indirect-diff-diag-gmm.cc
11.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// gmm/indirect-diff-diag-gmm.cc
// Copyright 2012 Johns Hopkins University (Author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "gmm/indirect-diff-diag-gmm.h"
namespace kaldi {
void GetSingleStatsDerivative(
double ml_count, double ml_x_stats, double ml_x2_stats,
double disc_count, double disc_x_stats, double disc_x2_stats,
double model_mean, double model_var, BaseFloat min_variance,
double *ml_x_stats_deriv, double *ml_x2_stats_deriv) {
double model_inv_var = 1.0/model_var,
model_inv_var_sq = model_inv_var*model_inv_var,
model_mean_sq = model_mean*model_mean;
// First get derivative of discriminative objective function w.r.t. the
// model mean and variance.
// Below: eqs. 11 and 13 in 2005 ICASSP paper on fMPE. Note: the factor of
// kappa (in the fMPE case) is assumed to have been accounted for by
// scaling the num and den accs at the command-line level. We substituted
// eq. 12 into 13 and rearranged to get the second expression.
double diff_wrt_model_mean = (1.0/model_var) * (disc_x_stats - model_mean*disc_count),
diff_wrt_model_var =
0.5 * ((disc_x2_stats - 2*model_mean*disc_x_stats + disc_count*model_mean_sq)
* model_inv_var_sq
- disc_count*model_inv_var);
double stats_mean = ml_x_stats / ml_count,
stats_var = ml_x2_stats / ml_count - (ml_x_stats / ml_count)*(ml_x_stats / ml_count);
// We assume the "rescaling" update will be as follows. Apologies if this is
// a bit confusing. The idea is that if the mean and var from (stats versus
// model) differ we assume that the model will be updated with
// DoRescalingUpdate(), which takes two sets of ML accs (old and new). The old ML
// accs given to the update will be the current ml accumulators we have here in
// this function, and the new ML accs will be affected by change in fMPE transform.
// The update in DoRescalingUpdate() will preserve any current difference between
// the ml stats and the model [represented as a shift in mean and factor in variance].
// Concretely: the update in DoRescalingUpdate() will do:
//
// new_model_mean := old_model_mean + new_stats_mean - old_stats_mean (eq. 1)
// new_model_var := max(min_variance, old_model_var * new_stats_var / old_stats_var). (eq. 2)
//
// We're differentiating back through this process to new_stats_mean.
// If the model and the stats were actually the same (e.g. we had been doing ML updates),
// then all this is equivalent to what was in the original fMPE paper. It's just
// extended to make sense outside of that scenario where you're doing ML.
double diff_wrt_stats_mean = diff_wrt_model_mean; // This comes from eq. 1 above.
double diff_wrt_stats_var;
if (model_var <= min_variance*1.01) {
diff_wrt_stats_var = 0.0; // model would be "pinned" at minimum variance.
KALDI_VLOG(2) << "Variance derivative is zero (min variance)";
} else {
diff_wrt_stats_var = diff_wrt_model_var * model_var / stats_var; // note:
// the factor "model_var / stats_var" comes from "old_model_var / old_stats_var" in eq. 2.
// Also note: the {old_,new_} versions of variables are numerically the same here, at the
// point where we're differentiating.
}
// The next equations don't appear in the paper but represent the backpropagation
// of the derivative through the equations:
// stats_mean := ml_x_stats / ml_count
// stats_var := ml_x2_stats / ml_count - (ml_x_stats/ml_count)^2
// [we use stats_mean = ml_x_stats/ml_count, here].
*ml_x_stats_deriv = diff_wrt_stats_mean / ml_count - 2 * diff_wrt_stats_var * stats_mean / ml_count;
*ml_x2_stats_deriv = diff_wrt_stats_var / ml_count;
}
// The function for just one GMM. We don't export it as it's not currently
// needed outside this file.
void GetStatsDerivative(const DiagGmm &gmm,
const AccumDiagGmm &num_acc,
const AccumDiagGmm &den_acc,
const AccumDiagGmm &ml_acc,
BaseFloat min_variance,
BaseFloat min_gaussian_occupancy,
AccumDiagGmm *out_accs) {
out_accs->Resize(gmm, kGmmAll);
int32 num_gauss = gmm.NumGauss(), dim = gmm.Dim();
KALDI_ASSERT(num_gauss == num_acc.NumGauss() && dim == num_acc.Dim());
KALDI_ASSERT(num_gauss == den_acc.NumGauss()); // don't check den dim--
// in the "compressed" form of stats (where num acc stores diff),
// it could be zero.
KALDI_ASSERT(num_gauss == ml_acc.NumGauss() && dim == ml_acc.Dim());
KALDI_ASSERT((ml_acc.Flags() & (kGmmMeans|kGmmVariances)) ==
(kGmmMeans|kGmmVariances));
KALDI_ASSERT((num_acc.Flags() & (kGmmMeans|kGmmVariances)) ==
(kGmmMeans|kGmmVariances));
DiagGmmNormal gmm_normal(gmm);
// if have_den_stats == false, we assume the num and den have been
// "compressed" by putting the difference in mean and var stats in num.
bool have_den_stats = ((den_acc.Flags() & (kGmmMeans|kGmmVariances)) != 0);
for (int32 gauss = 0; gauss < num_gauss; gauss++) {
Vector<double> x_stats_deriv(dim), x2_stats_deriv(dim);
double num_count = num_acc.occupancy()(gauss),
den_count = den_acc.occupancy()(gauss),
ml_count = ml_acc.occupancy()(gauss);
if (ml_count <= min_gaussian_occupancy) {
// This Gaussian won't be updated since has small count
KALDI_WARN << "Skipping Gaussian because very small ML count: (num,den,ml) = "
<< num_count << ", " << den_count << ", " << ml_count;
} else {
double disc_count = num_count - den_count;
for (int32 d = 0; d < dim; d++) {
double disc_x_acc = num_acc.mean_accumulator()(gauss, d)
- (have_den_stats ? den_acc.mean_accumulator()(gauss, d) : 0.0),
disc_x2_acc = num_acc.variance_accumulator()(gauss, d)
- (have_den_stats ? den_acc.variance_accumulator()(gauss, d) : 0.0),
ml_x_acc = ml_acc.mean_accumulator()(gauss, d),
ml_x2_acc = ml_acc.variance_accumulator()(gauss, d),
model_mean = gmm_normal.means_(gauss, d),
model_var = gmm_normal.vars_(gauss, d);
double x_acc_deriv = 0.0, x2_acc_deriv = 0.0;
GetSingleStatsDerivative(ml_count, ml_x_acc, ml_x2_acc,
disc_count, disc_x_acc, disc_x2_acc,
model_mean, model_var, min_variance,
&x_acc_deriv, &x2_acc_deriv);
x_stats_deriv(d) = x_acc_deriv;
x2_stats_deriv(d) = x2_acc_deriv;
}
// set the stats to these quantities (we're adding, but the stats
// are currently zero).
out_accs->AddStatsForComponent(gauss, 0.0, x_stats_deriv, x2_stats_deriv);
}
}
}
void GetStatsDerivative(const AmDiagGmm &gmm,
const AccumAmDiagGmm &num_accs, // for MMI, would equal ml accs.
const AccumAmDiagGmm &den_accs,
const AccumAmDiagGmm &ml_accs,
BaseFloat min_variance,
BaseFloat min_gaussian_occupancy,
AccumAmDiagGmm *out_accs) {
out_accs->Init(gmm, kGmmAll);
int32 num_pdfs = gmm.NumPdfs();
KALDI_ASSERT(num_accs.NumAccs() == num_pdfs);
KALDI_ASSERT(den_accs.NumAccs() == num_pdfs);
KALDI_ASSERT(ml_accs.NumAccs() == num_pdfs);
for (int32 pdf = 0; pdf < num_pdfs; pdf++)
GetStatsDerivative(gmm.GetPdf(pdf), num_accs.GetAcc(pdf), den_accs.GetAcc(pdf),
ml_accs.GetAcc(pdf), min_variance, min_gaussian_occupancy,
&(out_accs->GetAcc(pdf)));
}
void DoRescalingUpdate(const AccumDiagGmm &old_ml_acc,
const AccumDiagGmm &new_ml_acc,
BaseFloat min_variance,
BaseFloat min_gaussian_occupancy,
DiagGmm *gmm,
double *tot_count,
double *tot_divergence) {
int32 num_gauss = gmm->NumGauss(), dim = gmm->Dim();
KALDI_ASSERT(old_ml_acc.NumGauss() == num_gauss &&
old_ml_acc.Dim() == dim);
KALDI_ASSERT(new_ml_acc.NumGauss() == num_gauss &&
new_ml_acc.Dim() == dim);
KALDI_ASSERT((old_ml_acc.Flags() & (kGmmMeans|kGmmVariances)) ==
(kGmmMeans|kGmmVariances));
KALDI_ASSERT((new_ml_acc.Flags() & (kGmmMeans|kGmmVariances)) ==
(kGmmMeans|kGmmVariances));
DiagGmmNormal gmm_normal(*gmm);
for (int32 gauss = 0; gauss < num_gauss; gauss++) {
double old_ml_count = old_ml_acc.occupancy()(gauss),
new_ml_count = new_ml_acc.occupancy()(gauss);
if (old_ml_count <= min_gaussian_occupancy ||
new_ml_count <= min_gaussian_occupancy) {
KALDI_WARN << "Gaussian being skipped because it has small count: (old,new) = "
<< old_ml_count << ", " << new_ml_count;
continue;
}
*tot_count += new_ml_count;
for (int32 d = 0; d < dim; d++) {
double old_model_mean = gmm_normal.means_(gauss, d),
old_model_var = gmm_normal.vars_(gauss, d),
old_ml_mean = old_ml_acc.mean_accumulator()(gauss, d) / old_ml_count,
old_ml_var = old_ml_acc.variance_accumulator()(gauss, d) / old_ml_count
- old_ml_mean*old_ml_mean,
new_ml_mean = new_ml_acc.mean_accumulator()(gauss, d) / new_ml_count,
new_ml_var = new_ml_acc.variance_accumulator()(gauss, d) / new_ml_count
- new_ml_mean*new_ml_mean,
new_model_mean = old_model_mean + new_ml_mean - old_ml_mean,
new_model_var = std::max(static_cast<double>(min_variance),
old_model_var * new_ml_var / old_ml_var);
double divergence =
0.5 *(((new_model_mean-old_model_mean)*(new_model_mean-old_model_mean) +
new_model_var - old_model_var)/old_model_var +
Log(old_model_var / new_model_var));
if (divergence < 0.0)
KALDI_WARN << "Negative divergence " << divergence;
*tot_divergence += divergence * new_ml_count;
gmm_normal.means_(gauss, d) = new_model_mean;
gmm_normal.vars_(gauss, d) = new_model_var;
}
}
gmm_normal.CopyToDiagGmm(gmm);
}
void DoRescalingUpdate(const AccumAmDiagGmm &old_ml_accs,
const AccumAmDiagGmm &new_ml_accs,
BaseFloat min_variance,
BaseFloat min_gaussian_occupancy,
AmDiagGmm *am_gmm) {
int32 num_pdfs = am_gmm->NumPdfs();
KALDI_ASSERT(old_ml_accs.NumAccs() == num_pdfs);
KALDI_ASSERT(new_ml_accs.NumAccs() == num_pdfs);
double tot_count = 0.0, tot_divergence = 0.0;
for (int32 pdf = 0; pdf < num_pdfs; pdf++)
DoRescalingUpdate(old_ml_accs.GetAcc(pdf), new_ml_accs.GetAcc(pdf),
min_variance, min_gaussian_occupancy, &am_gmm->GetPdf(pdf),
&tot_count, &tot_divergence);
KALDI_LOG << "K-L divergence from old to new model is "
<< (tot_divergence/tot_count) << " over "
<< tot_count << " frames.";
am_gmm->ComputeGconsts();
}
} // End of namespace kaldi