gmm-ismooth-stats.cc
5.05 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// gmmbin/gmm-ismooth-stats.cc
// Copyright 2009-2011 Petr Motlicek Chao Weng
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/am-diag-gmm.h"
#include "tree/context-dep.h"
#include "hmm/transition-model.h"
#include "gmm/ebw-diag-gmm.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
typedef kaldi::int32 int32;
const char *usage =
"Apply I-smoothing to statistics, e.g. for discriminative training\n"
"Usage: gmm-ismooth-stats [options] [--smooth-from-model] [<src-stats-in>|<src-model-in>] <dst-stats-in> <stats-out>\n"
"e.g.: gmm-ismooth-stats --tau=100 ml.acc num.acc smoothed.acc\n"
"or: gmm-ismooth-stats --tau=50 --smooth-from-model 1.mdl num.acc smoothed.acc\n"
"or: gmm-ismooth-stats --tau=100 num.acc num.acc smoothed.acc\n";
bool binary_write = false;
bool smooth_from_model = false;
BaseFloat tau = 100;
ParseOptions po(usage);
po.Register("binary", &binary_write, "Write output in binary mode");
po.Register("smooth-from-model", &smooth_from_model, "If true, "
"expect first argument to be a model file");
po.Register("tau", &tau, "Tau value for I-smoothing");
po.Read(argc, argv);
if (po.NumArgs() != 3) {
po.PrintUsage();
exit(1);
}
std::string src_stats_or_model_filename = po.GetArg(1),
dst_stats_filename = po.GetArg(2),
stats_out_filename = po.GetArg(3);
double tot_count_before, tot_count_after;
if (src_stats_or_model_filename == dst_stats_filename) { // as an optimization, just read once.
KALDI_ASSERT(!smooth_from_model);
Vector<double> transition_accs;
AccumAmDiagGmm stats;
{
bool binary;
Input ki(dst_stats_filename, &binary);
transition_accs.Read(ki.Stream(), binary);
stats.Read(ki.Stream(), binary, true); // true == add; doesn't matter here.
}
tot_count_before = stats.TotStatsCount();
IsmoothStatsAmDiagGmm(stats, tau, &stats);
tot_count_after = stats.TotStatsCount();
Output ko(stats_out_filename, binary_write);
transition_accs.Write(ko.Stream(), binary_write);
stats.Write(ko.Stream(), binary_write);
} else if (smooth_from_model) { // Smoothing from model...
AmDiagGmm am_gmm;
TransitionModel trans_model;
Vector<double> dst_transition_accs;
AccumAmDiagGmm dst_stats;
{ // read src model
bool binary;
Input ki(src_stats_or_model_filename, &binary);
trans_model.Read(ki.Stream(), binary);
am_gmm.Read(ki.Stream(), binary);
}
{ // read dst stats.
bool binary;
Input ki(dst_stats_filename, &binary);
dst_transition_accs.Read(ki.Stream(), binary);
dst_stats.Read(ki.Stream(), binary, true); // true == add; doesn't matter here.
}
tot_count_before = dst_stats.TotStatsCount();
IsmoothStatsAmDiagGmmFromModel(am_gmm, tau, &dst_stats);
tot_count_after = dst_stats.TotStatsCount();
Output ko(stats_out_filename, binary_write);
dst_transition_accs.Write(ko.Stream(), binary_write);
dst_stats.Write(ko.Stream(), binary_write);
} else { // Smooth from stats.
Vector<double> src_transition_accs;
Vector<double> dst_transition_accs;
AccumAmDiagGmm src_stats;
AccumAmDiagGmm dst_stats;
{ // read src stats.
bool binary;
Input ki(src_stats_or_model_filename, &binary);
src_transition_accs.Read(ki.Stream(), binary);
src_stats.Read(ki.Stream(), binary, true); // true == add; doesn't matter here.
}
{ // read dst stats.
bool binary;
Input ki(dst_stats_filename, &binary);
dst_transition_accs.Read(ki.Stream(), binary);
dst_stats.Read(ki.Stream(), binary, true); // true == add; doesn't matter here.
}
tot_count_before = dst_stats.TotStatsCount();
IsmoothStatsAmDiagGmm(src_stats, tau, &dst_stats);
tot_count_after = dst_stats.TotStatsCount();
Output ko(stats_out_filename, binary_write);
dst_transition_accs.Write(ko.Stream(), binary_write);
dst_stats.Write(ko.Stream(), binary_write);
}
KALDI_LOG << "Smoothed stats with tau = " << tau << ", count changed from "
<< tot_count_before << " to " << tot_count_after;
} catch(const std::exception &e) {
std::cerr << e.what() << '\n';
return -1;
}
}