full-gmm.h
9.39 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// gmm/full-gmm.h
// Copyright 2009-2011 Jan Silovsky;
// Saarland University (Author: Arnab Ghoshal);
// Microsoft Corporation
// 2012 Arnab Ghoshal
// 2013 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_GMM_FULL_GMM_H_
#define KALDI_GMM_FULL_GMM_H_
#include <utility>
#include <vector>
#include "base/kaldi-common.h"
#include "gmm/model-common.h"
#include "matrix/matrix-lib.h"
namespace kaldi {
class DiagGmm;
class FullGmmNormal; // a simplified representation, see full-gmm-normal.h
/// Definition for Gaussian Mixture Model with full covariances
class FullGmm {
/// this makes it a little easier to modify the internals
friend class FullGmmNormal;
public:
/// Empty constructor.
FullGmm() : valid_gconsts_(false) {}
explicit FullGmm(const FullGmm &gmm): valid_gconsts_(false) {
CopyFromFullGmm(gmm);
}
FullGmm(int32 nMix, int32 dim): valid_gconsts_(false) { Resize(nMix, dim); }
/// Resizes arrays to this dim. Does not initialize data.
void Resize(int32 nMix, int32 dim);
/// Returns the number of mixture components in the GMM
int32 NumGauss() const { return weights_.Dim(); }
/// Returns the dimensionality of the Gaussian mean vectors
int32 Dim() const { return means_invcovars_.NumCols(); }
/// Copies from given FullGmm
void CopyFromFullGmm(const FullGmm &fullgmm);
/// Copies from given DiagGmm
void CopyFromDiagGmm(const DiagGmm &diaggmm);
/// Returns the log-likelihood of a data point (vector) given the GMM
BaseFloat LogLikelihood(const VectorBase<BaseFloat> &data) const;
/// Outputs the per-component contributions to the
/// log-likelihood
void LogLikelihoods(const VectorBase<BaseFloat> &data,
Vector<BaseFloat> *loglikes) const;
/// Outputs the per-component log-likelihoods of a subset of mixture
/// components. Note: indices.size() will equal loglikes->Dim() at output.
/// loglikes[i] will correspond to the log-likelihood of the Gaussian
/// indexed indices[i].
void LogLikelihoodsPreselect(const VectorBase<BaseFloat> &data,
const std::vector<int32> &indices,
Vector<BaseFloat> *loglikes) const;
/// Get gaussian selection information for one frame. Returns log-like for
/// this frame. Output is the best "num_gselect" indices, sorted from best to
/// worst likelihood. If "num_gselect" > NumGauss(), sets it to NumGauss().
BaseFloat GaussianSelection(const VectorBase<BaseFloat> &data,
int32 num_gselect,
std::vector<int32> *output) const;
/// Get gaussian selection information for one frame. Returns log-like for
/// this frame. Output is the best "num_gselect" indices that were
/// preselected, sorted from best to worst likelihood. If "num_gselect" >
/// NumGauss(), sets it to NumGauss().
BaseFloat GaussianSelectionPreselect(const VectorBase<BaseFloat> &data,
const std::vector<int32> &preselect,
int32 num_gselect,
std::vector<int32> *output) const;
/// Computes the posterior probabilities of all Gaussian components given
/// a data point. Returns the log-likehood of the data given the GMM.
BaseFloat ComponentPosteriors(const VectorBase<BaseFloat> &data,
VectorBase<BaseFloat> *posterior) const;
/// Computes the contribution log-likelihood of a data point from a single
/// Gaussian component. NOTE: Currently we make no guarantees about what
/// happens if one of the variances is zero.
BaseFloat ComponentLogLikelihood(const VectorBase<BaseFloat> &data,
int32 comp_id) const;
/// Sets the gconsts. Returns the number that are "invalid" e.g. because of
/// zero weights or variances.
int32 ComputeGconsts();
/// Merge the components and remember the order in which the components were
/// merged (flat list of pairs)
void Split(int32 target_components, float perturb_factor,
std::vector<int32> *history = NULL);
/// Perturbs the component means with a random vector multiplied by the
/// pertrub factor.
void Perturb(float perturb_factor);
/// Merge the components and remember the order in which the components were
/// merged (flat list of pairs)
void Merge(int32 target_components,
std::vector<int32> *history = NULL);
/// Merge the components and remember the order in which the components were
/// merged (flat list of pairs); this version only considers merging
/// pairs in "preselect_pairs" (or their descendants after merging).
/// This is for efficiency, for large models. Returns the delta likelihood.
BaseFloat MergePreselect(int32 target_components,
const std::vector<std::pair<int32, int32> > &preselect_pairs);
void Write(std::ostream &os, bool binary) const;
void Read(std::istream &is, bool binary);
/// this = rho x source + (1-rho) x this
void Interpolate(BaseFloat rho, const FullGmm &source,
GmmFlagsType flags = kGmmAll);
/// Const accessors
const Vector<BaseFloat> &gconsts() const { return gconsts_; }
const Vector<BaseFloat> &weights() const { return weights_; }
const Matrix<BaseFloat> &means_invcovars() const { return means_invcovars_; }
const std::vector<SpMatrix<BaseFloat> > &inv_covars() const {
return inv_covars_; }
/// Non-const accessors
Matrix<BaseFloat> &means_invcovars() { return means_invcovars_; }
std::vector<SpMatrix<BaseFloat> > &inv_covars() { return inv_covars_; }
/// Mutators for both float or double
template<class Real>
void SetWeights(const Vector<Real> &w); ///< Set mixure weights
/// Use SetMeans to update only the Gaussian means (and not variances)
template<class Real>
void SetMeans(const Matrix<Real> &m);
/// Use SetInvCovarsAndMeans if updating both means and (inverse) covariances
template<class Real>
void SetInvCovarsAndMeans(const std::vector<SpMatrix<Real> > &invcovars,
const Matrix<Real> &means);
/// Use this if setting both, in the class's native format.
template<class Real>
void SetInvCovarsAndMeansInvCovars(const std::vector<SpMatrix<Real> > &invcovars,
const Matrix<Real> &means_invcovars);
/// Set the (inverse) covariances and recompute means_invcovars_
template<class Real>
void SetInvCovars(const std::vector<SpMatrix<Real> > &v);
/// Accessor for covariances.
template<class Real>
void GetCovars(std::vector<SpMatrix<Real> > *v) const;
/// Accessor for means.
template<class Real>
void GetMeans(Matrix<Real> *m) const;
/// Accessor for covariances and means
template<class Real>
void GetCovarsAndMeans(std::vector< SpMatrix<Real> > *covars,
Matrix<Real> *means) const;
/// Mutators for single component, supports float or double
/// Removes single component from model
void RemoveComponent(int32 gauss, bool renorm_weights);
/// Removes multiple components from model; "gauss" must not have dups.
void RemoveComponents(const std::vector<int32> &gauss, bool renorm_weights);
/// Accessor for component mean
template<class Real>
void GetComponentMean(int32 gauss, VectorBase<Real> *out) const;
private:
/// Equals log(weight) - 0.5 * (log det(var) + mean'*inv(var)*mean)
Vector<BaseFloat> gconsts_;
bool valid_gconsts_; ///< Recompute gconsts_ if false
Vector<BaseFloat> weights_; ///< weights (not log).
std::vector<SpMatrix<BaseFloat> > inv_covars_; ///< Inverse covariances
Matrix<BaseFloat> means_invcovars_; ///< Means times inverse covariances
/// Resizes arrays to this dim. Does not initialize data.
void ResizeInvCovars(int32 nMix, int32 dim);
// merged_components_logdet computes logdet for merged components
// f1, f2 are first-order stats (normalized by zero-order stats)
// s1, s2 are second-order stats (normalized by zero-order stats)
BaseFloat MergedComponentsLogdet(BaseFloat w1, BaseFloat w2,
const VectorBase<BaseFloat> &f1,
const VectorBase<BaseFloat> &f2,
const SpMatrix<BaseFloat> &s1,
const SpMatrix<BaseFloat> &s2) const;
const FullGmm &operator=(const FullGmm &other); // Disallow assignment.
};
/// ostream operator that calls FullGmm::Write()
std::ostream &
operator << (std::ostream & rOut, const kaldi::FullGmm &gmm);
/// istream operator that calls FullGmm::Read()
std::istream &
operator >> (std::istream & rIn, kaldi::FullGmm &gmm);
} // End namespace kaldi
#include "gmm/full-gmm-inl.h" // templated functions.
#endif // KALDI_GMM_FULL_GMM_H_