ivector-extractor-acc-stats.cc
5.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// ivectorbin/ivector-extractor-acc-stats.cc
// Copyright 2013 Daniel Povey
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/am-diag-gmm.h"
#include "ivector/ivector-extractor.h"
#include "util/kaldi-thread.h"
namespace kaldi {
// this class is used to run the command
// stats.AccStatsForUtterance(extractor, mat, posterior);
// in parallel.
class IvectorTask {
public:
IvectorTask(const IvectorExtractor &extractor,
const Matrix<BaseFloat> &features,
const Posterior &posterior,
IvectorExtractorStats *stats): extractor_(extractor),
features_(features),
posterior_(posterior),
stats_(stats) { }
void operator () () {
stats_->AccStatsForUtterance(extractor_, features_, posterior_);
}
~IvectorTask() { } // the destructor doesn't have to do anything.
private:
const IvectorExtractor &extractor_;
Matrix<BaseFloat> features_; // not a reference, since features come from a
// Table and the reference we get from that is
// not valid long-term.
Posterior posterior_; // as above.
IvectorExtractorStats *stats_;
};
}
int main(int argc, char *argv[]) {
using namespace kaldi;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
try {
const char *usage =
"Accumulate stats for iVector extractor training\n"
"Reads in features and Gaussian-level posteriors (typically from a full GMM)\n"
"Supports multiple threads, but won't be able to make use of too many at a time\n"
"(e.g. more than about 4)\n"
"Usage: ivector-extractor-acc-stats [options] <model-in> <feature-rspecifier>"
"<posteriors-rspecifier> <stats-out>\n"
"e.g.: \n"
" fgmm-global-gselect-to-post 1.fgmm '$feats' 'ark:gunzip -c gselect.1.gz|' ark:- | \\\n"
" ivector-extractor-acc-stats 2.ie '$feats' ark,s,cs:- 2.1.acc\n";
ParseOptions po(usage);
bool binary = true;
IvectorExtractorStatsOptions stats_opts;
TaskSequencerConfig sequencer_opts;
po.Register("binary", &binary, "Write output in binary mode");
stats_opts.Register(&po);
sequencer_opts.Register(&po);
po.Read(argc, argv);
if (po.NumArgs() != 4) {
po.PrintUsage();
exit(1);
}
std::string ivector_extractor_rxfilename = po.GetArg(1),
feature_rspecifier = po.GetArg(2),
posteriors_rspecifier = po.GetArg(3),
accs_wxfilename = po.GetArg(4);
// Initialize these Reader objects before reading the IvectorExtractor,
// because it uses up a lot of memory and any fork() after that will
// be in danger of causing an allocation failure.
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier);
// This is a bit of a mess... the code that reads in the extractor calls
// ComputeDerivedVars, and it can do this multi-threaded, controlled by
// g_num_threads. So if the user specified the --num-threads option, which
// goes to sequencer_opts in this case, copy it to g_num_threads.
g_num_threads = sequencer_opts.num_threads;
IvectorExtractor extractor;
ReadKaldiObject(ivector_extractor_rxfilename, &extractor);
IvectorExtractorStats stats(extractor, stats_opts);
int64 tot_t = 0;
int32 num_done = 0, num_err = 0;
{
TaskSequencer<IvectorTask> sequencer(sequencer_opts);
for (; !feature_reader.Done(); feature_reader.Next()) {
std::string key = feature_reader.Key();
if (!posteriors_reader.HasKey(key)) {
KALDI_WARN << "No posteriors for utterance " << key;
num_err++;
continue;
}
const Matrix<BaseFloat> &mat = feature_reader.Value();
const Posterior &posterior = posteriors_reader.Value(key);
if (static_cast<int32>(posterior.size()) != mat.NumRows()) {
KALDI_WARN << "Size mismatch between posterior " << (posterior.size())
<< " and features " << (mat.NumRows()) << " for utterance "
<< key;
num_err++;
continue;
}
sequencer.Run(new IvectorTask(extractor, mat, posterior, &stats));
tot_t += posterior.size();
num_done++;
}
// destructor of "sequencer" will wait for any remaining tasks that
// have not yet completed.
}
KALDI_LOG << "Done " << num_done << " files, " << num_err
<< " with errors. Total frames " << tot_t;
{
Output ko(accs_wxfilename, binary);
stats.Write(ko.Stream(), binary);
}
KALDI_LOG << "Wrote stats to " << accs_wxfilename;
return (num_done != 0 ? 0 : 1);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}