ivector-extractor.h 28.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
// ivector/ivector-extractor.h

// Copyright 2013-2014    Daniel Povey
//           2015         David Snyder


// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#ifndef KALDI_IVECTOR_IVECTOR_EXTRACTOR_H_
#define KALDI_IVECTOR_IVECTOR_EXTRACTOR_H_

#include <vector>
#include <mutex>
#include "base/kaldi-common.h"
#include "matrix/matrix-lib.h"
#include "gmm/model-common.h"
#include "gmm/diag-gmm.h"
#include "gmm/full-gmm.h"
#include "itf/options-itf.h"
#include "util/common-utils.h"
#include "hmm/posterior.h"

namespace kaldi {

// Note, throughout this file we use SGMM-type notation because
// that's what I'm comfortable with.
// Dimensions:
//  D is the feature dim (e.g. D = 60)
//  I is the number of Gaussians (e.g. I = 2048)
//  S is the ivector dim (e.g. S = 400)



// Options for estimating iVectors, during both training and test.  Note: the
// "acoustic_weight" is not read by any class declared in this header; it has to
// be applied by calling IvectorExtractorUtteranceStats::Scale() before
// obtaining the iVector.
// The same is true of max_count: it has to be applied by programs themselves
// e.g. see ../ivectorbin/ivector-extract.cc.
struct IvectorEstimationOptions {
  double acoustic_weight;
  double max_count;
  IvectorEstimationOptions(): acoustic_weight(1.0), max_count(0.0) {}
  void Register(OptionsItf *opts) {
    opts->Register("acoustic-weight", &acoustic_weight,
                   "Weight on part of auxf that involves the data (e.g. 0.2); "
                   "if this weight is small, the prior will have more effect.");
    opts->Register("max-count", &max_count,
                   "Maximum frame count (affects prior scaling): if >0, the prior "
                   "term will be scaled up after the frame count exceeds this "
                   "value.  Note that this count is considered after posterior "
                   "scaling (e.g. --acoustic-weight option, or scale argument to "
                   "scale-post), so you would normally use a cutoff 10 times "
                   "smaller than the corresponding number of frames.");
  }
};


class IvectorExtractor;
class IvectorExtractorComputeDerivedVarsClass;

/// These are the stats for a particular utterance, i.e. the sufficient stats
/// for estimating an iVector (if need_2nd_order_stats == true, we can also
/// estimate the variance of the model; these 2nd order stats are not needed if
/// we just need the iVector.
class IvectorExtractorUtteranceStats {
 public:
  IvectorExtractorUtteranceStats(int32 num_gauss, int32 feat_dim,
                                 bool need_2nd_order_stats):
      gamma_(num_gauss), X_(num_gauss, feat_dim) {
    if (need_2nd_order_stats) {
      S_.resize(num_gauss);
      for (int32 i = 0; i < num_gauss; i++)
        S_[i].Resize(feat_dim);
    }
  }

  void AccStats(const MatrixBase<BaseFloat> &feats,
                const Posterior &post);

  void Scale(double scale); // Used to apply acoustic scale.

  double NumFrames() { return gamma_.Sum(); }

 protected:
  friend class IvectorExtractor;
  friend class IvectorExtractorStats;
  Vector<double> gamma_; // zeroth-order stats (summed posteriors), dimension [I]
  Matrix<double> X_; // first-order stats, dimension [I][D]
  std::vector<SpMatrix<double> > S_; // 2nd-order stats, dimension [I][D][D], if
                                     // required.
};


struct IvectorExtractorOptions {
  int ivector_dim;
  int num_iters;
  bool use_weights;
  IvectorExtractorOptions(): ivector_dim(400), num_iters(2),
                             use_weights(true) { }
  void Register(OptionsItf *opts) {
    opts->Register("num-iters", &num_iters, "Number of iterations in "
                   "iVector estimation (>1 needed due to weights)");
    opts->Register("ivector-dim", &ivector_dim, "Dimension of iVector");
    opts->Register("use-weights", &use_weights, "If true, regress the "
                   "log-weights on the iVector");
  }
};


// Forward declaration.  This class is used together with IvectorExtractor to
// compute iVectors in an online way, so we can update the estimate efficiently
// as we add frames.
class OnlineIvectorEstimationStats;

// Caution: the IvectorExtractor is not the only thing required to get an
// ivector.  We also need to get posteriors from a GMM, typically a FullGmm.
// Typically these will be obtained in a process that involves using a DiagGmm
// for Gaussian selection, followed by getting posteriors from the FullGmm.  To
// keep track of these, we keep them all in the same directory,
// e.g. final.{ubm,dubm,ie}.

class IvectorExtractor {
 public:
  friend class IvectorExtractorStats;
  friend class OnlineIvectorEstimationStats;

  IvectorExtractor(): prior_offset_(0.0) { }

  IvectorExtractor(
      const IvectorExtractorOptions &opts,
      const FullGmm &fgmm);

  /// Gets the distribution over ivectors (or at least, a Gaussian approximation
  /// to it).  The output "var" may be NULL if you don't need it.  "mean", and
  /// "var", if present, must be the correct dimension (this->IvectorDim()).
  /// If you only need a point estimate of the iVector, get the mean only.
  void GetIvectorDistribution(
      const IvectorExtractorUtteranceStats &utt_stats,
      VectorBase<double> *mean,
      SpMatrix<double> *var) const;

  /// The distribution over iVectors, in our formulation, is not centered at
  /// zero; its first dimension has a nonzero offset.  This function returns
  /// that offset.
  double PriorOffset() const { return prior_offset_; }

  /// Returns the log-likelihood objective function, summed over frames,
  /// for this distribution of iVectors (a point distribution, if var == NULL).
  double GetAuxf(const IvectorExtractorUtteranceStats &utt_stats,
                 const VectorBase<double> &mean,
                 const SpMatrix<double> *var = NULL) const;

  /// Returns the data-dependent part of the log-likelihood objective function,
  /// summed over frames.  If variance pointer is NULL, uses point value.
  double GetAcousticAuxf(const IvectorExtractorUtteranceStats &utt_stats,
                         const VectorBase<double> &mean,
                         const SpMatrix<double> *var = NULL) const;

  /// Returns the prior-related part of the log-likelihood objective function.
  /// Note: if var != NULL, this quantity is a *probability*, otherwise it is
  /// a likelihood (and the corresponding probability is zero).
  double GetPriorAuxf(const VectorBase<double> &mean,
                         const SpMatrix<double> *var = NULL) const;

  /// This returns just the part of the acoustic auxf that relates to the
  /// variance of the utt_stats (i.e. which would be zero if the utt_stats had
  /// zero variance.  This does not depend on the iVector, it's included as an
  /// aid to debugging.  We can only get this if we stored the S statistics.  If
  /// not we assume the variance is generated from the model.
  double GetAcousticAuxfVariance(
      const IvectorExtractorUtteranceStats &utt_stats) const;

  /// This returns just the part of the acoustic auxf that relates to the
  /// speaker-dependent means (and how they differ from the data means).
  double GetAcousticAuxfMean(
      const IvectorExtractorUtteranceStats &utt_stats,
      const VectorBase<double> &mean,
      const SpMatrix<double> *var = NULL) const;

  /// This returns the part of the acoustic auxf that relates to the
  /// gconsts of the Gaussians.
  double GetAcousticAuxfGconst(
      const IvectorExtractorUtteranceStats &utt_stats) const;

  /// This returns the part of the acoustic auxf that relates to the
  /// Gaussian-specific weights.  (impacted by the iVector only if
  /// we are using w_).
  double GetAcousticAuxfWeight(
      const IvectorExtractorUtteranceStats &utt_stats,
      const VectorBase<double> &mean,
      const SpMatrix<double> *var = NULL) const;


  /// Gets the linear and quadratic terms in the distribution over iVectors, but
  /// only the terms arising from the Gaussian means (i.e. not the weights
  /// or the priors).
  /// Setup is log p(x) \propto x^T linear -0.5 x^T quadratic x.
  /// This function *adds to* the output rather than setting it.
  void GetIvectorDistMean(
      const IvectorExtractorUtteranceStats &utt_stats,
      VectorBase<double> *linear,
      SpMatrix<double> *quadratic) const;

  /// Gets the linear and quadratic terms in the distribution over
  /// iVectors, that arise from the prior.  Adds to the outputs,
  /// rather than setting them.
  void GetIvectorDistPrior(
      const IvectorExtractorUtteranceStats &utt_stats,
      VectorBase<double> *linear,
      SpMatrix<double> *quadratic) const;

  /// Gets the linear and quadratic terms in the distribution over
  /// iVectors, that arise from the weights (if applicable).  The
  /// "mean" parameter is the iVector point that we compute
  /// the expansion around (it's a quadratic approximation of a
  /// nonlinear function, but with a "safety factor" (the "max" stuff).
  /// Adds to the outputs, rather than setting them.
  void GetIvectorDistWeight(
      const IvectorExtractorUtteranceStats &utt_stats,
      const VectorBase<double> &mean,
      VectorBase<double> *linear,
      SpMatrix<double> *quadratic) const;

  // Note: the function GetStats no longer exists due to code refactoring.
  // Instead of this->GetStats(feats, posterior, &utt_stats), call
  // utt_stats.AccStats(feats, posterior).

  int32 FeatDim() const;
  int32 IvectorDim() const;
  int32 NumGauss() const;
  bool IvectorDependentWeights() const { return w_.NumRows() != 0; }
  void Write(std::ostream &os, bool binary) const;
  void Read(std::istream &is, bool binary);

  // Note: we allow the default assignment and copy operators
  // because they do what we want.
 protected:
  void ComputeDerivedVars();
  void ComputeDerivedVars(int32 i);
  friend class IvectorExtractorComputeDerivedVarsClass;

  // Imagine we'll project the iVectors with transformation T, so apply T^{-1}
  // where necessary to keep the model equivalent.  Used to keep unit variance
  // (like prior re-estimation).
  void TransformIvectors(const MatrixBase<double> &T,
                         double new_prior_offset);


  /// Weight projection vectors, if used.  Dimension is [I][S]
  Matrix<double> w_;

  /// If we are not using weight-projection vectors, stores the Gaussian mixture
  /// weights from the UBM.  This does not affect the iVector; it is only useful
  /// as a way of making sure the log-probs are comparable between systems with
  /// and without weight projection matrices.
  Vector<double> w_vec_;

  /// Ivector-subspace projection matrices, dimension is [I][D][S].
  /// The I'th matrix projects from ivector-space to Gaussian mean.
  /// There is no mean offset to add-- we deal with it by having
  /// a prior with a nonzero mean.
  std::vector<Matrix<double> > M_;

  /// Inverse variances of speaker-adapted model, dimension [I][D][D].
  std::vector<SpMatrix<double> > Sigma_inv_;

  /// 1st dim of the prior over the ivector has an offset, so it is not zero.
  /// This is used to handle the global offset of the speaker-adapted means in a
  /// simple way.
  double prior_offset_;

  // Below are *derived variables* that can be computed from the
  // variables above.

  /// The constant term in the log-likelihood of each Gaussian (not
  /// counting any weight).
  Vector<double> gconsts_;

  /// U_i = M_i^T \Sigma_i^{-1} M_i is a quantity that comes up
  /// in ivector estimation.  This is conceptually a
  /// std::vector<SpMatrix<double> >, but we store the packed-data
  /// in the rows of a matrix, which gives us an efficiency
  /// improvement (we can use matrix-multiplies).
  Matrix<double> U_;

  /// The product of Sigma_inv_[i] with M_[i].
  std::vector<Matrix<double> > Sigma_inv_M_;
 private:
  // var <-- quadratic_term^{-1}, but done carefully, first flooring eigenvalues
  // of quadratic_term to 1.0, which mathematically is the least they can be,
  // due to the prior term.
  static void InvertWithFlooring(const SpMatrix<double> &quadratic_term,
                                 SpMatrix<double> *var);
};

/**
   This class helps us to efficiently estimate iVectors in situations where the
   data is coming in frame by frame.
 */
class OnlineIvectorEstimationStats {
 public:
  // Search above for max_count to see an explanation; if nonzero, it will
  // put a higher weight on the prior (vs. the stats) once the count passes
  // that value.
  OnlineIvectorEstimationStats(int32 ivector_dim,
                               BaseFloat prior_offset,
                               BaseFloat max_count);

  OnlineIvectorEstimationStats(const OnlineIvectorEstimationStats &other);


  // Accumulate stats for one frame.
  void AccStats(const IvectorExtractor &extractor,
                const VectorBase<BaseFloat> &feature,
                const std::vector<std::pair<int32, BaseFloat> > &gauss_post);

  // Accumulate stats for a sequence (or collection) of frames.
  void AccStats(const IvectorExtractor &extractor,
                const MatrixBase<BaseFloat> &features,
                const std::vector<std::vector<std::pair<int32, BaseFloat> > > &gauss_post);


  int32 IvectorDim() const { return linear_term_.Dim(); }

  /// This function gets the current estimate of the iVector.  Internally it
  /// does some work to compute it (currently matrix inversion, but we are doing
  /// to use Conjugate Gradient which will increase the speed).  At entry,
  /// "ivector" must be a pointer to a vector dimension IvectorDim(), and free
  /// of NaN's.  For faster estimation, you can set "num_cg_iters" to some value
  /// > 0, which will limit how many iterations of conjugate gradient we use to
  /// re-estimate the iVector; in this case, you should make sure *ivector is
  /// set at entry to a recently estimated iVector from the same utterance,
  /// which will give the CG a better starting point.
  /// If num_cg_iters is set to -1, it will compute the iVector exactly; if it's
  /// set to a positive number, the number of conjugate gradient iterations will
  /// be limited to that number.  Note: the iVectors output still have a nonzero
  /// mean (first dim offset by PriorOffset()).
  void GetIvector(int32 num_cg_iters,
                  VectorBase<double> *ivector) const;

  double NumFrames() const { return num_frames_; }

  double PriorOffset() const { return prior_offset_; }

  /// ObjfChange returns the change in objective function *per frame* from
  /// using the default value [ prior_offset_, 0, 0, ... ] to
  /// using the provided value; should be >= 0, if "ivector" is
  /// a value we estimated.  This is for diagnostics.
  double ObjfChange(const VectorBase<double> &ivector) const;

  double Count() const { return num_frames_; }

  /// Scales the number of frames of stats by 0 <= scale <= 1, to make it
  /// as if we had fewer frames of adaptation data.  Note: it does not
  /// apply the scaling to the prior term.
  void Scale(double scale);

  void Write(std::ostream &os, bool binary) const;
  void Read(std::istream &is, bool binary);

  // Override the default assignment operator
  inline OnlineIvectorEstimationStats &operator=(const OnlineIvectorEstimationStats &other) {
    this->prior_offset_ = other.prior_offset_;
    this->max_count_ = other.max_count_;
    this->num_frames_ = other.num_frames_;
    this->quadratic_term_=other.quadratic_term_;
    this->linear_term_=other.linear_term_;
    return *this;
  }

 protected:
  /// Returns objective function per frame, at this iVector value.
  double Objf(const VectorBase<double> &ivector) const;

  /// Returns objective function evaluated at the point
  /// [ prior_offset_, 0, 0, 0, ... ]... this is used in diagnostics.
  double DefaultObjf() const;

  friend class IvectorExtractor;
  double prior_offset_;
  double max_count_;
  double num_frames_;  // num frames (weighted, if applicable).
  SpMatrix<double> quadratic_term_;
  Vector<double> linear_term_;
};


// This code obtains periodically (for each "ivector_period" frames, e.g. 10
// frames), an estimate of the iVector including all frames up to that point.
// This emulates what you could do in an online/streaming algorithm; its use is
// for neural network training in a way that's matched to online decoding.
// [note: I don't believe we are currently using the program,
// ivector-extract-online.cc, that calls this function, in any of the scripts.].
// Caution: this program outputs the raw iVectors, where the first component
// will generally be very positive.  You probably want to subtract PriorOffset()
// from the first element of each row of the output before writing it out.
// For num_cg_iters, we suggest 15.  It can be a positive number (more -> more
// exact, less -> faster), or if it's negative it will do the optimization
// exactly each time which is slower.
// It returns the objective function improvement per frame from the "default" iVector to
// the last iVector estimated.
double EstimateIvectorsOnline(
    const Matrix<BaseFloat> &feats,
    const Posterior &post,
    const IvectorExtractor &extractor,
    int32 ivector_period,
    int32 num_cg_iters,
    BaseFloat max_count,
    Matrix<BaseFloat> *ivectors);


/// Options for IvectorExtractorStats, which is used to update the parameters of
/// IvectorExtractor.
struct IvectorExtractorStatsOptions {
  bool update_variances;
  bool compute_auxf;
  int32 num_samples_for_weights;
  int cache_size;

  IvectorExtractorStatsOptions(): update_variances(true),
                         compute_auxf(true),
                         num_samples_for_weights(10),
                         cache_size(100) { }
  void Register(OptionsItf *opts) {
    opts->Register("update-variances", &update_variances, "If true, update the "
                   "Gaussian variances");
    opts->Register("compute-auxf", &compute_auxf, "If true, compute the "
                   "auxiliary functions on training data; can be used to "
                   "debug and check convergence.");
    opts->Register("num-samples-for-weights", &num_samples_for_weights,
                   "Number of samples from iVector distribution to use "
                   "for accumulating stats for weight update.  Must be >1");
    opts->Register("cache-size", &cache_size, "Size of an internal "
                   "cache (not critical, only affects speed/memory)");
  }
};


/// Options for training the IvectorExtractor, e.g. variance flooring.
struct IvectorExtractorEstimationOptions {
  double variance_floor_factor;
  double gaussian_min_count;
  int32 num_threads;
  bool diagonalize;
  IvectorExtractorEstimationOptions(): variance_floor_factor(0.1),
                                       gaussian_min_count(100.0),
                                       diagonalize(true) { }
  void Register(OptionsItf *opts) {
    opts->Register("variance-floor-factor", &variance_floor_factor,
                   "Factor that determines variance flooring (we floor each covar "
                   "to this times global average covariance");
    opts->Register("gaussian-min-count", &gaussian_min_count,
                   "Minimum total count per Gaussian, below which we refuse to "
                   "update any associated parameters.");
    opts->Register("diagonalize", &diagonalize,
                   "If true, diagonalize the quadratic term in the "
                   "objective function. This reorders the ivector dimensions"
                   "from most to least important.");
  }
};

class IvectorExtractorUpdateProjectionClass;
class IvectorExtractorUpdateWeightClass;

/// IvectorExtractorStats is a class used to update the parameters of the
/// ivector extractor
class IvectorExtractorStats {
 public:
  friend class IvectorExtractor;

  IvectorExtractorStats(): tot_auxf_(0.0), R_num_cached_(0), num_ivectors_(0) { }

  IvectorExtractorStats(const IvectorExtractor &extractor,
                        const IvectorExtractorStatsOptions &stats_opts);

  void Add(const IvectorExtractorStats &other);

  void AccStatsForUtterance(const IvectorExtractor &extractor,
                            const MatrixBase<BaseFloat> &feats,
                            const Posterior &post);

  // This version (intended mainly for testing) works out the Gaussian
  // posteriors from the model.  Returns total log-like for feats, given
  // unadapted fgmm.  You'd want to add Gaussian pruning and preselection using
  // the diagonal, GMM, for speed, if you used this outside testing code.
  double AccStatsForUtterance(const IvectorExtractor &extractor,
                              const MatrixBase<BaseFloat> &feats,
                              const FullGmm &fgmm);

  void Read(std::istream &is, bool binary, bool add = false);

  void Write(std::ostream &os, bool binary); // non-const version; relates to cache.

  // const version of Write; may use extra memory if we have stuff cached
  void Write(std::ostream &os, bool binary) const;

  /// Returns the objf improvement per frame.
  double Update(const IvectorExtractorEstimationOptions &opts,
                IvectorExtractor *extractor) const;

  double AuxfPerFrame() { return tot_auxf_ / gamma_.Sum(); }

  /// Prints the proportion of the variance explained by
  /// the Ivector model versus the Gaussians.
  void IvectorVarianceDiagnostic(const IvectorExtractor &extractor);

  // Copy constructor.
  explicit IvectorExtractorStats (const IvectorExtractorStats &other);

 protected:
  friend class IvectorExtractorUpdateProjectionClass;
  friend class IvectorExtractorUpdateWeightClass;


  // This is called by AccStatsForUtterance
  void CommitStatsForUtterance(const IvectorExtractor &extractor,
                               const IvectorExtractorUtteranceStats &utt_stats);

  /// This is called by CommitStatsForUtterance.  We commit the stats
  /// used to update the M matrix.
  void CommitStatsForM(const IvectorExtractor &extractor,
                       const IvectorExtractorUtteranceStats &utt_stats,
                       const VectorBase<double> &ivec_mean,
                       const SpMatrix<double> &ivec_var);

  /// Flushes the cache for the R_ stats.
  void FlushCache();

  /// Commit the stats used to update the variance.
  void CommitStatsForSigma(const IvectorExtractor &extractor,
                           const IvectorExtractorUtteranceStats &utt_stats);

  /// Commit the stats used to update the weight-projection w_-- this one
  /// takes a point sample, it's called from CommitStatsForW().
  void CommitStatsForWPoint(const IvectorExtractor &extractor,
                            const IvectorExtractorUtteranceStats &utt_stats,
                            const VectorBase<double> &ivector,
                            double weight);


  /// Commit the stats used to update the weight-projection w_.
  void CommitStatsForW(const IvectorExtractor &extractor,
                       const IvectorExtractorUtteranceStats &utt_stats,
                       const VectorBase<double> &ivec_mean,
                       const SpMatrix<double> &ivec_var);

  /// Commit the stats used to update the prior distribution.
  void CommitStatsForPrior(const VectorBase<double> &ivec_mean,
                           const SpMatrix<double> &ivec_var);

  // Updates M.  Returns the objf improvement per frame.
  double UpdateProjections(const IvectorExtractorEstimationOptions &opts,
                           IvectorExtractor *extractor) const;

  // This internally called function returns the objf improvement
  // for this Gaussian index.  Updates one M.
  double UpdateProjection(const IvectorExtractorEstimationOptions &opts,
                          int32 gaussian,
                          IvectorExtractor *extractor) const;

  // Updates the weight projections.  Returns the objf improvement per
  // frame.
  double UpdateWeights(const IvectorExtractorEstimationOptions &opts,
                       IvectorExtractor *extractor) const;

  // Updates the weight projection for one Gaussian index.  Returns the objf
  // improvement for this index.
  double UpdateWeight(const IvectorExtractorEstimationOptions &opts,
                      int32 gaussian,
                      IvectorExtractor *extractor) const;

  // Returns the objf improvement per frame.
  double UpdateVariances(const IvectorExtractorEstimationOptions &opts,
                         IvectorExtractor *extractor) const;



  // Updates the prior; returns obj improvement per frame.
  double UpdatePrior(const IvectorExtractorEstimationOptions &opts,
                     IvectorExtractor *extractor) const;

  // Called from UpdatePrior, separating out some code that
  // computes likelihood changes.
  double PriorDiagnostics(double old_prior_offset) const;


  void CheckDims(const IvectorExtractor &extractor) const;

  IvectorExtractorStatsOptions config_; /// Caution: if we read from disk, this
                               /// is not recovered.  Options will not be
                               /// used during the update phase anyway,
                               /// so this should not matter.

  /// Total auxiliary function over the training data-- can be
  /// used to check convergence, etc.
  double tot_auxf_;

  /// This mutex guards gamma_ and Y_ (for multi-threaded update)
  std::mutex gamma_Y_lock_;

  /// Total occupation count for each Gaussian index (zeroth-order stats)
  Vector<double> gamma_;

  /// Stats Y_i for estimating projections M.  Dimension is [I][D][S].  The
  /// linear term in M.
  std::vector<Matrix<double> > Y_;

  /// This mutex guards R_ (for multi-threaded update)
  std::mutex R_lock_;

  /// R_i, quadratic term for ivector subspace (M matrix)estimation.  This is a
  /// kind of scatter of ivectors of training speakers, weighted by count for
  /// each Gaussian.  Conceptually vector<SpMatrix<double> >, but we store each
  /// SpMatrix as a row of R_.  Conceptually, the dim is [I][S][S]; the actual
  /// dim is [I][S*(S+1)/2].
  Matrix<double> R_;

  /// This mutex guards R_num_cached_, R_gamma_cache_, R_ivec_cache_ (for
  /// multi-threaded update)
  std::mutex R_cache_lock_;

  /// To avoid too-frequent rank-1 update of R, which is slow, we cache some
  /// quantities here.
  int32 R_num_cached_;
  /// dimension: [num-to-cache][I]
  Matrix<double> R_gamma_cache_;
  /// dimension: [num-to-cache][S*(S+1)/2]
  Matrix<double> R_ivec_scatter_cache_;

  /// This mutex guards Q_ and G_ (for multi-threaded update)
  std::mutex weight_stats_lock_;

  /// Q_ is like R_ (with same dimensions), except used for weight estimation;
  /// the scatter of ivectors is weighted by the coefficient of the quadratic
  /// term in the expansion for w (the "safe" one, with the max expression).
  Matrix<double> Q_;

  /// G_ is the linear term in the weight projection matrix w_.  It has the same
  /// dim as w_, i.e. [I][S]
  Matrix<double> G_;

  /// This mutex guards S_ (for multi-threaded update)
  std::mutex variance_stats_lock_;

  /// S_{i}, raw second-order stats per Gaussian which we will use to update the
  /// variances Sigma_inv_.
  std::vector< SpMatrix<double> > S_;


  /// This mutex guards num_ivectors_, ivector_sum_ and ivector_scatter_ (for multi-threaded
  /// update)
  std::mutex prior_stats_lock_;

  /// Count of the number of iVectors we trained on.   Need for prior re-estimation.
  /// (make it double not int64 to more easily support weighting later.)
  double num_ivectors_;

  /// Sum of all the iVector means.  Needed for prior re-estimation.
  Vector<double> ivector_sum_;

  /// Second-order stats for the iVectors.  Needed for prior re-estimation.
  SpMatrix<double> ivector_scatter_;

 private:
  /// Computes an orthogonal matrix A from the iVector transform
  /// T such that T' = A*T is an alternative transform which diagonalizes the
  /// quadratic_term_ in the iVector estimation objective function. This
  /// reorders the dimensions of the iVector from most to least important,
  /// which may be more convenient to view. The transform should not
  /// affect the performance of systems which use iVectors.
  void GetOrthogonalIvectorTransform(const SubMatrix<double> &T,
                                     IvectorExtractor *extractor,
                                     Matrix<double> *A) const;

  IvectorExtractorStats &operator = (const IvectorExtractorStats &other);  // Disallow.
};



}  // namespace kaldi


#endif