mle-full-gmm-test.cc 16.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
// gmm/mle-full-gmm-test.cc

// Copyright 2009-2011  Jan Silovsky;  Saarland University;
//                      Microsoft Corporation;   Yanmin Qian;  Georg Stemmer

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include "gmm/full-gmm.h"
#include "gmm/diag-gmm.h"
#include "gmm/model-common.h"
#include "gmm/mle-full-gmm.h"
#include "gmm/mle-diag-gmm.h"
#include "util/stl-utils.h"
#include "util/kaldi-io.h"

using namespace kaldi;

void TestComponentAcc(const FullGmm &gmm, const Matrix<BaseFloat> &feats) {
  MleFullGmmOptions config;
  AccumFullGmm est_atonce;    // updates all components
  AccumFullGmm est_compwise;  // updates single components

  // Initialize estimators
  est_atonce.Resize(gmm.NumGauss(), gmm.Dim(), kGmmAll);
  est_atonce.SetZero(kGmmAll);
  est_compwise.Resize(gmm.NumGauss(),
      gmm.Dim(), kGmmAll);
  est_compwise.SetZero(kGmmAll);

  // accumulate estimators
  for (int32 i = 0; i < feats.NumRows(); i++) {
    est_atonce.AccumulateFromFull(gmm, feats.Row(i), 1.0F);
    Vector<BaseFloat> post(gmm.NumGauss());
    gmm.ComponentPosteriors(feats.Row(i), &post);
    for (int32 m = 0; m < gmm.NumGauss(); m++) {
      est_compwise.AccumulateForComponent(feats.Row(i), m, post(m));
    }
  }

  FullGmm gmm_atonce;    // model with all components accumulated together
  FullGmm gmm_compwise;  // model with each component accumulated separately
  gmm_atonce.Resize(gmm.NumGauss(), gmm.Dim());
  gmm_compwise.Resize(gmm.NumGauss(), gmm.Dim());

  MleFullGmmUpdate(config, est_atonce, kGmmAll, &gmm_atonce, NULL, NULL);
  MleFullGmmUpdate(config, est_compwise, kGmmAll, &gmm_compwise, NULL, NULL);

  // the two ways of updating should result in the same model
  double loglike0 = 0.0;
  double loglike1 = 0.0;
  double loglike2 = 0.0;
  for (int32 i = 0; i < feats.NumRows(); i++) {
    loglike0 += static_cast<double>(gmm.LogLikelihood(feats.Row(i)));
    loglike1 += static_cast<double>(gmm_atonce.LogLikelihood(feats.Row(i)));
    loglike2 += static_cast<double>(gmm_compwise.LogLikelihood(feats.Row(i)));
  }

  std::cout << "Per-frame log-likelihood before update = "
      << (loglike0/feats.NumRows()) << '\n';
  std::cout << "Per-frame log-likelihood (accumulating at once) = "
      << (loglike1/feats.NumRows()) << '\n';
  std::cout << "Per-frame log-likelihood (accumulating component-wise) = "
      << (loglike2/feats.NumRows()) << '\n';

  AssertEqual(loglike1, loglike2, 1.0e-6);

  if (est_atonce.NumGauss() != gmm.NumGauss()) {
    KALDI_WARN << "Unable to pass test_update_flags() test because of "
      "component removal during Update() call (this is normal)";
    return;
  } else {
    KALDI_ASSERT(loglike1 >= loglike0 - (std::abs(loglike1)+std::abs(loglike0))*1.0e-06);
    KALDI_ASSERT(loglike2 >= loglike0 - (std::abs(loglike2)+std::abs(loglike0))*1.0e-06);
  }
}

void rand_posdef_spmatrix(size_t dim, SpMatrix<BaseFloat> *matrix,
                          TpMatrix<BaseFloat> *matrix_sqrt = NULL,
                          BaseFloat *logdet = NULL) {
  // generate random (non-singular) matrix
  Matrix<BaseFloat> tmp(dim, dim);
  while (1) {
    tmp.SetRandn();
    if (tmp.Cond() < 100) break;
    std::cout << "Condition number of random matrix large "
      << static_cast<float>(tmp.Cond()) << ", trying again (this is normal)"
      << '\n';
  }
  // tmp * tmp^T will give positive definite matrix
  matrix->AddMat2(1.0, tmp, kNoTrans, 0.0);

  if (matrix_sqrt != NULL) matrix_sqrt->Cholesky(*matrix);
  if (logdet != NULL) *logdet = matrix->LogPosDefDet();
  if ((matrix_sqrt == NULL) && (logdet == NULL)) {
    TpMatrix<BaseFloat> sqrt(dim);
    sqrt.Cholesky(*matrix);
  }
}

BaseFloat GetLogLikeTest(const FullGmm &gmm,
                         const VectorBase<BaseFloat> &feats,
                         bool print_eigs) {
  BaseFloat log_like_sum = -1.0e+10;
  Matrix<BaseFloat> means;
  gmm.GetMeans(&means);
  const std::vector<SpMatrix<BaseFloat> > inv_covars = gmm.inv_covars();

  if (print_eigs)
    for (size_t i = 0; i < inv_covars.size(); i++) {
      SpMatrix<BaseFloat> cov(inv_covars[i]);
      size_t dim = cov.NumRows();
      cov.Invert();
      std::cout << i << "'th component eigs are: ";
      Vector<BaseFloat> s(dim);
      Matrix<BaseFloat> P(dim, dim);
      cov.SymPosSemiDefEig(&s, &P);
      std::cout << s;
    }

  for (int32 i = 0; i < gmm.NumGauss(); i++) {
    BaseFloat logdet = -(inv_covars[i].LogPosDefDet());
    BaseFloat log_like = Log(gmm.weights()(i))
      -0.5 * (gmm.Dim() * M_LOG_2PI + logdet);
    Vector<BaseFloat> offset(feats);
    offset.AddVec(-1.0, means.Row(i));
    log_like -= 0.5 * VecSpVec(offset, inv_covars[i], offset);
    log_like_sum = LogAdd(log_like_sum, log_like);
  }
  return log_like_sum;
}

void test_flags_driven_update(const FullGmm &gmm,
                              const Matrix<BaseFloat> &feats,
                              GmmFlagsType flags) {
  MleFullGmmOptions config;
  AccumFullGmm est_gmm_allp;   // updates all params
  // let's trust that all-params update works
  AccumFullGmm est_gmm_somep;  // updates params indicated by flags

  // warm-up estimators
  est_gmm_allp.Resize(gmm.NumGauss(), gmm.Dim(), kGmmAll);
  est_gmm_allp.SetZero(kGmmAll);
  
  est_gmm_somep.Resize(gmm.NumGauss(), gmm.Dim(), flags);
  est_gmm_somep.SetZero(flags);

  // accumulate estimators
  for (int32 i = 0; i < feats.NumRows(); i++) {
    est_gmm_allp.AccumulateFromFull(gmm, feats.Row(i), 1.0F);
    est_gmm_somep.AccumulateFromFull(gmm, feats.Row(i), 1.0F);
  }

  FullGmm gmm_all_update;   // model with all params updated
  FullGmm gmm_some_update;  // model with some params updated
  gmm_all_update.CopyFromFullGmm(gmm);   // init with orig. model
  gmm_some_update.CopyFromFullGmm(gmm);  // init with orig. model

  MleFullGmmUpdate(config, est_gmm_allp, kGmmAll, &gmm_all_update, NULL, NULL);
  MleFullGmmUpdate(config, est_gmm_somep, flags, &gmm_some_update, NULL, NULL);

  if (gmm_all_update.NumGauss() != gmm.NumGauss()) {
    KALDI_WARN << "Unable to pass test_update_flags() test because of "
      "component removal during Update() call (this is normal)";
    return;
  }

  // now back-off the gmm_all_update params that were not updated
  // in gmm_some_update to orig.
  if (~flags & kGmmWeights)
    gmm_all_update.SetWeights(gmm.weights());
  if (~flags & kGmmMeans) {
    Matrix<BaseFloat> means(gmm.NumGauss(), gmm.Dim());
    gmm.GetMeans(&means);
    gmm_all_update.SetMeans(means);
  }
  if (~flags & kGmmVariances) {
    std::vector<SpMatrix<BaseFloat> > vars(gmm.NumGauss());
    for (int32 i = 0; i < gmm.NumGauss(); i++)
      vars[i].Resize(gmm.Dim());
    gmm.GetCovars(&vars);
    for (int32 i = 0; i < gmm.NumGauss(); i++)
      vars[i].InvertDouble();
    gmm_all_update.SetInvCovars(vars);
  }
  gmm_some_update.ComputeGconsts();
  gmm_all_update.ComputeGconsts();

  // now both models gmm_all_update, gmm_all_update have the same params updated
  // compute loglike for models for check
  double loglike0 = 0.0;
  double loglike1 = 0.0;
  double loglike2 = 0.0;
  for (int32 i = 0; i < feats.NumRows(); i++) {
    loglike0 += static_cast<double>(
      gmm.LogLikelihood(feats.Row(i)));
    loglike1 += static_cast<double>(
      gmm_all_update.LogLikelihood(feats.Row(i)));
    loglike2 += static_cast<double>(
      gmm_some_update.LogLikelihood(feats.Row(i)));
  }
  KALDI_LOG << "loglike1 = " << loglike1 << " loglike2 = " << loglike2;
  AssertEqual(loglike1, loglike2, 0.01);
}

void
test_io(const FullGmm &gmm, const AccumFullGmm &est_gmm, bool binary,
        const Matrix<BaseFloat> &feats) {
  std::cout << "Testing I/O, binary = " << binary << '\n';

  est_gmm.Write(Output("tmp_stats", binary).Stream(), binary);

  bool binary_in;
  AccumFullGmm est_gmm2;
  est_gmm2.Resize(gmm.NumGauss(),
    gmm.Dim(), kGmmAll);
  Input ki("tmp_stats", &binary_in);
  est_gmm2.Read(ki.Stream(), binary_in, false);  // not adding

  Input ki2("tmp_stats", &binary_in);
  est_gmm2.Read(ki2.Stream(), binary_in, true);  // adding

  est_gmm2.Scale(0.5, kGmmAll);
    // 0.5 -> make it same as what it would have been if we read just once.
    // [may affect it due to removal of components with small counts].

  MleFullGmmOptions config;
  FullGmm gmm1;
  FullGmm gmm2;
  gmm1.CopyFromFullGmm(gmm);
  gmm2.CopyFromFullGmm(gmm);
  MleFullGmmUpdate(config, est_gmm, est_gmm.Flags(), &gmm1, NULL, NULL);
  MleFullGmmUpdate(config, est_gmm2, est_gmm2.Flags(), &gmm2, NULL, NULL);

  BaseFloat loglike1 = 0.0;
  BaseFloat loglike2 = 0.0;
  for (int32 i = 0; i < feats.NumRows(); i++) {
    loglike1 += gmm1.LogLikelihood(feats.Row(i));
    loglike2 += gmm2.LogLikelihood(feats.Row(i));
  }

  AssertEqual(loglike1, loglike2, 0.01);
  
  unlink("tmp_stats");
}

void
UnitTestEstimateFullGmm() {
  // using namespace kaldi;

  // dimension of the gmm
  int32 dim = 10;

  // number of mixtures in the data
  int32 nMix = 7;

  // number of iterations for estimation
  int32 maxiterations = 20;

  // maximum number of densities in the GMM
  // larger than the number of mixtures in the data
  // so that we can test the removal of unseen components
  int32 maxcomponents = 50;

  // generate random feature vectors
  // first, generate parameters of vectors distribution
  // (mean and covariance matrices)
  Matrix<BaseFloat> means_f(nMix, dim);
  std::vector<SpMatrix<BaseFloat> > vars_f(nMix);
  std::vector<TpMatrix<BaseFloat> > vars_f_sqrt(nMix);
  for (int32 mix = 0; mix < nMix; mix++) {
    vars_f[mix].Resize(dim);
    vars_f_sqrt[mix].Resize(dim);
  }

  for (int32 m = 0; m < nMix; m++) {
    for (int32 d = 0; d < dim; d++) {
      means_f(m, d) = kaldi::RandGauss();
    }
    rand_posdef_spmatrix(dim, &vars_f[m], &vars_f_sqrt[m], NULL);
  }

  // second, generate 1000 feature vectors for each of the mixture components
  int32 counter = 0, multiple = 200;
  Matrix<BaseFloat> feats(nMix*200, dim);
  Vector<BaseFloat> rnd_vec(dim);
  for (int32 m = 0; m < nMix; m++) {
    for (int32 i = 0; i < multiple; i++) {
      for (int32 d = 0; d < dim; d++) {
        rnd_vec(d) = RandGauss();
      }
      feats.Row(counter).CopyFromVec(means_f.Row(m));
      feats.Row(counter).AddTpVec(1.0, vars_f_sqrt[m], kNoTrans, rnd_vec, 1.0);
      ++counter;
    }
  }

  {
    // Work out "perfect" log-like w/ one component.
    Matrix<BaseFloat> cov(dim, dim);
    Vector<BaseFloat> mean(dim);
    cov.AddMatMat(1.0, feats, kTrans, feats, kNoTrans, 0.0);
    cov.Scale(1.0 / feats.NumRows());
    mean.AddRowSumMat(1.0, feats);
    mean.Scale(1.0 / feats.NumRows());
    cov.AddVecVec(-1.0, mean, mean);
    BaseFloat logdet = cov.LogDet();
    BaseFloat avg_log = -0.5*(logdet + dim*(M_LOG_2PI + 1));
    std::cout << "Avg log-like per frame [full-cov, 1-mix] should be: "
      << avg_log << '\n';
    std::cout << "Total log-like [full-cov, 1-mix] should be: "
      << (feats.NumRows()*avg_log) << '\n';

    Vector<BaseFloat> s(dim);
    Matrix<BaseFloat> P(dim, dim);
    cov.SymPosSemiDefEig(&s, &P);
    std::cout << "Cov eigs are " << s;
  }

  // write the feature vectors to a file
  //  std::ofstream of("tmpfeats");
  //  of.precision(10);
  //  of << feats;
  //  of.close();

  // now generate randomly initial values for the GMM
  Vector<BaseFloat> weights(1);
  Matrix<BaseFloat> means(1, dim);
  std::vector<SpMatrix<BaseFloat> > invcovars(1);
  invcovars[0].Resize(dim);

  for (int32 d = 0; d < dim; d++) {
    means(0, d) = kaldi::RandGauss()*5.0F;
  }
  SpMatrix<BaseFloat> covar(dim);
  rand_posdef_spmatrix(dim, &covar, NULL, NULL);
  covar.AddToDiag(0.1);  // Ensure the condition is reasonable, otherwise
                         // we can get arbitrarily large inverse.
  invcovars[0].CopyFromSp(covar);
  invcovars[0].InvertDouble();
  weights(0) = 1.0F;

  // new GMM
  FullGmm *gmm = new FullGmm();
  gmm->Resize(1, dim);
  gmm->SetWeights(weights);
  gmm->SetInvCovarsAndMeans(invcovars, means);
  gmm->ComputeGconsts();

  {
    KALDI_LOG << "Testing natural<>normal conversion";
    FullGmmNormal ngmm(*gmm);
    FullGmm rgmm;
    rgmm.Resize(1, dim);
    ngmm.CopyToFullGmm(&rgmm, kGmmAll);
    
    // check contents
    KALDI_ASSERT(ApproxEqual(weights(0), 1.0F, 1e-6));
    KALDI_ASSERT(ApproxEqual(gmm->weights()(0), rgmm.weights()(0), 1e-6));
    double prec_m = 1e-3;
    double prec_v = 1e-3;
    for (int32 d = 0; d < dim; d++) {
      KALDI_ASSERT(std::abs(means.Row(0)(d) -  ngmm.means_.Row(0)(d)) < prec_m);
      KALDI_ASSERT(std::abs(gmm->means_invcovars().Row(0)(d) - rgmm.means_invcovars().Row(0)(d)) < prec_v);
      for (int32 d2 = d; d2 < dim; ++d2) {
        KALDI_ASSERT(std::abs(covar(d, d2) - ngmm.vars_[0](d, d2)) < prec_v);
        KALDI_ASSERT(std::abs(gmm->inv_covars()[0](d, d2) - rgmm.inv_covars()[0](d, d2)) < prec_v);
      }
    }
    KALDI_LOG << "OK";
  } 

  MleFullGmmOptions config;
  GmmFlagsType flags_all = kGmmAll;


  AccumFullGmm est_gmm;
  est_gmm.Resize(gmm->NumGauss(), gmm->Dim(), flags_all);

  // iterate
  int32 iteration = 0;
  float lastloglike = 0.0;
  int32 lastloglike_nM = 0;

  while (iteration < maxiterations) {
    // First, resize accums for the case of component splitting
    est_gmm.Resize(gmm->NumGauss(),
      gmm->Dim(), flags_all);
    est_gmm.SetZero(flags_all);
    double loglike = 0.0;
    double loglike_test = 0.0;
    for (int32 i = 0; i < counter; i++) {
      loglike += static_cast<double>(
        est_gmm.AccumulateFromFull(*gmm, feats.Row(i), 1.0F));
      if (iteration < 4) {
        loglike_test += GetLogLikeTest(*gmm, feats.Row(i), (i == 0));
        AssertEqual(loglike, loglike_test);
      }
    }

    std::cout << "Loglikelihood before iteration "
      << iteration << " : " << std::scientific << loglike
      << " number of components: " << gmm->NumGauss() << '\n';

    // std::cout << "Model is: " << *gmm;

    // every 5th iteration check loglike change and update lastloglike
    if (iteration % 5 == 0) {
      // likelihood should be increasing on the long term
      if ((iteration > 0) && (gmm->NumGauss() >= lastloglike_nM)) {
        KALDI_ASSERT(loglike > lastloglike);
      }
      lastloglike = loglike;
      lastloglike_nM = gmm->NumGauss();
    }

    BaseFloat obj, count;
    MleFullGmmUpdate(config, est_gmm, flags_all, gmm, &obj, &count);
    KALDI_LOG << "ML objective function change = " << (obj/count)
              << " per frame, over " << (count) << " frames.";

    // split components to double count at second iteration
    // and every next 3rd iteration
    // stop splitting when maxcomponents reached
    if ( (iteration < maxiterations - 3) && (iteration % 4 == 1)
        && (gmm->NumGauss() * 2 <= maxcomponents)) {
      gmm->Split(gmm->NumGauss() * 2, 0.01);
    }

    if (iteration == 5) {  // run following tests with not too overfitted model
      std::cout << "Testing flags-driven updates kGmmAll" << '\n';
      test_flags_driven_update(*gmm, feats, kGmmAll);
      std::cout << "Testing flags-driven updates kGmmWeights" << '\n';
      test_flags_driven_update(*gmm, feats, kGmmWeights);
      std::cout << "Testing flags-driven kGmmMeans" << '\n';
      test_flags_driven_update(*gmm, feats, kGmmMeans);
      std::cout << "Testing flags-driven kGmmVariances" << '\n';
      test_flags_driven_update(*gmm, feats, kGmmVariances);
      std::cout << "Testing flags-driven kGmmWeights | kGmmMeans" << '\n';
      test_flags_driven_update(*gmm, feats, kGmmWeights | kGmmMeans);
      std::cout << "Testing component-wise accumulation" << '\n';
      TestComponentAcc(*gmm, feats);
    }

    iteration++;
  }

  {  // I/O tests
    GmmFlagsType flags_all = kGmmAll;
    est_gmm.Resize(gmm->NumGauss(),
      gmm->Dim(), flags_all);
    est_gmm.SetZero(flags_all);
    float loglike = 0.0;
    for (int32 i = 0; i < counter; i++) {
      loglike += est_gmm.AccumulateFromFull(*gmm, feats.Row(i), 1.0F);
    }
    test_io(*gmm, est_gmm, false, feats);
    test_io(*gmm, est_gmm, true, feats);
  }

  delete gmm;
  gmm = NULL;
}

int
main() {
  // repeat the test five times
  for (int i = 0; i < 2; i++)
    UnitTestEstimateFullGmm();
  std::cout << "Test OK.\n";
}