gmm-acc-stats.cc
5.04 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// gmmbin/gmm-acc-stats.cc
// Copyright 2009-2012 Microsoft Corporation Johns Hopkins University (Author: Daniel Povey)
// 2014 Guoguo Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/am-diag-gmm.h"
#include "hmm/transition-model.h"
#include "gmm/mle-am-diag-gmm.h"
#include "hmm/posterior.h"
int main(int argc, char *argv[]) {
using namespace kaldi;
typedef kaldi::int32 int32;
try {
const char *usage =
"Accumulate stats for GMM training (reading in posteriors).\n"
"Usage: gmm-acc-stats [options] <model-in> <feature-rspecifier>"
"<posteriors-rspecifier> <stats-out>\n"
"e.g.: \n"
" gmm-acc-stats 1.mdl scp:train.scp ark:1.post 1.acc\n";
ParseOptions po(usage);
bool binary = true;
std::string update_flags_str = "mvwt"; // note: t is ignored, we acc
// transition stats regardless.
po.Register("binary", &binary, "Write output in binary mode");
po.Register("update-flags", &update_flags_str, "Which GMM parameters will be "
"updated: subset of mvwt.");
po.Read(argc, argv);
if (po.NumArgs() != 4) {
po.PrintUsage();
exit(1);
}
std::string model_filename = po.GetArg(1),
feature_rspecifier = po.GetArg(2),
posteriors_rspecifier = po.GetArg(3),
accs_wxfilename = po.GetArg(4);
AmDiagGmm am_gmm;
TransitionModel trans_model;
{
bool binary;
Input ki(model_filename, &binary);
trans_model.Read(ki.Stream(), binary);
am_gmm.Read(ki.Stream(), binary);
}
Vector<double> transition_accs;
trans_model.InitStats(&transition_accs);
AccumAmDiagGmm gmm_accs;
gmm_accs.Init(am_gmm, StringToGmmFlags(update_flags_str));
double tot_like = 0.0;
double tot_t = 0.0;
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier);
int32 num_done = 0, num_err = 0;
for (; !feature_reader.Done(); feature_reader.Next()) {
std::string key = feature_reader.Key();
if (!posteriors_reader.HasKey(key)) {
KALDI_WARN << "Could not find posteriors for utterance " << key;
num_err++;
} else {
const Matrix<BaseFloat> &mat = feature_reader.Value();
const Posterior &posterior = posteriors_reader.Value(key);
if (static_cast<int32>(posterior.size()) != mat.NumRows()) {
KALDI_WARN << "Posterior vector has wrong size "
<< (posterior.size()) << " vs. "
<< (mat.NumRows());
num_err++;
continue;
}
num_done++;
BaseFloat tot_like_this_file = 0.0, tot_weight = 0.0;
Posterior pdf_posterior;
ConvertPosteriorToPdfs(trans_model, posterior, &pdf_posterior);
for (size_t i = 0; i < posterior.size(); i++) {
// Accumulates for GMM.
for (size_t j = 0; j < pdf_posterior[i].size(); j++) {
int32 pdf_id = pdf_posterior[i][j].first;
BaseFloat weight = pdf_posterior[i][j].second;
tot_like_this_file += gmm_accs.AccumulateForGmm(am_gmm, mat.Row(i), pdf_id, weight)
* weight;
tot_weight += weight;
}
// Accumulates for transitions.
for (size_t j = 0; j < posterior[i].size(); j++) {
int32 tid = posterior[i][j].first;
BaseFloat weight = posterior[i][j].second;
trans_model.Accumulate(weight, tid, &transition_accs);
}
}
if (num_done % 50 == 0) {
KALDI_LOG << "Processed " << num_done << " utterances; for utterance "
<< key << " avg. like is " << (tot_like_this_file/tot_weight)
<< " over " << tot_weight <<" frames.";
}
tot_like += tot_like_this_file;
tot_t += tot_weight;
}
}
KALDI_LOG << "Done " << num_done << " files, " << num_err
<< " with errors.";
KALDI_LOG << "Overall avg like per frame (Gaussian only) = "
<< (tot_like/tot_t) << " over " << tot_t << " frames.";
{
Output ko(accs_wxfilename, binary);
transition_accs.Write(ko.Stream(), binary);
gmm_accs.Write(ko.Stream(), binary);
}
KALDI_LOG << "Written accs.";
return (num_done != 0 ? 0 : 1);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}