gmm-global-est-lvtln-trans.cc
8.73 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
// gmmbin/gmm-global-est-lvtln-trans.cc
// Copyright 2009-2011 Microsoft Corporation; Saarland University
// 2014 Daniel Povey
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <string>
using std::string;
#include <vector>
using std::vector;
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/am-diag-gmm.h"
#include "hmm/transition-model.h"
#include "transform/lvtln.h"
#include "hmm/posterior.h"
namespace kaldi {
void AccumulateForUtterance(const Matrix<BaseFloat> &feats,
const Posterior &post,
const DiagGmm &gmm,
FmllrDiagGmmAccs *spk_stats) {
KALDI_ASSERT(static_cast<int32>(post.size()) == feats.NumRows());
for (size_t i = 0; i < post.size(); i++) {
std::vector<int32> gselect(post[i].size());
Vector<BaseFloat> this_post(post[i].size());
for (size_t j = 0; j < post[i].size(); j++) {
int32 g = post[i][j].first;
BaseFloat weight = post[i][j].second;
gselect[j] = g;
this_post(j) = weight;
}
spk_stats->AccumulateFromPosteriorsPreselect(gmm, gselect,
feats.Row(i),
this_post);
}
}
}
int main(int argc, char *argv[]) {
try {
typedef kaldi::int32 int32;
using namespace kaldi;
const char *usage =
"Estimate linear-VTLN transforms, either per utterance or for "
"the supplied set of speakers (spk2utt option); this version\n"
"is for a global diagonal GMM (also known as a UBM). Reads posteriors\n"
"indicating Gaussian indexes in the UBM.\n"
"\n"
"Usage: gmm-global-est-lvtln-trans [options] <gmm-in> <lvtln-in> "
"<feature-rspecifier> <gpost-rspecifier> <lvtln-trans-wspecifier> [<warp-wspecifier>]\n"
"e.g.: gmm-global-est-lvtln-trans 0.ubm 0.lvtln '$feats' ark,s,cs:- ark:1.trans ark:1.warp\n"
"(where the <gpost-rspecifier> will likely come from gmm-global-get-post or\n"
"gmm-global-gselect-to-post\n";
ParseOptions po(usage);
string spk2utt_rspecifier;
BaseFloat logdet_scale = 1.0;
std::string norm_type = "offset";
po.Register("norm-type", &norm_type, "type of fMLLR applied (\"offset\"|\"none\"|\"diag\")");
po.Register("spk2utt", &spk2utt_rspecifier, "rspecifier for speaker to "
"utterance-list map");
po.Register("logdet-scale", &logdet_scale, "Scale on log-determinant term in auxiliary function");
po.Read(argc, argv);
if (po.NumArgs() < 5 || po.NumArgs() > 6) {
po.PrintUsage();
exit(1);
}
string
model_rxfilename = po.GetArg(1),
lvtln_rxfilename = po.GetArg(2),
feature_rspecifier = po.GetArg(3),
post_rspecifier = po.GetArg(4),
trans_wspecifier = po.GetArg(5),
warp_wspecifier = po.GetOptArg(6);
DiagGmm gmm;
ReadKaldiObject(model_rxfilename, &gmm);
LinearVtln lvtln;
ReadKaldiObject(lvtln_rxfilename, &lvtln);
RandomAccessPosteriorReader post_reader(post_rspecifier);
double tot_lvtln_impr = 0.0, tot_t = 0.0;
BaseFloatMatrixWriter transform_writer(trans_wspecifier);
BaseFloatWriter warp_writer(warp_wspecifier);
std::vector<int32> class_counts(lvtln.NumClasses(), 0);
int32 num_done = 0, num_no_post = 0, num_other_error = 0;
if (spk2utt_rspecifier != "") { // per-speaker adaptation
SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier);
RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) {
FmllrDiagGmmAccs spk_stats(lvtln.Dim());
string spk = spk2utt_reader.Key();
const vector<string> &uttlist = spk2utt_reader.Value();
for (size_t i = 0; i < uttlist.size(); i++) {
std::string utt = uttlist[i];
if (!feature_reader.HasKey(utt)) {
KALDI_WARN << "Did not find features for utterance " << utt;
continue;
}
if (!post_reader.HasKey(utt)) {
KALDI_WARN << "Did not find posteriors for utterance " << utt;
num_no_post++;
continue;
}
const Matrix<BaseFloat> &feats = feature_reader.Value(utt);
const Posterior &post = post_reader.Value(utt);
if (static_cast<int32>(post.size()) != feats.NumRows()) {
KALDI_WARN << "Posterior vector has wrong size " << post.size()
<< " vs. " << feats.NumRows();
num_other_error++;
continue;
}
AccumulateForUtterance(feats, post, gmm, &spk_stats);
num_done++;
} // end looping over all utterances of the current speaker
BaseFloat impr, spk_tot_t;
{ // Compute the transform and write it out.
Matrix<BaseFloat> transform(lvtln.Dim(), lvtln.Dim()+1);
int32 class_idx;
lvtln.ComputeTransform(spk_stats,
norm_type,
logdet_scale,
&transform,
&class_idx,
NULL,
&impr,
&spk_tot_t);
class_counts[class_idx]++;
transform_writer.Write(spk, transform);
if (warp_wspecifier != "")
warp_writer.Write(spk, lvtln.GetWarp(class_idx));
}
KALDI_LOG << "For speaker " << spk << ", auxf-impr from LVTLN is "
<< (impr/spk_tot_t) << ", over " << spk_tot_t << " frames.";
tot_lvtln_impr += impr;
tot_t += spk_tot_t;
} // end looping over speakers
} else { // per-utterance adaptation
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
for (; !feature_reader.Done(); feature_reader.Next()) {
string utt = feature_reader.Key();
if (!post_reader.HasKey(utt)) {
KALDI_WARN << "Did not find posterior for utterance "
<< utt;
num_no_post++;
continue;
}
const Matrix<BaseFloat> &feats = feature_reader.Value();
const Posterior &post = post_reader.Value(utt);
if (static_cast<int32>(post.size()) != feats.NumRows()) {
KALDI_WARN << "Posterior has wrong size " << post.size()
<< " vs. " << feats.NumRows();
num_other_error++;
continue;
}
num_done++;
FmllrDiagGmmAccs spk_stats(lvtln.Dim());
AccumulateForUtterance(feats, post, gmm,
&spk_stats);
BaseFloat impr, utt_tot_t = spk_stats.beta_;
{ // Compute the transform and write it out.
Matrix<BaseFloat> transform(lvtln.Dim(), lvtln.Dim()+1);
int32 class_idx;
lvtln.ComputeTransform(spk_stats,
norm_type,
logdet_scale,
&transform,
&class_idx,
NULL,
&impr,
&utt_tot_t);
class_counts[class_idx]++;
transform_writer.Write(utt, transform);
if (warp_wspecifier != "")
warp_writer.Write(utt, lvtln.GetWarp(class_idx));
}
KALDI_LOG << "For utterance " << utt << ", auxf-impr from LVTLN is "
<< (impr/utt_tot_t) << ", over " << utt_tot_t << " frames.";
tot_lvtln_impr += impr;
tot_t += utt_tot_t;
}
}
{
std::ostringstream s;
for (size_t i = 0; i < class_counts.size(); i++)
s << ' ' << class_counts[i];
KALDI_LOG << "Distribution of classes is: " << s.str();
}
KALDI_LOG << "Done " << num_done << " files, " << num_no_post
<< " with no posteriors, " << num_other_error << " with other errors.";
KALDI_LOG << "Overall LVTLN auxf impr per frame is "
<< (tot_lvtln_impr / tot_t) << " over " << tot_t << " frames.";
return (num_done == 0 ? 1 : 0);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}