compute-vad-from-frame-likes.cc
7.81 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// ivectorbin/compute-vad-from-frame-likes.cc
// Copyright 2015 David Snyder
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "matrix/kaldi-matrix.h"
#include "util/parse-options.h"
#include "util/stl-utils.h"
namespace kaldi {
/**
PrepareMap creates a map that specifies the mapping between the input
and output class labels. If the string map_rxfilename is empty, then
the mapping is the identity map (e.g., 0 maps to 0, 1 maps to 1, etc),
based on the number of classes num_classes. If map_rxfilename is not
empty, the mapping is created from that file. The file is expected to
be two columns of integers with up to num_classes rows. If an input
class is not specified in the file, then the output class label is the
same as the input. The first column is the input class and the second
column is the output class. For example:
0 0
1 1
2 0
*/
void PrepareMap(const std::string &map_rxfilename, int32 num_classes,
unordered_map<int32, int32> *map) {
Input map_input(map_rxfilename);
for (int32 i = 0; i < num_classes; i++)
(*map)[i] = i;
if (!map_rxfilename.empty()) {
std::string line;
while (std::getline(map_input.Stream(), line)) {
if (line.size() == 0) continue;
int32 start = line.find_first_not_of(" \t");
int32 end = line.find_first_of('#'); // Ignore trailing comments
if (start == std::string::npos || start == end) continue;
end = line.find_last_not_of(" \t", end - 1);
KALDI_ASSERT(end >= start);
std::vector<std::string> fields;
SplitStringToVector(line.substr(start, end - start + 1),
" \t\n\r", true, &fields);
if (fields.size() != 2) {
KALDI_ERR << "Bad line. Expected two fields, got: "
<< line;
}
(*map)[std::atoi(fields[0].c_str())] = std::atoi(fields[1].c_str());
}
}
if (map->size() > num_classes)
KALDI_ERR << "Map table has " << map->size() << " classes. "
<< "Expected " << num_classes << " or fewer";
}
/**
PreparePriors creates a table specifying the priors for each class.
If priors_str is empty, uniform priors are assumed. If priors_str is
nonempty, the comma-separated floats are parsed out. If present, the
input of priors_str is of the form:
0.5,0.25,0.25
*/
void PreparePriors(const std::string &priors_str, int32 num_classes,
std::vector<BaseFloat> *priors) {
if (priors_str.empty()) {
for (int32 i = 0; i < num_classes; i++)
priors->push_back(log(1.0/num_classes)); // Uniform priors
} else {
SplitStringToFloats(priors_str, ",", false, priors);
for (int32 i = 0; i < priors->size(); i++)
(*priors)[i] = log((*priors)[i]);
}
if (priors->size() != num_classes)
KALDI_ERR << priors->size() << " priors specified. Expected "
<< num_classes;
}
}
int main(int argc, char *argv[]) {
using namespace kaldi;
typedef kaldi::int32 int32;
try {
const char *usage =
"This program computes frame-level voice activity decisions from a\n"
"set of input frame-level log-likelihoods. Usually, these\n"
"log-likelihoods are the output of fgmm-global-get-frame-likes.\n"
"Frames are assigned labels according to the class for which the\n"
"log-likelihood (optionally weighted by a prior) is maximal. The\n"
"class labels are determined by the order of inputs on the command\n"
"line. See options for more details.\n"
"\n"
"Usage: compute-vad-from-frame-likes [options] <likes-rspecifier-1>\n"
" ... <likes-rspecifier-n> <vad-wspecifier>\n"
"e.g.: compute-vad-from-frame-likes --map=label_map.txt\n"
" scp:likes1.scp scp:likes2.scp ark:vad.ark\n"
"See also: fgmm-global-get-frame-likes, compute-vad, merge-vads\n";
ParseOptions po(usage);
std::string map_rxfilename;
std::string priors_str;
po.Register("map", &map_rxfilename, "Table that defines the frame-level "
"labels. For each row, the first field is the zero-based index of the "
"input likelihood archive and the second field is the associated "
"integer label.");
po.Register("priors", &priors_str, "Comma-separated list that specifies "
"the priors for each class. The order of the floats corresponds to "
"the index of the input archives. E.g., --priors=0.5,0.2,0.3");
po.Read(argc, argv);
if (po.NumArgs() < 3) {
po.PrintUsage();
exit(1);
}
unordered_map<int32, int32> map;
std::vector<BaseFloat> priors;
int32 num_classes = po.NumArgs() - 1;
PrepareMap(map_rxfilename, num_classes, &map);
PreparePriors(priors_str, num_classes, &priors);
SequentialBaseFloatVectorReader first_reader(po.GetArg(1));
std::vector<RandomAccessBaseFloatVectorReader *> readers;
std::string vad_wspecifier = po.GetArg(po.NumArgs());
BaseFloatVectorWriter vad_writer(vad_wspecifier);
for (int32 i = 2; i < po.NumArgs(); i++) {
RandomAccessBaseFloatVectorReader *reader
= new RandomAccessBaseFloatVectorReader(po.GetArg(i));
readers.push_back(reader);
}
int32 num_done = 0, num_err = 0;
for (;!first_reader.Done(); first_reader.Next()) {
std::string utt = first_reader.Key();
Vector<BaseFloat> like(first_reader.Value());
int32 like_dim = like.Dim();
std::vector<Vector<BaseFloat> > likes;
likes.push_back(like);
if (like_dim == 0) {
KALDI_WARN << "Empty vector for utterance " << utt;
num_err++;
continue;
}
for (int32 i = 0; i < num_classes - 1; i++) {
if (!readers[i]->HasKey(utt)) {
KALDI_WARN << "No vector for utterance " << utt;
num_err++;
continue;
}
Vector<BaseFloat> other_like(readers[i]->Value(utt));
if (like_dim != other_like.Dim()) {
KALDI_WARN << "Dimension mismatch in input vectors in " << utt
<< ": " << like_dim << " vs. " << other_like.Dim();
num_err++;
continue;
}
likes.push_back(other_like);
}
Vector<BaseFloat> vad_result(like_dim);
for (int32 i = 0; i < like.Dim(); i++) {
int32 max_indx = 0;
BaseFloat max_post = likes[0](i) + priors[0];
for (int32 j = 0; j < num_classes; j++) {
BaseFloat other_post = likes[j](i) + priors[j];
if (other_post > max_post) {
max_indx = j;
max_post = other_post;
}
}
unordered_map<int32, int32>::const_iterator iter = map.find(max_indx);
if (iter == map.end()) {
KALDI_ERR << "Missing label " << max_indx << " in map";
} else {
vad_result(i) = iter->second;
}
}
vad_writer.Write(utt, vad_result);
num_done++;
}
for (int32 i = 0; i < num_classes - 1; i++)
delete readers[i];
KALDI_LOG << "Applied frame-level likelihood-based voice activity "
<< "detection; processed " << num_done
<< " utterances successfully; " << num_err
<< " had empty features.";
return (num_done != 0 ? 0 : 1);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}