mle-full-gmm.cc
13.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// gmm/mle-full-gmm.cc
// Copyright 2009-2011 Jan Silovsky; Saarland University;
// Microsoft Corporation; Georg Stemmer
// Univ. Erlangen-Nuremberg, Korbinian Riedhammer
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include "gmm/full-gmm.h"
#include "gmm/diag-gmm.h"
#include "gmm/mle-full-gmm.h"
namespace kaldi {
AccumFullGmm::AccumFullGmm(const AccumFullGmm &other)
: dim_(other.dim_), num_comp_(other.num_comp_),
flags_(other.flags_), occupancy_(other.occupancy_),
mean_accumulator_(other.mean_accumulator_),
covariance_accumulator_(other.covariance_accumulator_) {}
void AccumFullGmm::Resize(int32 num_comp, int32 dim, GmmFlagsType flags) {
num_comp_ = num_comp;
dim_ = dim;
flags_ = AugmentGmmFlags(flags);
occupancy_.Resize(num_comp);
if (flags_ & kGmmMeans)
mean_accumulator_.Resize(num_comp, dim);
else
mean_accumulator_.Resize(0, 0);
if (flags_ & kGmmVariances)
ResizeVarAccumulator(num_comp, dim);
else
covariance_accumulator_.clear();
}
void AccumFullGmm::ResizeVarAccumulator(int32 num_comp, int32 dim) {
KALDI_ASSERT(num_comp > 0 && dim > 0);
if (covariance_accumulator_.size() != static_cast<size_t>(num_comp))
covariance_accumulator_.resize(num_comp);
for (int32 i = 0; i < num_comp; i++) {
if (covariance_accumulator_[i].NumRows() != dim)
covariance_accumulator_[i].Resize(dim);
}
}
void AccumFullGmm::SetZero(GmmFlagsType flags) {
if (flags & ~flags_)
KALDI_ERR << "Flags in argument do not match the active accumulators";
if (flags & kGmmWeights)
occupancy_.SetZero();
if (flags & kGmmMeans)
mean_accumulator_.SetZero();
if (flags & kGmmVariances) {
for (int32 i = 0, end = covariance_accumulator_.size(); i < end; i++)
covariance_accumulator_[i].SetZero();
}
}
void AccumFullGmm::Scale(BaseFloat f, GmmFlagsType flags) {
if (flags & ~flags_)
KALDI_ERR << "Flags in argument do not match the active accumulators";
double d = static_cast<double>(f);
if (flags & kGmmWeights)
occupancy_.Scale(d);
if (flags & kGmmMeans)
mean_accumulator_.Scale(d);
if (flags & kGmmVariances) {
for (int32 i = 0, end = covariance_accumulator_.size(); i < end; i++)
covariance_accumulator_[i].Scale(d);
}
}
void AccumFullGmm::AccumulateForComponent(
const VectorBase<BaseFloat> &data, int32 comp_index, BaseFloat weight) {
KALDI_ASSERT(data.Dim() == Dim());
double wt = static_cast<double>(weight);
// accumulate
occupancy_(comp_index) += wt;
if (flags_ & kGmmMeans) {
Vector<double> data_d(data); // Copy with type-conversion
mean_accumulator_.Row(comp_index).AddVec(wt, data_d);
if (flags_ & kGmmVariances) {
covariance_accumulator_[comp_index].AddVec2(wt, data_d);
}
}
}
void AccumFullGmm::AccumulateFromPosteriors(
const VectorBase<BaseFloat> &data,
const VectorBase<BaseFloat> &gauss_posteriors) {
KALDI_ASSERT(gauss_posteriors.Dim() == NumGauss());
KALDI_ASSERT(data.Dim() == Dim());
Vector<double> data_d(data.Dim());
data_d.CopyFromVec(data);
Vector<double> post_d(gauss_posteriors.Dim());
post_d.CopyFromVec(gauss_posteriors);
occupancy_.AddVec(1.0, post_d);
if (flags_ & (kGmmMeans|kGmmVariances)) { // mean stats.
if (static_cast<int32>(post_d.Norm(0.0)*2.0) > post_d.Dim()) {
// If we're not very sparse... note: zero-norm is number of
// nonzero elements.
mean_accumulator_.AddVecVec(1.0, post_d, data_d);
} else {
for (int32 i = 0; i < post_d.Dim(); i++)
if (post_d(i) != 0.0)
mean_accumulator_.Row(i).AddVec(post_d(i), data_d);
}
if (flags_ & kGmmVariances) {
SpMatrix<double> data_sq_d(data_d.Dim());
data_sq_d.AddVec2(1.0, data_d);
for (int32 mix = 0; mix < NumGauss(); mix++)
if (post_d(mix) != 0.0)
covariance_accumulator_[mix].AddSp(post_d(mix), data_sq_d);
}
}
}
BaseFloat AccumFullGmm::AccumulateFromFull(const FullGmm &gmm,
const VectorBase<BaseFloat> &data, BaseFloat frame_posterior) {
KALDI_ASSERT(gmm.NumGauss() == NumGauss());
KALDI_ASSERT(gmm.Dim() == Dim());
Vector<BaseFloat> component_posterior(NumGauss());
BaseFloat log_like = gmm.ComponentPosteriors(data, &component_posterior);
component_posterior.Scale(frame_posterior);
AccumulateFromPosteriors(data, component_posterior);
return log_like;
}
BaseFloat AccumFullGmm::AccumulateFromDiag(const DiagGmm &gmm,
const VectorBase<BaseFloat> &data, BaseFloat frame_posterior) {
KALDI_ASSERT(gmm.NumGauss() == NumGauss());
KALDI_ASSERT(gmm.Dim() == Dim());
Vector<BaseFloat> component_posterior(NumGauss());
BaseFloat log_like = gmm.ComponentPosteriors(data, &component_posterior);
component_posterior.Scale(frame_posterior);
AccumulateFromPosteriors(data, component_posterior);
return log_like;
}
void AccumFullGmm::Read(std::istream &in_stream, bool binary, bool add) {
int32 dimension, num_components;
GmmFlagsType flags;
std::string token;
ExpectToken(in_stream, binary, "<GMMACCS>");
ExpectToken(in_stream, binary, "<VECSIZE>");
ReadBasicType(in_stream, binary, &dimension);
ExpectToken(in_stream, binary, "<NUMCOMPONENTS>");
ReadBasicType(in_stream, binary, &num_components);
KALDI_ASSERT(dimension > 0 && num_components > 0);
ExpectToken(in_stream, binary, "<FLAGS>");
ReadBasicType(in_stream, binary, &flags);
if (add) {
if ((NumGauss() != 0 || Dim() != 0 || Flags() != 0)) {
if (num_components != NumGauss() || dimension != Dim()
|| flags != Flags())
KALDI_ERR << "MlEstimatediagGmm::Read, dimension or flags mismatch, "
<< NumGauss() << ", " << Dim() << ", "
<< GmmFlagsToString(Flags()) << " vs. " << num_components << ", "
<< dimension << ", " << flags;
} else {
Resize(num_components, dimension, flags);
}
} else {
Resize(num_components, dimension, flags);
}
// these are needed for demangling the variances.
Vector<double> tmp_occs;
Matrix<double> tmp_means;
ReadToken(in_stream, binary, &token);
while (token != "</GMMACCS>") {
if (token == "<OCCUPANCY>") {
tmp_occs.Read(in_stream, binary, false);
if (!add) occupancy_.SetZero();
occupancy_.AddVec(1.0, tmp_occs);
} else if (token == "<MEANACCS>") {
tmp_means.Read(in_stream, binary, false);
if (!add) mean_accumulator_.SetZero();
mean_accumulator_.AddMat(1.0, tmp_means);
} else if (token == "<FULLVARACCS>") {
for (int32 i = 0; i < num_components; i++) {
SpMatrix<double> tmp_acc;
tmp_acc.Read(in_stream, binary, add);
if (tmp_occs(i) != 0) tmp_acc.AddVec2(1.0 / tmp_occs(i), tmp_means.Row(
i));
if (!add) covariance_accumulator_[i].SetZero();
covariance_accumulator_[i].AddSp(1.0, tmp_acc);
}
} else {
KALDI_ERR << "Unexpected token '" << token << "' in model file ";
}
ReadToken(in_stream, binary, &token);
}
}
void AccumFullGmm::Write(std::ostream &out_stream, bool binary) const {
WriteToken(out_stream, binary, "<GMMACCS>");
WriteToken(out_stream, binary, "<VECSIZE>");
WriteBasicType(out_stream, binary, dim_);
WriteToken(out_stream, binary, "<NUMCOMPONENTS>");
WriteBasicType(out_stream, binary, num_comp_);
WriteToken(out_stream, binary, "<FLAGS>");
WriteBasicType(out_stream, binary, flags_);
Vector<BaseFloat> occupancy_bf(occupancy_);
WriteToken(out_stream, binary, "<OCCUPANCY>");
occupancy_bf.Write(out_stream, binary);
Matrix<BaseFloat> mean_accumulator_bf(mean_accumulator_);
WriteToken(out_stream, binary, "<MEANACCS>");
mean_accumulator_bf.Write(out_stream, binary);
if (num_comp_ != 0) KALDI_ASSERT(((flags_ & kGmmVariances) != 0 )
== (covariance_accumulator_.size() != 0)); // sanity check.
if (covariance_accumulator_.size() != 0) {
WriteToken(out_stream, binary, "<FULLVARACCS>");
for (int32 i = 0; i < num_comp_; i++) {
SpMatrix<double> tmp_acc(covariance_accumulator_[i]);
if (occupancy_(i) != 0) tmp_acc.AddVec2(-1.0 / occupancy_(i),
mean_accumulator_.Row(i));
SpMatrix<float> tmp_acc_bf(tmp_acc);
tmp_acc_bf.Write(out_stream, binary);
}
}
WriteToken(out_stream, binary, "</GMMACCS>");
}
BaseFloat MlObjective(const FullGmm &gmm, const AccumFullGmm &fullgmm_acc) {
GmmFlagsType flags = fullgmm_acc.Flags();
Vector<BaseFloat> occ_bf(fullgmm_acc.occupancy());
Matrix<BaseFloat> mean_accs_bf(fullgmm_acc.mean_accumulator());
SpMatrix<BaseFloat> covar_accs_bf(gmm.Dim());
BaseFloat obj = VecVec(occ_bf, gmm.gconsts());
if (flags & kGmmMeans)
obj += TraceMatMat(mean_accs_bf, gmm.means_invcovars(), kTrans);
if (flags & kGmmVariances) {
for (int32 i = 0; i < gmm.NumGauss(); i++) {
covar_accs_bf.CopyFromSp(fullgmm_acc.covariance_accumulator()[i]);
obj -= 0.5 * TraceSpSp(covar_accs_bf, gmm.inv_covars()[i]);
}
}
return obj;
}
void MleFullGmmUpdate(const MleFullGmmOptions &config,
const AccumFullGmm &fullgmm_acc,
GmmFlagsType flags,
FullGmm *gmm,
BaseFloat *obj_change_out,
BaseFloat *count_out) {
KALDI_ASSERT(gmm != NULL);
if (flags & ~fullgmm_acc.Flags())
KALDI_ERR << "Flags in argument do not match the active accumulators";
gmm->ComputeGconsts();
BaseFloat obj_old = MlObjective(*gmm, fullgmm_acc);
// Korbinian: I removed checks that validate if the referenced gmm matches
// the accumulator, as this should be responsibility of the caller.
// Furthermore, the re-estimation of the normal representation is done
// regardless of the flags, but the transfer to the natural form is
// done with respect to the flags.
int32 num_gauss = gmm->NumGauss();
double occ_sum = fullgmm_acc.occupancy().Sum();
int32 tot_floored = 0, gauss_floored = 0;
// allocate the gmm in normal representation
FullGmmNormal ngmm(*gmm);
std::vector<int32> to_remove;
for (int32 i = 0; i < num_gauss; i++) {
double occ = fullgmm_acc.occupancy()(i);
double prob;
if (occ_sum > 0.0)
prob = occ / occ_sum;
else
prob = 1.0 / num_gauss;
if (occ > static_cast<double> (config.min_gaussian_occupancy)
&& prob > static_cast<double> (config.min_gaussian_weight)) {
ngmm.weights_(i) = prob;
// copy old mean for later normalizations
Vector<double> oldmean(ngmm.means_.Row(i));
// update mean, then variance, as far as there are accumulators
if (fullgmm_acc.Flags() & (kGmmMeans|kGmmVariances)) {
Vector<double> mean(fullgmm_acc.mean_accumulator().Row(i));
mean.Scale(1.0 / occ);
// transfer to estimate
ngmm.means_.CopyRowFromVec(mean, i);
}
if (fullgmm_acc.Flags() & kGmmVariances) {
KALDI_ASSERT(fullgmm_acc.Flags() & kGmmMeans);
SpMatrix<double> covar(fullgmm_acc.covariance_accumulator()[i]);
covar.Scale(1.0 / occ);
covar.AddVec2(-1.0, ngmm.means_.Row(i)); // subtract squared means.
// if we intend to only update the variances, we need to compensate by
// adding the difference between the new and old mean
if (!(flags & kGmmMeans)) {
oldmean.AddVec(-1.0, ngmm.means_.Row(i));
covar.AddVec2(1.0, oldmean);
}
// Now flooring etc. of variance's eigenvalues.
BaseFloat floor = std::max(static_cast<double>(config.variance_floor),
covar.MaxAbsEig() / config.max_condition);
int32 floored = covar.ApplyFloor(floor);
if (floored) {
tot_floored += floored;
gauss_floored++;
}
// transfer to estimate
ngmm.vars_[i].CopyFromSp(covar);
}
} else { // Insufficient occupancy
if (config.remove_low_count_gaussians &&
static_cast<int32>(to_remove.size()) < num_gauss-1) {
KALDI_WARN << "Too little data - removing Gaussian (weight "
<< std::fixed << prob
<< ", occupation count " << std::fixed << fullgmm_acc.occupancy()(i)
<< ", vector size " << gmm->Dim() << ")";
to_remove.push_back(i);
} else {
KALDI_WARN << "Gaussian has too little data but not removing it because"
<< (config.remove_low_count_gaussians ?
" it is the last Gaussian: i = "
: " remove-low-count-gaussians == false: i = ") << i
<< ", occ = " << fullgmm_acc.occupancy()(i) << ", weight = " << prob;
ngmm.weights_(i) =
std::max(prob, static_cast<double>(config.min_gaussian_weight));
}
}
}
// copy to natural representation according to flags
ngmm.CopyToFullGmm(gmm, flags);
gmm->ComputeGconsts();
BaseFloat obj_new = MlObjective(*gmm, fullgmm_acc);
if (obj_change_out)
*obj_change_out = obj_new - obj_old;
if (count_out)
*count_out = occ_sum;
if (to_remove.size() > 0) {
gmm->RemoveComponents(to_remove, true /* renorm weights */);
gmm->ComputeGconsts();
}
if (tot_floored > 0)
KALDI_WARN << tot_floored << " variances floored in " << gauss_floored
<< " Gaussians.";
}
} // End namespace kaldi