pre-determinize-inl.h
30.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
// fstext/pre-determinize-inl.h
// Copyright 2009-2011 Microsoft Corporation
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_FSTEXT_PRE_DETERMINIZE_INL_H_
#define KALDI_FSTEXT_PRE_DETERMINIZE_INL_H_
/* Do not include this file directly. It is an implementation file included by PreDeterminize.h */
/*
Predeterminization
This is a function that makes an FST compactly determinizable by inserting symbols on the input
side as necessary for disambiguation. Note that we do not treat epsilon as a real symbol
when measuring determinizability in this sense. The extra symbols are added to the vocabulary,
on the input side; these are of the form (prefix)1, (prefix)2, and so on without limit, where
(prefix) is some prefix the user provides, e.g. '#' (the function checks that this will not
lead to conflicts with symbols already in the FST). The function tells us how many such
symbols it created.
Note that there is a paper "Generalized optimization algorithm for speech recognition
transducers" by Allauzen and Mohri, that deals with a similar issue, but this is a very
different algorithm that only aims to ensure determinizability, but not *compact*
determinizability.
Our algorithm is slightly heuristic, and probably not optimal, but does ensure that the
output is compactly determinizable, possibly at the expense of inserting unnecessary
symbols. We considered more sophisticated algorithms, but these were extremely
complicated and would give the same output for the kinds of inputs that we envisage.
Suppose the input FST is T. We want to ensure that in det(T), if we consider the
states of det(T) as weighted subsets of states of T, each state of T only appears once
in any given subset. This ensures that det(T) is no larger than T in an appropriate
sense. The way we do this is as follows. We identify all states in T that have
multiple input transitions (counting "being an initial state" as an input transition).
Let's call these "problematic" states. For a problematic state p we stipulate that it
can never appear in any state of det(T) unless that state equals (p, \bar{1}) [i.e. p,
unweighted]. In order to ensure this, we insert input symbols on the transitions to these
problematic states (this may necessitate adding extra states).
We also stipulate that the path through det(T) should always be sufficient to tell us
the path through T (and we insert extra symbols sufficient to make this so). This is to
simplify the algorithm, so that we don't have to consider the output symbols or weights
when predeterminizing.
The algorithm is as follows.
(A) Definitions
(i) Define a *problematic state* as a state that either has multiple input transitions,
or is an initial state and has at least one input transition.
(ii) For an arc a, define:
i[a] = input symbol on a
o[a] = output symbol on a
n[a] = dest-state of a
p[a] = origin-state of a
For a state q, define
E[q] = set of transitions leaving q.
For a set of states Q, define
E[Q] = set of transitions leaving some q in Q
(iii) For a state s, define Closure(s) as the union of state s, and all states t
that are reachable via sequences of arcs a such that i[a]=epsilon and n[a] is
not problematic.
For a set of states S, define Closure(S) as the union of the closures of
states s in S.
(B) Inputs and outputs.
(i) Inputs and preconditions. Input is an FST, which should have a symbol table compiled into
it, and a prefix (e.g. #) for symbols to be added. We check that the input FST is trim,
and that it does not have any symbols that appear on its arcs, that are equal to the prefix
followed by digits.
(ii) Outputs: The algorithm modifies the FST that is given to it, and returns the number of
the highest numbered "extra symbol" inserted. The extra symbols are numbered #1, #2 and
so on without limit (as integers). They are inserted into the symbol table in a sequential
way by calling AvailableKey()
for each in turn (this is stipulated in case we need to keep other symbol tables in sync).
(C) Sub-algorithm: Closure(S). This requires the array p(s), defined below, which is true
if s is problematic. This also requires, for efficiency, that the arcs be sorted on input
label.
Input: a set of states S. [plus, the fst and the array p].
Output: a set of states T.
Algorithm:
set T <-- S, Q <-- S.
while Q is nonempty:
pop a state s from Q.
for each transition a from state s with epsilon on the input label [we can
find these efficiently using the sorting on arcs]:
If p(n[a]) is false and n[a] is not in T:
Insert n[a] into T.
Add n[a] to Q.
return T.
(D) Main algorithm.
(i) (a) Check preconditions (FST is trim)
(b) Make sure there is just one final state (insert epsilon transitions as necessary).
(c) Sort arcs on input label (so epsilon arcs are at the start of arc lists).
(ii) Work out the set of problematic states by constructing a boolean array indexed by
states, i.e.
p(s)
which is true if the state is problematic. We can do this by constructing an array
t(s) to store the number of transitions into each state [adding one for the initial state],
and then setting p(s) = true if t(s) > 1.
Also create a boolean array d(s), defined for states, and set d(s) = false.
This array is purely for sanity-checking that we are processing each state exactly once.
(iii) Set up an array of integers m(a), indexed by arcs (how exactly we store these is
implementation-dependent, but this will probably be a hash from (state, arc-index) to
integers. m(a) will store the extra symbol, if any, to be added to that arc (or -1
if no such symbol; we can also simply have the arc not present in the hash). The
initial value of m(a) is -1 (if array), or undefined (if hash).
(iv) Initialize a set of sets-of-states S, and a queue of pairs Q, as follows.
The pairs in Q are a pair of (set-of-states, integer), where the integer
is the number of "special symbols" already used up for that state.
Note that we use a special indexing for the sets in both S and Q, rather than
using std::set. We use a sorted vector of StateId's. And in S, we index them
by the lowest-numbered state-id. Because each state is supposed to only ever
be a member of one set, if there is an attempt to add another, different set
with the same lowest-numbered state-id, we detect an error.
Let I be the single initial state (OpenFST only supports one).
We set:
S = { Closure(I) }
Push (Closure(I), 0) onto Q.
Then for each state s such that p(s) = true, and s is not an initial state:
S <-- S u { Closure(s) }
Push (Closure(s), 0) onto Q.
(v) While Q is nonempty:
(a) Pop pair (A, n) from Q (queue discipline is arbitrary).
(b) For each state s in A, check that d(s) is false, and set d(s) to true.
This is for sanity checking only.
(c)
Let S_\eps be the set of epsilon-transitions from members of A to problematic
states (i.e. S_\eps = \{ a \in E[A]: i[a]=\epsilon, p(n[a]) = true \}).
Next, we will define, for each t \neq \epsilon, S_t as the set of
transitions from some state s in S with t as the input label, i.e.:
S_t = \{ a \in E[A]: i[a] = t \}
We further define T_t and U_t as the subsets of S where the destination
state is problematic and non-problematic respectively, i.e:
T_t = \{ a \in E[A]: i[a] = t, p(n[a]) = true \}
U_t = \{ a \in E[A]: i[a] = t, p(n[a]) = false \}
The easiest way to obtain these sets is probably to have a hash indexed by
t that maps to a list of pairs (state, arc-offset) that stores S_t.
From this we can work out the sizes of T_t and U_t on the fly.
(d)
for each transition a in S_\eps:
m(a) <-- n # Will put symbol n on this transition.
n <-- n+1 # Note, same n as in pair (A, n)
(e)
next,
for each t\neq epsilon s.t. S_t is nonempty,
if |S_t| > 1 #if-statement is because if |S_t|=|T_t|=1, no need for prefix.
k = 0
for each transition a in T_t:
set m(a) to k.
set k = k+1
if |U_t| > 0
Let V_t be the set of destination-states of arcs in U_t.
if Closure(V_t) is not in S:
insert Closure(V_t) into S, and add the pair (Closure(V_t), k) to Q.
(vi) Check that for each state in the FST, d(s) = true.
(vii) Let n = max_a m(a). This is the highest-numbered extra symbol (extra symbols
start from zero, in this numbering which doesn't correspond to the symbol-table
numbering). Here we add n+1 extra symbols to the symbol table and store
the mappings from 0, 1, ... n to the symbol-id.
(viii) Set up a hash h from (state, int) to (state-id) such that
t = h(s, k)
will be the state-id of a newly-created state that has a transition to state s
with input-label #k.
(ix) For each arc a such that m(a) != 0:
If i[a] = epsilon (the input label is epsilon):
Change i[a] to #m(a). [i.e. prefix then digit m(a)]
Otherwise:
If t = h(n[a], m(a)) is not defined [where n[a] is the dest-state]:
create a new state t with a transition to n[a], with input-label #m(a) and
no output-label or weight. Set h(n[a], m(a)) = t.
Change n[a] to h(n[a], m(a)).
*/
namespace fst {
namespace pre_determinize_helpers {
// make it inline to avoid having to put it in a .cc file which most functions here
// could not go in.
inline bool HasBannedPrefixPlusDigits(SymbolTable *symTable, std::string prefix, std::string *bad_sym) {
// returns true if the symbol table contains any string consisting of this
// (possibly empty) prefix followed by a nonempty sequence of digits (0 to 9).
// requires symTable to be non-NULL.
// if bad_sym != NULL, puts the first bad symbol it finds in *bad_sym.
assert(symTable != NULL);
const char *prefix_ptr = prefix.c_str();
size_t prefix_len = strlen(prefix_ptr); // allowed to be zero but not encouraged.
for (SymbolTableIterator siter(*symTable); !siter.Done(); siter.Next()) {
const char *sym = siter.Symbol().c_str();
if (!strncmp(prefix_ptr, sym, prefix_len)) { // has prefix.
if (isdigit(sym[prefix_len])) { // we don't allow prefix followed by a digit, as a symbol.
// Has at least one digit.
size_t pos;
for (pos = prefix_len;sym[pos] != '\0'; pos++)
if (!isdigit(sym[pos])) break;
if (sym[pos] == '\0') { // All remaining characters were digits.
if (bad_sym != NULL) *bad_sym = (std::string) sym;
return true;
}
} // else OK because prefix was followed by '\0' or a non-digit.
}
}
return false; // doesn't have banned symbol.
}
template<class T> void CopySetToVector(const std::set<T> s, vector<T> *v) {
// adds members of s to v, in sorted order from lowest to highest
// (because the set was in sorted order).
assert(v != NULL);
v->resize(s.size());
typename std::set<T>::const_iterator siter = s.begin();
typename vector<T>::iterator viter = v->begin();
for (; siter != s.end(); ++siter, ++viter) {
assert(viter != v->end());
*viter = *siter;
}
}
// Warning. This function calls 'new'.
template<class T>
vector<T>* InsertMember(const vector<T> m, vector<vector<T>*> *S) {
assert(m.size() > 0);
T idx = m[0];
assert(idx>=(T)0 && idx < (T)S->size());
if ( (*S)[idx] != NULL) {
assert( *((*S)[idx]) == m );
// The vectors should be the same. Otherwise this is a bug in the algorithm.
// It could either be a programming error or a deeper conceptual bug.
return NULL; // nothing was inserted.
} else {
vector<T> *ret = (*S)[idx] = new vector<T>(m); // New copy of m.
return ret; // was inserted.
}
}
// See definition of Closure(S) in item A(iii) in the comment above. it's the set of states
// that are reachable from S via sequences of arcs a such that i[a]=epsilon and n[a] is
// not problematic. We assume that the fst is sorted on input label (so epsilon arcs first)
// The algorithm is described in section (C) above. We use the same variable for S and T.
template<class Arc> void Closure(MutableFst<Arc> *fst, std::set<typename Arc::StateId> *S,
const vector<bool> &pVec) {
typedef typename Arc::StateId StateId;
vector<StateId> Q;
CopySetToVector(*S, &Q);
while (Q.size() != 0) {
StateId s = Q.back();
Q.pop_back();
for (ArcIterator<MutableFst<Arc> > aiter(*fst, s); ! aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel != 0) break; // Break from the loop: due to sorting there will be no
// more transitions with epsilons as input labels.
if (!pVec[arc.nextstate]) { // Next state is not problematic -> we can use this transition.
pair< typename std::set<StateId>::iterator, bool > p = S->insert(arc.nextstate);
if (p.second) { // True means: was inserted into S (wasn't already there).
Q.push_back(arc.nextstate);
}
}
}
}
} // end function Closure.
} // end namespace pre_determinize_helpers.
template<class Arc, class Int>
void PreDeterminize(MutableFst<Arc> *fst,
typename Arc::Label first_new_sym,
vector<Int> *symsOut) {
typedef typename Arc::Label Label;
typedef typename Arc::StateId StateId;
typedef size_t ArcId; // Our own typedef, not standard OpenFst. Use size_t
// for compatibility with argument of ArcIterator::Seek().
typedef typename Arc::Weight Weight;
assert(first_new_sym > 0);
assert(fst != NULL);
if (fst->Start() == kNoStateId) return; // for empty FST, nothing to do.
assert(symsOut != NULL && symsOut->size() == 0); // we will output the symbols we add into this.
{ // (D)(i)(a): check is trim (i.e. connected, in OpenFST parlance).
KALDI_VLOG(2) << "PreDeterminize: Checking FST properties";
uint64 props = fst->Properties(kAccessible|kCoAccessible, true); // true-> computes properties if unknown at time when called.
if (props != (kAccessible|kCoAccessible)) { // All states are not both accessible and co-accessible...
KALDI_ERR << "PreDeterminize: FST is not trim";
}
}
{ // (D)(i)(b): make single final state.
KALDI_VLOG(2) << "PreDeterminize: creating single final state";
CreateSuperFinal(fst);
}
{ // (D)(i)(c): sort arcs on input.
KALDI_VLOG(2) << "PreDeterminize: sorting arcs on input";
ILabelCompare<Arc> icomp;
ArcSort(fst, icomp);
}
StateId n_states = 0, max_state = 0; // Compute n_states, max_state = highest-numbered state.
{ // compute nStates, maxStates.
for (StateIterator<MutableFst<Arc> > iter(*fst); ! iter.Done(); iter.Next()) {
StateId state = iter.Value();
assert(state>=0);
n_states++;
if (state > max_state) max_state = state;
}
KALDI_VLOG(2) << "PreDeterminize: n_states = "<<(n_states)<<", max_state ="<<(max_state);
}
vector<bool> p_vec(max_state+1, false); // compute this next.
{ // D(ii): computing the array p. ["problematic states, i.e. states with >1 input transition,
// counting being the initial state as an input transition"].
vector<bool> seen_vec(max_state+1, false); // rather than counting incoming transitions we just have a bool that says we saw at least one.
seen_vec[fst->Start()] = true;
for (StateIterator<MutableFst<Arc> > siter(*fst); ! siter.Done(); siter.Next()) {
for (ArcIterator<MutableFst<Arc> > aiter(*fst, siter.Value()); ! aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
assert(arc.nextstate>=0&&arc.nextstate<max_state+1);
if (seen_vec[arc.nextstate])
p_vec[arc.nextstate] = true; // now have >1 transition in, so problematic.
else
seen_vec[arc.nextstate] = true;
}
}
}
// D(iii): set up m(a)
std::map<pair<StateId, ArcId>, size_t> m_map;
// This is the array m, indexed by arcs. It maps to the index of the symbol we add.
// WARNING: we should be sure to clean up this memory before exiting. Do not return
// or throw an exception from this function, later than this point, without cleaning up!
// Note that the vectors are shared between Q and S (they "belong to" S.
vector<vector<StateId>* > S(max_state+1, (vector<StateId>*)(void*)0);
vector<pair<vector<StateId>*, size_t> > Q;
// D(iv): initialize S and Q.
{
vector<StateId> all_seed_states; // all "problematic" states, plus initial state (if not problematic).
if (!p_vec[fst->Start()])
all_seed_states.push_back(fst->Start());
for (StateId s = 0;s<=max_state; s++)
if (p_vec[s]) all_seed_states.push_back(s);
for (size_t idx = 0;idx < all_seed_states.size(); idx++) {
StateId s = all_seed_states[idx];
std::set<StateId> closure_s;
closure_s.insert(s); // insert "seed" state.
pre_determinize_helpers::Closure(fst, &closure_s, p_vec); // follow epsilons to non-problematic states.
// Closure in this case whis will usually not add anything, for typical topologies in speech
vector<StateId> closure_s_vec;
pre_determinize_helpers::CopySetToVector(closure_s, &closure_s_vec);
KALDI_ASSERT(closure_s_vec.size() != 0);
vector<StateId> *ptr = pre_determinize_helpers::InsertMember(closure_s_vec, &S);
KALDI_ASSERT(ptr != NULL); // Or conceptual bug or programming error.
Q.push_back(pair<vector<StateId>*, size_t>(ptr, 0));
}
}
vector<bool> d_vec(max_state+1, false); // "done vector". Purely for debugging.
size_t num_extra_det_states = 0;
// (D)(v)
while (Q.size() != 0) {
// (D)(v)(a)
pair<vector<StateId>*, size_t> cur_pair(Q.back());
Q.pop_back();
const vector<StateId> &A(*cur_pair.first);
size_t n =cur_pair.second; // next special symbol to add.
// (D)(v)(b)
for (size_t idx = 0;idx < A.size(); idx++) {
assert(d_vec[A[idx]] == false && "This state has been seen before. Algorithm error.");
d_vec[A[idx]] = true;
}
// From here is (D)(v)(c). We work out S_\eps and S_t (for t\neq eps)
// simultaneously at first.
map<Label, set<pair<pair<StateId, ArcId>, StateId> > > arc_hash;
// arc_hash is a hash with info of all arcs from states in the set A to
// non-problematic states.
// It is a map from ilabel to pair(pair(start-state, arc-offset), end-state).
// Here, arc-offset reflects the order in which we accessed the arc using the
// ArcIterator (zero for the first arc).
{ // This block sets up arc_hash
for (size_t idx = 0;idx < A.size(); idx++) {
StateId s = A[idx];
assert(s>=0 && s<=max_state);
ArcId arc_id = 0;
for (ArcIterator<MutableFst<Arc> > aiter(*fst, s); ! aiter.Done(); aiter.Next(), ++arc_id) {
const Arc &arc = aiter.Value();
pair<pair<StateId, ArcId>, StateId>
this_pair(pair<StateId, ArcId>(s, arc_id), arc.nextstate);
bool inserted = (arc_hash[arc.ilabel].insert(this_pair)).second;
assert(inserted); // Otherwise we had a duplicate.
}
}
}
// (D)(v)(d)
if (arc_hash.count(0) == 1) { // We have epsilon transitions out.
set<pair<pair<StateId, ArcId>, StateId> > &eps_set = arc_hash[0];
typedef typename set<pair<pair<StateId, ArcId>, StateId> >::iterator set_iter_t;
for (set_iter_t siter = eps_set.begin(); siter != eps_set.end(); ++siter) {
const pair<pair<StateId, ArcId>, StateId> &this_pr = *siter;
if (p_vec[this_pr.second]) { // Eps-transition to problematic state.
assert(m_map.count(this_pr.first) == 0);
m_map[this_pr.first] = n;
n++;
}
}
}
// (D)(v)(e)
{
typedef typename map<Label, set<pair<pair<StateId, ArcId>, StateId> > >::iterator map_iter_t;
typedef typename set<pair<pair<StateId, ArcId>, StateId> >::iterator set_iter_t2;
for (map_iter_t miter = arc_hash.begin(); miter != arc_hash.end(); ++miter) {
Label t = miter->first;
set<pair<pair<StateId, ArcId>, StateId> > &S_t = miter->second;
if (t != 0) { // For t != epsilon,
set<StateId> V_t; // set of destination non-problem states. Will create this set now.
// exists_noproblem is true iff |U_t| > 0.
size_t k = 0;
// First loop "for each transition a in T_t" (i.e. transitions to problematic states)
// The if-statement if (|S_t|>1) is pushed inside the loop, as the loop also computes
// the set V_t.
for (set_iter_t2 siter = S_t.begin(); siter != S_t.end(); ++siter) {
const pair<pair<StateId, ArcId>, StateId> &this_pr = *siter;
if (p_vec[this_pr.second]) { // only consider problematic states (just set T_t)
if (S_t.size() > 1) { // This is where we pushed the if-statement in.
assert(m_map.count(this_pr.first) == 0);
m_map[this_pr.first] = k;
k++;
num_extra_det_states++;
}
} else { // Create the set V_t.
V_t.insert(this_pr.second);
}
}
if (V_t.size() != 0) {
pre_determinize_helpers::Closure(fst, &V_t, p_vec); // follow epsilons to non-problematic states.
vector<StateId> closure_V_t_vec;
pre_determinize_helpers::CopySetToVector(V_t, &closure_V_t_vec);
vector<StateId> *ptr = pre_determinize_helpers::InsertMember(closure_V_t_vec, &S);
if (ptr != NULL) { // was inserted.
Q.push_back(pair<vector<StateId>*, size_t>(ptr, k));
}
}
}
}
}
} // end while (Q.size() != 0)
{ // (D)(vi): Check that for each state in the FST, d(s) = true.
for (StateIterator<MutableFst<Arc> > siter(*fst); ! siter.Done(); siter.Next()) {
StateId val = siter.Value();
assert(d_vec[val] == true);
}
}
{ // (D)(vii): compute symbol-table ID's.
// sets up symsOut array.
int64 n = -1;
for (typename map<pair<StateId, ArcId>, size_t>::iterator m_iter = m_map.begin();
m_iter != m_map.end();
++m_iter) {
n = std::max(n, (int64) m_iter->second); // m_iter->second is of type size_t.
}
// At this point n is the highest symbol-id (type size_t) of symbols we must add.
n++; // This is now the number of symbols we must add.
for (size_t i = 0;static_cast<int64>(i)<n;i++) symsOut->push_back(first_new_sym + i);
}
// (D)(viii): set up hash.
map<pair<StateId, size_t>, StateId> h_map;
{ // D(ix): add extra symbols! This is where the work gets done.
// Core part of this is below, search for (*)
size_t n_states_added = 0;
for (typename map<pair<StateId, ArcId>, size_t>::iterator m_iter = m_map.begin();
m_iter != m_map.end();
++m_iter) {
StateId state = m_iter->first.first;
ArcId arcpos = m_iter->first.second;
size_t m_a = m_iter->second;
MutableArcIterator<MutableFst<Arc> > aiter(fst, state);
aiter.Seek(arcpos);
Arc arc = aiter.Value();
// (*) core part here.
if (arc.ilabel == 0)
arc.ilabel = (*symsOut)[m_a];
else {
pair<StateId, size_t> pr(arc.nextstate, m_a);
if (!h_map.count(pr)) {
n_states_added++;
StateId newstate = fst->AddState();
assert(newstate>=0);
Arc new_arc( (*symsOut)[m_a], (Label)0, Weight::One(), arc.nextstate);
fst->AddArc(newstate, new_arc);
h_map[pr] = newstate;
}
arc.nextstate = h_map[pr];
}
aiter.SetValue(arc);
}
KALDI_VLOG(2) << "Added " <<(n_states_added)<<" new states and added/changed "<<(m_map.size())<<" arcs";
}
// Now free up memory.
for (size_t i = 0;i < S.size();i++)
delete S[i];
} // end function PreDeterminize
template<class Label> void CreateNewSymbols(SymbolTable *input_sym_table, int nSym,
std::string prefix, vector<Label> *symsOut) {
// Creates nSym new symbols named (prefix)0, (prefix)1 and so on.
// Crashes if it cannot create them because one or more of them were in the symbol
// table already.
assert(symsOut && symsOut->size() == 0);
for (int i = 0;i < nSym;i++) {
std::stringstream ss; ss << prefix << i;
std::string str = ss.str();
if (input_sym_table->Find(str) != -1) { // should not be present.
}
assert(symsOut);
symsOut->push_back( (Label) input_sym_table->AddSymbol(str));
}
}
// see pre-determinize.h for documentation.
template<class Arc> void AddSelfLoops(MutableFst<Arc> *fst, vector<typename Arc::Label> &isyms,
vector<typename Arc::Label> &osyms) {
assert(fst != NULL);
assert(isyms.size() == osyms.size());
typedef typename Arc::Label Label;
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
size_t n = isyms.size();
if (n == 0) return; // Nothing to do.
// {
// the following declarations and statements are for quick detection of these
// symbols, which is purely for debugging/checking purposes.
Label isyms_min = *std::min_element(isyms.begin(), isyms.end()),
isyms_max = *std::max_element(isyms.begin(), isyms.end()),
osyms_min = *std::min_element(osyms.begin(), osyms.end()),
osyms_max = *std::max_element(osyms.begin(), osyms.end());
std::set<Label> isyms_set, osyms_set;
for (size_t i = 0;i < isyms.size();i++) {
assert(isyms[i] > 0 && osyms[i] > 0); // should not have epsilon or invalid symbols.
isyms_set.insert(isyms[i]);
osyms_set.insert(osyms[i]);
}
assert(isyms_set.size() == n && osyms_set.size() == n);
// } end block.
for (StateIterator<MutableFst<Arc> > siter(*fst); ! siter.Done(); siter.Next()) {
StateId state = siter.Value();
bool this_state_needs_self_loops = (fst->Final(state) != Weight::Zero());
for (ArcIterator<MutableFst<Arc> > aiter(*fst, state); ! aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
// If one of the following asserts fails, it means that the input FST already had the symbols
// we are inserting. This is contrary to the preconditions of this algorithm.
assert(!(arc.ilabel>=isyms_min && arc.ilabel<=isyms_max && isyms_set.count(arc.ilabel) != 0));
assert(!(arc.olabel>=osyms_min && arc.olabel<=osyms_max && osyms_set.count(arc.olabel) != 0));
if (arc.olabel != 0) // Has non-epsilon output label -> need self loops.
this_state_needs_self_loops = true;
}
if (this_state_needs_self_loops) {
for (size_t i = 0;i < n;i++) {
Arc arc;
arc.ilabel = isyms[i];
arc.olabel = osyms[i];
arc.weight = Weight::One();
arc.nextstate = state;
fst->AddArc(state, arc);
}
}
}
}
template<class Arc>
int64 DeleteISymbols(MutableFst<Arc> *fst, vector<typename Arc::Label> isyms) {
// We could do this using the Mapper concept, but this is much easier to understand.
typedef typename Arc::Label Label;
typedef typename Arc::StateId StateId;
int64 num_deleted = 0;
if (isyms.size() == 0) return 0;
Label isyms_min = *std::min_element(isyms.begin(), isyms.end()),
isyms_max = *std::max_element(isyms.begin(), isyms.end());
bool isyms_consecutive = (isyms_max+1-isyms_min == static_cast<Label>(isyms.size()));
std::set<Label> isyms_set;
if (!isyms_consecutive)
for (size_t i = 0;i < isyms.size();i++)
isyms_set.insert(isyms[i]);
for (StateIterator<MutableFst<Arc> > siter(*fst); ! siter.Done(); siter.Next()) {
StateId state = siter.Value();
for (MutableArcIterator<MutableFst<Arc> > aiter(fst, state); ! aiter.Done(); aiter.Next()) {
const Arc &arc = aiter.Value();
if (arc.ilabel >= isyms_min && arc.ilabel <= isyms_max) {
if (isyms_consecutive || isyms_set.count(arc.ilabel) != 0) {
num_deleted++;
Arc mod_arc (arc);
mod_arc.ilabel = 0; // change label to epsilon.
aiter.SetValue(mod_arc);
}
}
}
}
return num_deleted;
}
template<class Arc>
typename Arc::StateId CreateSuperFinal(MutableFst<Arc> *fst) {
typedef typename Arc::StateId StateId;
typedef typename Arc::Weight Weight;
assert(fst != NULL);
StateId num_states = fst->NumStates();
StateId num_final = 0;
vector<StateId> final_states;
for (StateId s = 0; s < num_states; s++) {
if (fst->Final(s) != Weight::Zero()) {
num_final++;
final_states.push_back(s);
}
}
if (final_states.size() == 1) {
if (fst->Final(final_states[0]) == Weight::One()) {
ArcIterator<MutableFst<Arc> > iter(*fst, final_states[0]);
if (iter.Done()) {
// We already have a final state w/ no transitions out and unit weight.
// So we're done.
return final_states[0];
}
}
}
StateId final_state = fst->AddState();
fst->SetFinal(final_state, Weight::One());
for (size_t idx = 0;idx < final_states.size(); idx++) {
StateId s = final_states[idx];
Weight weight = fst->Final(s);
fst->SetFinal(s, Weight::Zero());
Arc arc;
arc.ilabel = 0;
arc.olabel = 0;
arc.nextstate = final_state;
arc.weight = weight;
fst->AddArc(s, arc);
}
return final_state;
}
} // namespace fst
#endif // KALDI_FSTEXT_PRE_DETERMINIZE_INL_H_