mle-full-gmm-test.cc
16.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
// gmm/mle-full-gmm-test.cc
// Copyright 2009-2011 Jan Silovsky; Saarland University;
// Microsoft Corporation; Yanmin Qian; Georg Stemmer
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "gmm/full-gmm.h"
#include "gmm/diag-gmm.h"
#include "gmm/model-common.h"
#include "gmm/mle-full-gmm.h"
#include "gmm/mle-diag-gmm.h"
#include "util/stl-utils.h"
#include "util/kaldi-io.h"
using namespace kaldi;
void TestComponentAcc(const FullGmm &gmm, const Matrix<BaseFloat> &feats) {
MleFullGmmOptions config;
AccumFullGmm est_atonce; // updates all components
AccumFullGmm est_compwise; // updates single components
// Initialize estimators
est_atonce.Resize(gmm.NumGauss(), gmm.Dim(), kGmmAll);
est_atonce.SetZero(kGmmAll);
est_compwise.Resize(gmm.NumGauss(),
gmm.Dim(), kGmmAll);
est_compwise.SetZero(kGmmAll);
// accumulate estimators
for (int32 i = 0; i < feats.NumRows(); i++) {
est_atonce.AccumulateFromFull(gmm, feats.Row(i), 1.0F);
Vector<BaseFloat> post(gmm.NumGauss());
gmm.ComponentPosteriors(feats.Row(i), &post);
for (int32 m = 0; m < gmm.NumGauss(); m++) {
est_compwise.AccumulateForComponent(feats.Row(i), m, post(m));
}
}
FullGmm gmm_atonce; // model with all components accumulated together
FullGmm gmm_compwise; // model with each component accumulated separately
gmm_atonce.Resize(gmm.NumGauss(), gmm.Dim());
gmm_compwise.Resize(gmm.NumGauss(), gmm.Dim());
MleFullGmmUpdate(config, est_atonce, kGmmAll, &gmm_atonce, NULL, NULL);
MleFullGmmUpdate(config, est_compwise, kGmmAll, &gmm_compwise, NULL, NULL);
// the two ways of updating should result in the same model
double loglike0 = 0.0;
double loglike1 = 0.0;
double loglike2 = 0.0;
for (int32 i = 0; i < feats.NumRows(); i++) {
loglike0 += static_cast<double>(gmm.LogLikelihood(feats.Row(i)));
loglike1 += static_cast<double>(gmm_atonce.LogLikelihood(feats.Row(i)));
loglike2 += static_cast<double>(gmm_compwise.LogLikelihood(feats.Row(i)));
}
std::cout << "Per-frame log-likelihood before update = "
<< (loglike0/feats.NumRows()) << '\n';
std::cout << "Per-frame log-likelihood (accumulating at once) = "
<< (loglike1/feats.NumRows()) << '\n';
std::cout << "Per-frame log-likelihood (accumulating component-wise) = "
<< (loglike2/feats.NumRows()) << '\n';
AssertEqual(loglike1, loglike2, 1.0e-6);
if (est_atonce.NumGauss() != gmm.NumGauss()) {
KALDI_WARN << "Unable to pass test_update_flags() test because of "
"component removal during Update() call (this is normal)";
return;
} else {
KALDI_ASSERT(loglike1 >= loglike0 - (std::abs(loglike1)+std::abs(loglike0))*1.0e-06);
KALDI_ASSERT(loglike2 >= loglike0 - (std::abs(loglike2)+std::abs(loglike0))*1.0e-06);
}
}
void rand_posdef_spmatrix(size_t dim, SpMatrix<BaseFloat> *matrix,
TpMatrix<BaseFloat> *matrix_sqrt = NULL,
BaseFloat *logdet = NULL) {
// generate random (non-singular) matrix
Matrix<BaseFloat> tmp(dim, dim);
while (1) {
tmp.SetRandn();
if (tmp.Cond() < 100) break;
std::cout << "Condition number of random matrix large "
<< static_cast<float>(tmp.Cond()) << ", trying again (this is normal)"
<< '\n';
}
// tmp * tmp^T will give positive definite matrix
matrix->AddMat2(1.0, tmp, kNoTrans, 0.0);
if (matrix_sqrt != NULL) matrix_sqrt->Cholesky(*matrix);
if (logdet != NULL) *logdet = matrix->LogPosDefDet();
if ((matrix_sqrt == NULL) && (logdet == NULL)) {
TpMatrix<BaseFloat> sqrt(dim);
sqrt.Cholesky(*matrix);
}
}
BaseFloat GetLogLikeTest(const FullGmm &gmm,
const VectorBase<BaseFloat> &feats,
bool print_eigs) {
BaseFloat log_like_sum = -1.0e+10;
Matrix<BaseFloat> means;
gmm.GetMeans(&means);
const std::vector<SpMatrix<BaseFloat> > inv_covars = gmm.inv_covars();
if (print_eigs)
for (size_t i = 0; i < inv_covars.size(); i++) {
SpMatrix<BaseFloat> cov(inv_covars[i]);
size_t dim = cov.NumRows();
cov.Invert();
std::cout << i << "'th component eigs are: ";
Vector<BaseFloat> s(dim);
Matrix<BaseFloat> P(dim, dim);
cov.SymPosSemiDefEig(&s, &P);
std::cout << s;
}
for (int32 i = 0; i < gmm.NumGauss(); i++) {
BaseFloat logdet = -(inv_covars[i].LogPosDefDet());
BaseFloat log_like = Log(gmm.weights()(i))
-0.5 * (gmm.Dim() * M_LOG_2PI + logdet);
Vector<BaseFloat> offset(feats);
offset.AddVec(-1.0, means.Row(i));
log_like -= 0.5 * VecSpVec(offset, inv_covars[i], offset);
log_like_sum = LogAdd(log_like_sum, log_like);
}
return log_like_sum;
}
void test_flags_driven_update(const FullGmm &gmm,
const Matrix<BaseFloat> &feats,
GmmFlagsType flags) {
MleFullGmmOptions config;
AccumFullGmm est_gmm_allp; // updates all params
// let's trust that all-params update works
AccumFullGmm est_gmm_somep; // updates params indicated by flags
// warm-up estimators
est_gmm_allp.Resize(gmm.NumGauss(), gmm.Dim(), kGmmAll);
est_gmm_allp.SetZero(kGmmAll);
est_gmm_somep.Resize(gmm.NumGauss(), gmm.Dim(), flags);
est_gmm_somep.SetZero(flags);
// accumulate estimators
for (int32 i = 0; i < feats.NumRows(); i++) {
est_gmm_allp.AccumulateFromFull(gmm, feats.Row(i), 1.0F);
est_gmm_somep.AccumulateFromFull(gmm, feats.Row(i), 1.0F);
}
FullGmm gmm_all_update; // model with all params updated
FullGmm gmm_some_update; // model with some params updated
gmm_all_update.CopyFromFullGmm(gmm); // init with orig. model
gmm_some_update.CopyFromFullGmm(gmm); // init with orig. model
MleFullGmmUpdate(config, est_gmm_allp, kGmmAll, &gmm_all_update, NULL, NULL);
MleFullGmmUpdate(config, est_gmm_somep, flags, &gmm_some_update, NULL, NULL);
if (gmm_all_update.NumGauss() != gmm.NumGauss()) {
KALDI_WARN << "Unable to pass test_update_flags() test because of "
"component removal during Update() call (this is normal)";
return;
}
// now back-off the gmm_all_update params that were not updated
// in gmm_some_update to orig.
if (~flags & kGmmWeights)
gmm_all_update.SetWeights(gmm.weights());
if (~flags & kGmmMeans) {
Matrix<BaseFloat> means(gmm.NumGauss(), gmm.Dim());
gmm.GetMeans(&means);
gmm_all_update.SetMeans(means);
}
if (~flags & kGmmVariances) {
std::vector<SpMatrix<BaseFloat> > vars(gmm.NumGauss());
for (int32 i = 0; i < gmm.NumGauss(); i++)
vars[i].Resize(gmm.Dim());
gmm.GetCovars(&vars);
for (int32 i = 0; i < gmm.NumGauss(); i++)
vars[i].InvertDouble();
gmm_all_update.SetInvCovars(vars);
}
gmm_some_update.ComputeGconsts();
gmm_all_update.ComputeGconsts();
// now both models gmm_all_update, gmm_all_update have the same params updated
// compute loglike for models for check
double loglike0 = 0.0;
double loglike1 = 0.0;
double loglike2 = 0.0;
for (int32 i = 0; i < feats.NumRows(); i++) {
loglike0 += static_cast<double>(
gmm.LogLikelihood(feats.Row(i)));
loglike1 += static_cast<double>(
gmm_all_update.LogLikelihood(feats.Row(i)));
loglike2 += static_cast<double>(
gmm_some_update.LogLikelihood(feats.Row(i)));
}
KALDI_LOG << "loglike1 = " << loglike1 << " loglike2 = " << loglike2;
AssertEqual(loglike1, loglike2, 0.01);
}
void
test_io(const FullGmm &gmm, const AccumFullGmm &est_gmm, bool binary,
const Matrix<BaseFloat> &feats) {
std::cout << "Testing I/O, binary = " << binary << '\n';
est_gmm.Write(Output("tmp_stats", binary).Stream(), binary);
bool binary_in;
AccumFullGmm est_gmm2;
est_gmm2.Resize(gmm.NumGauss(),
gmm.Dim(), kGmmAll);
Input ki("tmp_stats", &binary_in);
est_gmm2.Read(ki.Stream(), binary_in, false); // not adding
Input ki2("tmp_stats", &binary_in);
est_gmm2.Read(ki2.Stream(), binary_in, true); // adding
est_gmm2.Scale(0.5, kGmmAll);
// 0.5 -> make it same as what it would have been if we read just once.
// [may affect it due to removal of components with small counts].
MleFullGmmOptions config;
FullGmm gmm1;
FullGmm gmm2;
gmm1.CopyFromFullGmm(gmm);
gmm2.CopyFromFullGmm(gmm);
MleFullGmmUpdate(config, est_gmm, est_gmm.Flags(), &gmm1, NULL, NULL);
MleFullGmmUpdate(config, est_gmm2, est_gmm2.Flags(), &gmm2, NULL, NULL);
BaseFloat loglike1 = 0.0;
BaseFloat loglike2 = 0.0;
for (int32 i = 0; i < feats.NumRows(); i++) {
loglike1 += gmm1.LogLikelihood(feats.Row(i));
loglike2 += gmm2.LogLikelihood(feats.Row(i));
}
AssertEqual(loglike1, loglike2, 0.01);
unlink("tmp_stats");
}
void
UnitTestEstimateFullGmm() {
// using namespace kaldi;
// dimension of the gmm
int32 dim = 10;
// number of mixtures in the data
int32 nMix = 7;
// number of iterations for estimation
int32 maxiterations = 20;
// maximum number of densities in the GMM
// larger than the number of mixtures in the data
// so that we can test the removal of unseen components
int32 maxcomponents = 50;
// generate random feature vectors
// first, generate parameters of vectors distribution
// (mean and covariance matrices)
Matrix<BaseFloat> means_f(nMix, dim);
std::vector<SpMatrix<BaseFloat> > vars_f(nMix);
std::vector<TpMatrix<BaseFloat> > vars_f_sqrt(nMix);
for (int32 mix = 0; mix < nMix; mix++) {
vars_f[mix].Resize(dim);
vars_f_sqrt[mix].Resize(dim);
}
for (int32 m = 0; m < nMix; m++) {
for (int32 d = 0; d < dim; d++) {
means_f(m, d) = kaldi::RandGauss();
}
rand_posdef_spmatrix(dim, &vars_f[m], &vars_f_sqrt[m], NULL);
}
// second, generate 1000 feature vectors for each of the mixture components
int32 counter = 0, multiple = 200;
Matrix<BaseFloat> feats(nMix*200, dim);
Vector<BaseFloat> rnd_vec(dim);
for (int32 m = 0; m < nMix; m++) {
for (int32 i = 0; i < multiple; i++) {
for (int32 d = 0; d < dim; d++) {
rnd_vec(d) = RandGauss();
}
feats.Row(counter).CopyFromVec(means_f.Row(m));
feats.Row(counter).AddTpVec(1.0, vars_f_sqrt[m], kNoTrans, rnd_vec, 1.0);
++counter;
}
}
{
// Work out "perfect" log-like w/ one component.
Matrix<BaseFloat> cov(dim, dim);
Vector<BaseFloat> mean(dim);
cov.AddMatMat(1.0, feats, kTrans, feats, kNoTrans, 0.0);
cov.Scale(1.0 / feats.NumRows());
mean.AddRowSumMat(1.0, feats);
mean.Scale(1.0 / feats.NumRows());
cov.AddVecVec(-1.0, mean, mean);
BaseFloat logdet = cov.LogDet();
BaseFloat avg_log = -0.5*(logdet + dim*(M_LOG_2PI + 1));
std::cout << "Avg log-like per frame [full-cov, 1-mix] should be: "
<< avg_log << '\n';
std::cout << "Total log-like [full-cov, 1-mix] should be: "
<< (feats.NumRows()*avg_log) << '\n';
Vector<BaseFloat> s(dim);
Matrix<BaseFloat> P(dim, dim);
cov.SymPosSemiDefEig(&s, &P);
std::cout << "Cov eigs are " << s;
}
// write the feature vectors to a file
// std::ofstream of("tmpfeats");
// of.precision(10);
// of << feats;
// of.close();
// now generate randomly initial values for the GMM
Vector<BaseFloat> weights(1);
Matrix<BaseFloat> means(1, dim);
std::vector<SpMatrix<BaseFloat> > invcovars(1);
invcovars[0].Resize(dim);
for (int32 d = 0; d < dim; d++) {
means(0, d) = kaldi::RandGauss()*5.0F;
}
SpMatrix<BaseFloat> covar(dim);
rand_posdef_spmatrix(dim, &covar, NULL, NULL);
covar.AddToDiag(0.1); // Ensure the condition is reasonable, otherwise
// we can get arbitrarily large inverse.
invcovars[0].CopyFromSp(covar);
invcovars[0].InvertDouble();
weights(0) = 1.0F;
// new GMM
FullGmm *gmm = new FullGmm();
gmm->Resize(1, dim);
gmm->SetWeights(weights);
gmm->SetInvCovarsAndMeans(invcovars, means);
gmm->ComputeGconsts();
{
KALDI_LOG << "Testing natural<>normal conversion";
FullGmmNormal ngmm(*gmm);
FullGmm rgmm;
rgmm.Resize(1, dim);
ngmm.CopyToFullGmm(&rgmm, kGmmAll);
// check contents
KALDI_ASSERT(ApproxEqual(weights(0), 1.0F, 1e-6));
KALDI_ASSERT(ApproxEqual(gmm->weights()(0), rgmm.weights()(0), 1e-6));
double prec_m = 1e-3;
double prec_v = 1e-3;
for (int32 d = 0; d < dim; d++) {
KALDI_ASSERT(std::abs(means.Row(0)(d) - ngmm.means_.Row(0)(d)) < prec_m);
KALDI_ASSERT(std::abs(gmm->means_invcovars().Row(0)(d) - rgmm.means_invcovars().Row(0)(d)) < prec_v);
for (int32 d2 = d; d2 < dim; ++d2) {
KALDI_ASSERT(std::abs(covar(d, d2) - ngmm.vars_[0](d, d2)) < prec_v);
KALDI_ASSERT(std::abs(gmm->inv_covars()[0](d, d2) - rgmm.inv_covars()[0](d, d2)) < prec_v);
}
}
KALDI_LOG << "OK";
}
MleFullGmmOptions config;
GmmFlagsType flags_all = kGmmAll;
AccumFullGmm est_gmm;
est_gmm.Resize(gmm->NumGauss(), gmm->Dim(), flags_all);
// iterate
int32 iteration = 0;
float lastloglike = 0.0;
int32 lastloglike_nM = 0;
while (iteration < maxiterations) {
// First, resize accums for the case of component splitting
est_gmm.Resize(gmm->NumGauss(),
gmm->Dim(), flags_all);
est_gmm.SetZero(flags_all);
double loglike = 0.0;
double loglike_test = 0.0;
for (int32 i = 0; i < counter; i++) {
loglike += static_cast<double>(
est_gmm.AccumulateFromFull(*gmm, feats.Row(i), 1.0F));
if (iteration < 4) {
loglike_test += GetLogLikeTest(*gmm, feats.Row(i), (i == 0));
AssertEqual(loglike, loglike_test);
}
}
std::cout << "Loglikelihood before iteration "
<< iteration << " : " << std::scientific << loglike
<< " number of components: " << gmm->NumGauss() << '\n';
// std::cout << "Model is: " << *gmm;
// every 5th iteration check loglike change and update lastloglike
if (iteration % 5 == 0) {
// likelihood should be increasing on the long term
if ((iteration > 0) && (gmm->NumGauss() >= lastloglike_nM)) {
KALDI_ASSERT(loglike > lastloglike);
}
lastloglike = loglike;
lastloglike_nM = gmm->NumGauss();
}
BaseFloat obj, count;
MleFullGmmUpdate(config, est_gmm, flags_all, gmm, &obj, &count);
KALDI_LOG << "ML objective function change = " << (obj/count)
<< " per frame, over " << (count) << " frames.";
// split components to double count at second iteration
// and every next 3rd iteration
// stop splitting when maxcomponents reached
if ( (iteration < maxiterations - 3) && (iteration % 4 == 1)
&& (gmm->NumGauss() * 2 <= maxcomponents)) {
gmm->Split(gmm->NumGauss() * 2, 0.01);
}
if (iteration == 5) { // run following tests with not too overfitted model
std::cout << "Testing flags-driven updates kGmmAll" << '\n';
test_flags_driven_update(*gmm, feats, kGmmAll);
std::cout << "Testing flags-driven updates kGmmWeights" << '\n';
test_flags_driven_update(*gmm, feats, kGmmWeights);
std::cout << "Testing flags-driven kGmmMeans" << '\n';
test_flags_driven_update(*gmm, feats, kGmmMeans);
std::cout << "Testing flags-driven kGmmVariances" << '\n';
test_flags_driven_update(*gmm, feats, kGmmVariances);
std::cout << "Testing flags-driven kGmmWeights | kGmmMeans" << '\n';
test_flags_driven_update(*gmm, feats, kGmmWeights | kGmmMeans);
std::cout << "Testing component-wise accumulation" << '\n';
TestComponentAcc(*gmm, feats);
}
iteration++;
}
{ // I/O tests
GmmFlagsType flags_all = kGmmAll;
est_gmm.Resize(gmm->NumGauss(),
gmm->Dim(), flags_all);
est_gmm.SetZero(flags_all);
float loglike = 0.0;
for (int32 i = 0; i < counter; i++) {
loglike += est_gmm.AccumulateFromFull(*gmm, feats.Row(i), 1.0F);
}
test_io(*gmm, est_gmm, false, feats);
test_io(*gmm, est_gmm, true, feats);
}
delete gmm;
gmm = NULL;
}
int
main() {
// repeat the test five times
for (int i = 0; i < 2; i++)
UnitTestEstimateFullGmm();
std::cout << "Test OK.\n";
}