand_seed,
MutableFst<Arc> *ofst,
int num_retries) {
srand(rand_seed);
KALDI_ASSERT(ofst->NumStates() == 0); // make sure ofst empty.
// make sure all states can reach final-state (or this algorithm may enter
// infinite loop.
KALDI_ASSERT(ifst.Properties(kCoAccessible, true) == kCoAccessible);
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
if (ifst.Start() == kNoStateId) {
KALDI_WARN << "Empty input fst.";
return false;
}
// First select path through ifst.
vector<StateId> path;
vector<size_t> arc_offsets; // arc taken out of each state.
vector<int> nof_ilabels;
StateId num_ilabels = 0;
int retry_no = 0;
// Under normal circumstances, this will be one-pass-only process
// Multiple tries might be needed in special cases, typically when
// the number of frames is close to number of transitions from
// the start node to the final node. It usually happens for really
// short utterances
do {
num_ilabels = 0;
arc_offsets.clear();
path.clear();
path.push_back(ifst.Start());
while (1) {
// Select either an arc or final-prob.
StateId s = path.back();
size_t num_arcs = ifst.NumArcs(s);
size_t num_arcs_tot = num_arcs;
if (ifst.Final(s) != Weight::Zero()) num_arcs_tot++;
// kaldi::RandInt is a bit like Rand(), but gets around situations
// where RAND_MAX is very small.
// Change this to Rand() % num_arcs_tot if compile issues arise
size_t arc_offset = static_cast<size_t>(kaldi::RandInt(0, num_arcs_tot-1));
if (arc_offset < num_arcs) { // an actual arc.
ArcIterator<Fst<Arc> > aiter(ifst, s);
aiter.Seek(arc_offset);
const Arc &arc = aiter.Value();
if (arc.nextstate == s) {
continue; // don't take this self-loop arc
} else {
arc_offsets.push_back(arc_offset);
path.push_back(arc.nextstate);
if (arc.ilabel != 0) num_ilabels++;
}
} else {
break; // Chose final-prob.
}
}
nof_ilabels.push_back(num_ilabels);
} while (( ++retry_no < num_retries) && (num_ilabels > length));
if (num_ilabels > length) {
std::stringstream ilabel_vec;
std::copy(nof_ilabels.begin(), nof_ilabels.end(),
std::ostream_iterator<int>(ilabel_vec, ","));
std::string s = ilabel_vec.str();
s.erase(s.end() - 1);
KALDI_WARN << "EqualAlign: the randomly constructed paths lengths: " << s;
KALDI_WARN << "EqualAlign: utterance has too few frames " << length
<< " to align.";
return false; // can't make it shorter by adding self-loops!.
}
StateId num_self_loops = 0;
vector<ssize_t> self_loop_offsets(path.size());
for (size_t i = 0; i < path.size(); i++)
if ( (self_loop_offsets[i] = FindSelfLoopWithILabel(ifst, path[i]))
!= static_cast<ssize_t>(-1) )
num_self_loops++;
if (num_self_loops == 0
&& num_ilabels < length) {
KALDI_WARN << "No self-loops on chosen path; cannot match length.";
return false; // no self-loops to make it longer.
}
StateId num_extra = length - num_ilabels; // Number of self-loops we need.
StateId min_num_loops = 0;
if (num_extra != 0) min_num_loops = num_extra / num_self_loops; // prevent div by zero.
StateId num_with_one_more_loop = num_extra - (min_num_loops*num_self_loops);
KALDI_ASSERT(num_with_one_more_loop < num_self_loops || num_self_loops == 0);
ofst->AddState();
ofst->SetStart(0);
StateId cur_state = 0;
StateId counter = 0; // tell us when we should stop adding one more loop.
for (size_t i = 0; i < path.size(); i++) {
// First, add any self-loops that are necessary.
StateId num_loops = 0;
if (self_loop_offsets[i] != static_cast<ssize_t>(-1)) {
num_loops = min_num_loops + (counter < num_with_one_more_loop ? 1 : 0);
counter++;
}
for (StateId j = 0; j < num_loops; j++) {
ArcIterator<Fst<Arc> > aiter(ifst, path[i]);
aiter.Seek(self_loop_offsets[i]);
Arc arc = aiter.Value();
KALDI_ASSERT(arc.nextstate == path[i]
&& arc.ilabel != 0); // make sure self-loop with ilabel.
StateId next_state = ofst->AddState();
ofst->AddArc(cur_state, Arc(arc.ilabel, arc.olabel, arc.weight, next_state));
cur_state = next_state;
}
if (i+1 < path.size()) { // add forward transition.
ArcIterator<Fst<Arc> > aiter(ifst, path[i]);
aiter.Seek(arc_offsets[i]);
Arc arc = aiter.Value();
KALDI_ASSERT(arc.nextstate == path[i+1]);
StateId next_state = ofst->AddState();
ofst->AddArc(cur_state, Arc(arc.ilabel, arc.olabel, arc.weight, next_state));
cur_state = next_state;
} else { // add final-prob.
Weight weight = ifst.Final(path[i]);
KALDI_ASSERT(weight != Weight::Zero());
ofst->SetFinal(cur_state, weight);
}
}
return true;
}
// This function identifies two types of useless arcs:
// those where arc A and arc B both go from state X to
// state Y with the same input symbol (remove the one
// with smaller probability, or an arbitrary one if they
// are the same); and those where A is an arc from state X
// to state X, with epsilon input symbol [remove A].
// Only works for tropical (not log) semiring as it uses
// NaturalLess.
template<class Arc>
void RemoveUselessArcs(MutableFst<Arc> *fst) {
typedef typename Arc::Label Label;
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
NaturalLess<Weight> nl;
StateId non_coacc_state = kNoStateId;
size_t num_arcs_removed = 0, tot_arcs = 0;
for (StateIterator<MutableFst<Arc> > siter(*fst);
!siter.Done();
siter.Next()) {
vector<size_t> arcs_to_delete;
vector<Arc> arcs;
// pair2arclist lets us look up the arcs
std::map<pair<Label, StateId>, vector<size_t> > pair2arclist;
StateId state = siter.Value();
for (ArcIterator<MutableFst<Arc> > aiter(*fst, state);
!aiter.Done();
aiter.Next()) {
size_t pos = arcs.size();
const Arc &arc = aiter.Value();
arcs.push_back(arc);
pair2arclist[std::make_pair(arc.ilabel, arc.nextstate)].push_back(pos);
}
typename std::map<pair<Label, StateId>, vector<size_t> >::iterator
iter = pair2arclist.begin(), end = pair2arclist.end();
for (; iter!= end; ++iter) {
const vector<size_t> &poslist = iter->second;
if (poslist.size() > 1) { // >1 arc with same ilabel, dest-state
size_t best_pos = poslist[0];
Weight best_weight = arcs[best_pos].weight;
for (size_t j = 1; j < poslist.size(); j++) {
size_t pos = poslist[j];
Weight this_weight = arcs[pos].weight;
if (nl(this_weight, best_weight)) { // NaturalLess seems to be somehow
// "backwards".
best_weight = this_weight; // found a better one.
best_pos = pos;
}
}
for (size_t j = 0; j < poslist.size(); j++)
if (poslist[j] != best_pos)
arcs_to_delete.push_back(poslist[j]);
} else {
KALDI_ASSERT(poslist.size() == 1);
size_t pos = poslist[0];
Arc &arc = arcs[pos];
if (arc.ilabel == 0 && arc.nextstate == state)
arcs_to_delete.push_back(pos);
}
}
tot_arcs += arcs.size();
if (arcs_to_delete.size() != 0) {
num_arcs_removed += arcs_to_delete.size();
if (non_coacc_state == kNoStateId)
non_coacc_state = fst->AddState();
MutableArcIterator<MutableFst<Arc> > maiter(fst, state);
for (size_t j = 0; j < arcs_to_delete.size(); j++) {
size_t pos = arcs_to_delete[j];
maiter.Seek(pos);
arcs[pos].nextstate = non_coacc_state;
maiter.SetValue(arcs[pos]);
}
}
}
if (non_coacc_state != kNoStateId)
Connect(fst);
KALDI_VLOG(1) << "removed " << num_arcs_removed << " of " << tot_arcs
<< "arcs.";
}
template<class Arc>
void PhiCompose(const Fst<Arc> &fst1,
const Fst<Arc> &fst2,
typename Arc::Label phi_label,
MutableFst<Arc> *ofst) {
KALDI_ASSERT(phi_label != kNoLabel); // just use regular compose in this case.
typedef Fst<Arc> F;
typedef PhiMatcher<SortedMatcher<F> > PM;
CacheOptions base_opts;
base_opts.gc_limit = 0; // Cache only the last state for fastest copy.
// ComposeFstImplOptions templated on matcher for fst1, matcher for fst2.
// The matcher for fst1 doesn't matter; we'll use fst2's matcher.
ComposeFstImplOptions<SortedMatcher<F>, PM> impl_opts(base_opts);
// the false below is something called phi_loop which is something I don't
// fully understand, but I don't think we want it.
// These pointers are taken ownership of, by ComposeFst.
PM *phi_matcher =
new PM(fst2, MATCH_INPUT, phi_label, false);
SortedMatcher<F> *sorted_matcher =
new SortedMatcher<F>(fst1, MATCH_NONE); // tell it
// not to use this matcher, as this would mean we would
// not follow phi transitions.
impl_opts.matcher1 = sorted_matcher;
impl_opts.matcher2 = phi_matcher;
*ofst = ComposeFst<Arc>(fst1, fst2, impl_opts);
Connect(ofst);
}
template<class Arc>
void PropagateFinalInternal(
typename Arc::Label phi_label,
typename Arc::StateId s,
MutableFst<Arc> *fst) {
typedef typename Arc::Weight Weight;
if (fst->Final(s) == Weight::Zero()) {
// search for phi transition. We assume there
// is just one-- phi nondeterminism is not allowed
// anyway.
int num_phis = 0;
for (ArcIterator<Fst<Arc> > aiter(*fst, s);
!aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel == phi_label) {
num_phis++;
if (arc.nextstate == s) continue; // don't expect
// phi loops but ignore them anyway.
// If this recurses infinitely, it means there
// are loops of phi transitions, which there should
// not be in a normal backoff LM. We could make this
// routine work for this case, but currently there is
// no need.
PropagateFinalInternal(phi_label, arc.nextstate, fst);
if (fst->Final(arc.nextstate) != Weight::Zero())
fst->SetFinal(s, Times(fst->Final(arc.nextstate), arc.weight));
}
KALDI_ASSERT(num_phis <= 1 && "Phi nondeterminism found");
}
}
}
template<class Arc>
void PropagateFinal(typename Arc::Label phi_label,
MutableFst<Arc> *fst) {
typedef typename Arc::StateId StateId;
if (fst->Properties(kIEpsilons, true)) // just warn.
KALDI_WARN << "PropagateFinal: this may not work as desired "
"since your FST has input epsilons.";
StateId num_states = fst->NumStates();
for (StateId s = 0; s < num_states; s++)
PropagateFinalInternal(phi_label, s, fst);
}
template<class Arc>
void RhoCompose(const Fst<Arc> &fst1,
const Fst<Arc> &fst2,
typename Arc::Label rho_label,
MutableFst<Arc> *ofst) {
KALDI_ASSERT(rho_label != kNoLabel); // just use regular compose in this case.
typedef Fst<Arc> F;
typedef RhoMatcher<SortedMatcher<F> > RM;
CacheOptions base_opts;
base_opts.gc_limit = 0; // Cache only the last state for fastest copy.
// ComposeFstImplOptions templated on matcher for fst1, matcher for fst2.
// The matcher for fst1 doesn't matter; we'll use fst2's matcher.
ComposeFstImplOptions<SortedMatcher<F>, RM> impl_opts(base_opts);
// the false below is something called rho_loop which is something I don't
// fully understand, but I don't think we want it.
// These pointers are taken ownership of, by ComposeFst.
RM *rho_matcher =
new RM(fst2, MATCH_INPUT, rho_label);
SortedMatcher<F> *sorted_matcher =
new SortedMatcher<F>(fst1, MATCH_NONE); // tell it
// not to use this matcher, as this would mean we would
// not follow rho transitions.
impl_opts.matcher1 = sorted_matcher;
impl_opts.matcher2 = rho_matcher;
*ofst = ComposeFst<Arc>(fst1, fst2, impl_opts);
Connect(ofst);
}
// Declare an override of the template below.
template<>
inline bool IsStochasticFst(const Fst<LogArc> &fst,
float delta,
LogArc::Weight *min_sum,
LogArc::Weight *max_sum);
// Will override this for LogArc where NaturalLess will not work.
template<class Arc>
inline bool IsStochasticFst(const Fst<Arc> &fst,
float delta,
typename Arc::Weight *min_sum,
typename Arc::Weight *max_sum) {
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
NaturalLess<Weight> nl;
bool first_time = true;
bool ans = true;
if (min_sum) *min_sum = Arc::Weight::One();
if (max_sum) *max_sum = Arc::Weight::One();
for (StateIterator<Fst<Arc> > siter(fst); !siter.Done(); siter.Next()) {
StateId s = siter.Value();
Weight sum = fst.Final(s);
for (ArcIterator<Fst<Arc> > aiter(fst, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
sum = Plus(sum, arc.weight);
}
if (!ApproxEqual(Weight::One(), sum, delta)) ans = false;
if (first_time) {
first_time = false;
if (max_sum) *max_sum = sum;
if (min_sum) *min_sum = sum;
} else {
if (max_sum && nl(*max_sum, sum)) *max_sum = sum;
if (min_sum && nl(sum, *min_sum)) *min_sum = sum;
}
}
if (first_time) { // just avoid NaNs if FST was empty.
if (max_sum) *max_sum = Weight::One();
if (min_sum) *min_sum = Weight::One();
}
return ans;
}
// Overriding template for LogArc as NaturalLess does not work there.
template<>
inline bool IsStochasticFst(const Fst<LogArc> &fst,
float delta,
LogArc::Weight *min_sum,
LogArc::Weight *max_sum) {
typedef LogArc Arc;
typedef Arc::StateId StateId;
typedef Arc::Weight Weight;
bool first_time = true;
bool ans = true;
if (min_sum) *min_sum = LogArc::Weight::One();
if (max_sum) *max_sum = LogArc::Weight::One();
for (StateIterator<Fst<Arc> > siter(fst); !siter.Done(); siter.Next()) {
StateId s = siter.Value();
Weight sum = fst.Final(s);
for (ArcIterator<Fst<Arc> > aiter(fst, s); !aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
sum = Plus(sum, arc.weight);
}
if (!ApproxEqual(Weight::One(), sum, delta)) ans = false;
if (first_time) {
first_time = false;
if (max_sum) *max_sum = sum;
if (min_sum) *min_sum = sum;
} else {
// note that max and min are reversed from their normal
// meanings here (max and min w.r.t. the underlying probabilities).
if (max_sum && sum.Value() < max_sum->Value()) *max_sum = sum;
if (min_sum && sum.Value() > min_sum->Value()) *min_sum = sum;
}
}
if (first_time) { // just avoid NaNs if FST was empty.
if (max_sum) *max_sum = Weight::One();
if (min_sum) *min_sum = Weight::One();
}
return ans;
}
// Tests whether a tropical FST is stochastic in the log
// semiring. (casts it and does the check.)
// This function deals with the generic fst.
// This version currently supports ConstFst<StdArc> or VectorFst<StdArc>.
// Otherwise, it will be died with an error.
inline bool IsStochasticFstInLog(const Fst<StdArc> &fst,
float delta,
StdArc::Weight *min_sum,
StdArc::Weight *max_sum) {
bool ans = false;
LogArc::Weight log_min = LogArc::Weight::One(),
log_max = LogArc::Weight::Zero();
if (fst.Type() == "const") {
ConstFst<LogArc> logfst;
Cast(dynamic_cast<const ConstFst<StdArc>&>(fst), &logfst);
ans = IsStochasticFst(logfst, delta, &log_min, &log_max);
} else if (fst.Type() == "vector") {
VectorFst<LogArc> logfst;
Cast(dynamic_cast<const VectorFst<StdArc>&>(fst), &logfst);
ans = IsStochasticFst(logfst, delta, &log_min, &log_max);
} else {
KALDI_ERR << "This version currently supports ConstFst<StdArc> "
<< "or VectorFst<StdArc>";
}
if (min_sum) *min_sum = StdArc::Weight(log_min.Value());
if (max_sum) *max_sum = StdArc::Weight(log_max.Value());
return ans;
}
} // namespace fst.
#endif