logistic-regression-test.cc
4.11 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// ivector/logistic-regression-test.cc
// Copyright 2014 David Snyder
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <time.h>
#include "ivector/logistic-regression.h"
namespace kaldi {
void UnitTestPosteriors() {
int32 n_features = Rand() % 600 + 10,
n_xs = Rand() % 200 + 100,
n_labels = Rand() % 20 + 10;
LogisticRegressionConfig conf;
conf.max_steps = 20;
conf.normalizer = 0.001;
Matrix<BaseFloat> xs(n_xs, n_features);
xs.SetRandn();
Matrix<BaseFloat> weights(n_labels, n_features + 1);
weights.SetRandn();
LogisticRegression classifier = LogisticRegression();
std::vector<int32> classes;
for (int32 i = 0; i < weights.NumRows(); i++) {
classes.push_back(i);
}
classifier.SetWeights(weights, classes);
// Get posteriors for the xs using batch and serial methods.
Matrix<BaseFloat> batch_log_posteriors;
classifier.GetLogPosteriors(xs, &batch_log_posteriors);
Matrix<BaseFloat> log_posteriors(n_xs, n_labels);
for (int32 i = 0; i < n_xs; i++) {
Vector<BaseFloat> x(n_features);
x.CopyRowFromMat(xs, i);
Vector<BaseFloat> log_post;
classifier.GetLogPosteriors(x, &log_post);
// Verify that sum_y p(y|x) = 1.0.
Vector<BaseFloat> post(log_post);
post.ApplyExp();
KALDI_ASSERT(ApproxEqual(post.Sum(), 1.0));
log_posteriors.Row(i).CopyFromVec(log_post);
}
// Verify equivalence of batch and serial methods.
float tolerance = 0.01;
KALDI_ASSERT(log_posteriors.ApproxEqual(batch_log_posteriors, tolerance));
}
void UnitTestTrain() {
int32 n_features = Rand() % 600 + 10,
n_xs = Rand() % 200 + 100,
n_labels = Rand() % 20 + 10;
double normalizer = 0.01;
Matrix<BaseFloat> xs(n_xs, n_features);
xs.SetRandn();
std::vector<int32> ys;
for (int32 i = 0; i < n_xs; i++) {
ys.push_back(Rand() % n_labels);
}
LogisticRegressionConfig conf;
conf.max_steps = 20;
conf.normalizer = normalizer;
// Train the classifier
LogisticRegression classifier = LogisticRegression();
classifier.Train(xs, ys, conf);
// Internally in LogisticRegression we add an additional element to
// the x vectors: a 1.0 which handles the prior.
Matrix<BaseFloat> xs_with_prior(n_xs, n_features + 1);
for (int32 i = 0; i < n_xs; i++) {
xs_with_prior(i, n_features) = 1.0;
}
SubMatrix<BaseFloat> sub_xs(xs_with_prior, 0, n_xs, 0, n_features);
sub_xs.CopyFromMat(xs);
Matrix<BaseFloat> xw(n_xs, n_labels);
xw.AddMatMat(1.0, xs_with_prior, kNoTrans, classifier.weights_,
kTrans, 0.0);
Matrix<BaseFloat> grad(classifier.weights_.NumRows(),
classifier.weights_.NumCols());
double objf_trained = classifier.GetObjfAndGrad(xs_with_prior,
ys, xw, &grad, normalizer);
// Calculate objective function using a random weight matrix.
Matrix<BaseFloat> xw_rand(n_xs, n_labels);
Matrix<BaseFloat> weights_rand(classifier.weights_);
weights_rand.SetRandn();
xw.AddMatMat(1.0, xs_with_prior, kNoTrans, weights_rand,
kTrans, 0.0);
// Verify that the objective function after training is better
// than the objective function with a random weight matrix.
double objf_rand_w = classifier.GetObjfAndGrad(xs_with_prior, ys,
xw_rand, &grad, normalizer);
KALDI_ASSERT(objf_trained > objf_rand_w);
KALDI_ASSERT(objf_trained > Log(1.0 / n_xs));
}
}
int main() {
using namespace kaldi;
srand (time(NULL));
UnitTestTrain();
UnitTestPosteriors();
return 0;
}