kaldi-lattice.cc
17.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
// lat/kaldi-lattice.cc
// Copyright 2009-2011 Microsoft Corporation
// 2013 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "lat/kaldi-lattice.h"
#include "fst/script/print-impl.h"
namespace kaldi {
/// Converts lattice types if necessary, deleting its input.
template<class OrigWeightType>
CompactLattice* ConvertToCompactLattice(fst::VectorFst<OrigWeightType> *ifst) {
if (!ifst) return NULL;
CompactLattice *ofst = new CompactLattice();
ConvertLattice(*ifst, ofst);
delete ifst;
return ofst;
}
// This overrides the template if there is no type conversion going on
// (for efficiency).
template<>
CompactLattice* ConvertToCompactLattice(CompactLattice *ifst) {
return ifst;
}
/// Converts lattice types if necessary, deleting its input.
template<class OrigWeightType>
Lattice* ConvertToLattice(fst::VectorFst<OrigWeightType> *ifst) {
if (!ifst) return NULL;
Lattice *ofst = new Lattice();
ConvertLattice(*ifst, ofst);
delete ifst;
return ofst;
}
// This overrides the template if there is no type conversion going on
// (for efficiency).
template<>
Lattice* ConvertToLattice(Lattice *ifst) {
return ifst;
}
bool WriteCompactLattice(std::ostream &os, bool binary,
const CompactLattice &t) {
if (binary) {
fst::FstWriteOptions opts;
// Leave all the options default. Normally these lattices wouldn't have any
// osymbols/isymbols so no point directing it not to write them (who knows what
// we'd want to if we had them).
return t.Write(os, opts);
} else {
// Text-mode output. Note: we expect that t.InputSymbols() and
// t.OutputSymbols() would always return NULL. The corresponding input
// routine would not work if the FST actually had symbols attached.
// Write a newline after the key, so the first line of the FST appears
// on its own line.
os << '\n';
bool acceptor = true, write_one = false;
fst::FstPrinter<CompactLatticeArc> printer(t, t.InputSymbols(),
t.OutputSymbols(),
NULL, acceptor, write_one, "\t");
printer.Print(&os, "<unknown>");
if (os.fail())
KALDI_WARN << "Stream failure detected.";
// Write another newline as a terminating character. The read routine will
// detect this [this is a Kaldi mechanism, not somethig in the original
// OpenFst code].
os << '\n';
return os.good();
}
}
/// LatticeReader provides (static) functions for reading both Lattice
/// and CompactLattice, in text form.
class LatticeReader {
typedef LatticeArc Arc;
typedef LatticeWeight Weight;
typedef CompactLatticeArc CArc;
typedef CompactLatticeWeight CWeight;
typedef Arc::Label Label;
typedef Arc::StateId StateId;
public:
// everything is static in this class.
/** This function reads from the FST text format; it does not know in advance
whether it's a Lattice or CompactLattice in the stream so it tries to
read both formats until it becomes clear which is the correct one.
*/
static std::pair<Lattice*, CompactLattice*> ReadText(
std::istream &is) {
typedef std::pair<Lattice*, CompactLattice*> PairT;
using std::string;
using std::vector;
Lattice *fst = new Lattice();
CompactLattice *cfst = new CompactLattice();
string line;
size_t nline = 0;
string separator = FLAGS_fst_field_separator + "\r\n";
while (std::getline(is, line)) {
nline++;
vector<string> col;
// on Windows we'll write in text and read in binary mode.
SplitStringToVector(line, separator.c_str(), true, &col);
if (col.size() == 0) break; // Empty line is a signal to stop, in our
// archive format.
if (col.size() > 5) {
KALDI_WARN << "Reading lattice: bad line in FST: " << line;
delete fst;
delete cfst;
return PairT(static_cast<Lattice*>(NULL),
static_cast<CompactLattice*>(NULL));
}
StateId s;
if (!ConvertStringToInteger(col[0], &s)) {
KALDI_WARN << "FstCompiler: bad line in FST: " << line;
delete fst;
delete cfst;
return PairT(static_cast<Lattice*>(NULL),
static_cast<CompactLattice*>(NULL));
}
if (fst)
while (s >= fst->NumStates())
fst->AddState();
if (cfst)
while (s >= cfst->NumStates())
cfst->AddState();
if (nline == 1) {
if (fst) fst->SetStart(s);
if (cfst) cfst->SetStart(s);
}
if (fst) { // we still have fst; try to read that arc.
bool ok = true;
Arc arc;
Weight w;
StateId d = s;
switch (col.size()) {
case 1 :
fst->SetFinal(s, Weight::One());
break;
case 2:
if (!StrToWeight(col[1], true, &w)) ok = false;
else fst->SetFinal(s, w);
break;
case 3: // 3 columns not ok for Lattice format; it's not an acceptor.
ok = false;
break;
case 4:
ok = ConvertStringToInteger(col[1], &arc.nextstate) &&
ConvertStringToInteger(col[2], &arc.ilabel) &&
ConvertStringToInteger(col[3], &arc.olabel);
if (ok) {
d = arc.nextstate;
arc.weight = Weight::One();
fst->AddArc(s, arc);
}
break;
case 5:
ok = ConvertStringToInteger(col[1], &arc.nextstate) &&
ConvertStringToInteger(col[2], &arc.ilabel) &&
ConvertStringToInteger(col[3], &arc.olabel) &&
StrToWeight(col[4], false, &arc.weight);
if (ok) {
d = arc.nextstate;
fst->AddArc(s, arc);
}
break;
default:
ok = false;
}
while (d >= fst->NumStates())
fst->AddState();
if (!ok) {
delete fst;
fst = NULL;
}
}
if (cfst) {
bool ok = true;
CArc arc;
CWeight w;
StateId d = s;
switch (col.size()) {
case 1 :
cfst->SetFinal(s, CWeight::One());
break;
case 2:
if (!StrToCWeight(col[1], true, &w)) ok = false;
else cfst->SetFinal(s, w);
break;
case 3: // compact-lattice is acceptor format: state, next-state, label.
ok = ConvertStringToInteger(col[1], &arc.nextstate) &&
ConvertStringToInteger(col[2], &arc.ilabel);
if (ok) {
d = arc.nextstate;
arc.olabel = arc.ilabel;
arc.weight = CWeight::One();
cfst->AddArc(s, arc);
}
break;
case 4:
ok = ConvertStringToInteger(col[1], &arc.nextstate) &&
ConvertStringToInteger(col[2], &arc.ilabel) &&
StrToCWeight(col[3], false, &arc.weight);
if (ok) {
d = arc.nextstate;
arc.olabel = arc.ilabel;
cfst->AddArc(s, arc);
}
break;
case 5: default:
ok = false;
}
while (d >= cfst->NumStates())
cfst->AddState();
if (!ok) {
delete cfst;
cfst = NULL;
}
}
if (!fst && !cfst) {
KALDI_WARN << "Bad line in lattice text format: " << line;
// read until we get an empty line, so at least we
// have a chance to read the next one (although this might
// be a bit futile since the calling code will get unhappy
// about failing to read this one.
while (std::getline(is, line)) {
SplitStringToVector(line, separator.c_str(), true, &col);
if (col.empty()) break;
}
return PairT(static_cast<Lattice*>(NULL),
static_cast<CompactLattice*>(NULL));
}
}
return PairT(fst, cfst);
}
static bool StrToWeight(const std::string &s, bool allow_zero, Weight *w) {
std::istringstream strm(s);
strm >> *w;
if (!strm || (!allow_zero && *w == Weight::Zero())) {
return false;
}
return true;
}
static bool StrToCWeight(const std::string &s, bool allow_zero, CWeight *w) {
std::istringstream strm(s);
strm >> *w;
if (!strm || (!allow_zero && *w == CWeight::Zero())) {
return false;
}
return true;
}
};
CompactLattice *ReadCompactLatticeText(std::istream &is) {
std::pair<Lattice*, CompactLattice*> lat_pair = LatticeReader::ReadText(is);
if (lat_pair.second != NULL) {
delete lat_pair.first;
return lat_pair.second;
} else if (lat_pair.first != NULL) {
// note: ConvertToCompactLattice frees its input.
return ConvertToCompactLattice(lat_pair.first);
} else {
return NULL;
}
}
Lattice *ReadLatticeText(std::istream &is) {
std::pair<Lattice*, CompactLattice*> lat_pair = LatticeReader::ReadText(is);
if (lat_pair.first != NULL) {
delete lat_pair.second;
return lat_pair.first;
} else if (lat_pair.second != NULL) {
// note: ConvertToLattice frees its input.
return ConvertToLattice(lat_pair.second);
} else {
return NULL;
}
}
bool ReadCompactLattice(std::istream &is, bool binary,
CompactLattice **clat) {
KALDI_ASSERT(*clat == NULL);
if (binary) {
fst::FstHeader hdr;
if (!hdr.Read(is, "<unknown>")) {
KALDI_WARN << "Reading compact lattice: error reading FST header.";
return false;
}
if (hdr.FstType() != "vector") {
KALDI_WARN << "Reading compact lattice: unsupported FST type: "
<< hdr.FstType();
return false;
}
fst::FstReadOptions ropts("<unspecified>",
&hdr);
typedef fst::CompactLatticeWeightTpl<fst::LatticeWeightTpl<float>, int32> T1;
typedef fst::CompactLatticeWeightTpl<fst::LatticeWeightTpl<double>, int32> T2;
typedef fst::LatticeWeightTpl<float> T3;
typedef fst::LatticeWeightTpl<double> T4;
typedef fst::VectorFst<fst::ArcTpl<T1> > F1;
typedef fst::VectorFst<fst::ArcTpl<T2> > F2;
typedef fst::VectorFst<fst::ArcTpl<T3> > F3;
typedef fst::VectorFst<fst::ArcTpl<T4> > F4;
CompactLattice *ans = NULL;
if (hdr.ArcType() == T1::Type()) {
ans = ConvertToCompactLattice(F1::Read(is, ropts));
} else if (hdr.ArcType() == T2::Type()) {
ans = ConvertToCompactLattice(F2::Read(is, ropts));
} else if (hdr.ArcType() == T3::Type()) {
ans = ConvertToCompactLattice(F3::Read(is, ropts));
} else if (hdr.ArcType() == T4::Type()) {
ans = ConvertToCompactLattice(F4::Read(is, ropts));
} else {
KALDI_WARN << "FST with arc type " << hdr.ArcType()
<< " cannot be converted to CompactLattice.\n";
return false;
}
if (ans == NULL) {
KALDI_WARN << "Error reading compact lattice (after reading header).";
return false;
}
*clat = ans;
return true;
} else {
// The next line would normally consume the \r on Windows, plus any
// extra spaces that might have got in there somehow.
while (std::isspace(is.peek()) && is.peek() != '\n') is.get();
if (is.peek() == '\n') is.get(); // consume the newline.
else { // saw spaces but no newline.. this is not expected.
KALDI_WARN << "Reading compact lattice: unexpected sequence of spaces "
<< " at file position " << is.tellg();
return false;
}
*clat = ReadCompactLatticeText(is); // that routine will warn on error.
return (*clat != NULL);
}
}
bool CompactLatticeHolder::Read(std::istream &is) {
Clear(); // in case anything currently stored.
int c = is.peek();
if (c == -1) {
KALDI_WARN << "End of stream detected reading CompactLattice.";
return false;
} else if (isspace(c)) { // The text form of the lattice begins
// with space (normally, '\n'), so this means it's text (the binary form
// cannot begin with space because it starts with the FST Type() which is not
// space).
return ReadCompactLattice(is, false, &t_);
} else if (c != 214) { // 214 is first char of FST magic number,
// on little-endian machines which is all we support (\326 octal)
KALDI_WARN << "Reading compact lattice: does not appear to be an FST "
<< " [non-space but no magic number detected], file pos is "
<< is.tellg();
return false;
} else {
return ReadCompactLattice(is, true, &t_);
}
}
bool WriteLattice(std::ostream &os, bool binary, const Lattice &t) {
if (binary) {
fst::FstWriteOptions opts;
// Leave all the options default. Normally these lattices wouldn't have any
// osymbols/isymbols so no point directing it not to write them (who knows what
// we'd want to do if we had them).
return t.Write(os, opts);
} else {
// Text-mode output. Note: we expect that t.InputSymbols() and
// t.OutputSymbols() would always return NULL. The corresponding input
// routine would not work if the FST actually had symbols attached.
// Write a newline after the key, so the first line of the FST appears
// on its own line.
os << '\n';
bool acceptor = false, write_one = false;
fst::FstPrinter<LatticeArc> printer(t, t.InputSymbols(),
t.OutputSymbols(),
NULL, acceptor, write_one, "\t");
printer.Print(&os, "<unknown>");
if (os.fail())
KALDI_WARN << "Stream failure detected.";
// Write another newline as a terminating character. The read routine will
// detect this [this is a Kaldi mechanism, not somethig in the original
// OpenFst code].
os << '\n';
return os.good();
}
}
bool ReadLattice(std::istream &is, bool binary,
Lattice **lat) {
KALDI_ASSERT(*lat == NULL);
if (binary) {
fst::FstHeader hdr;
if (!hdr.Read(is, "<unknown>")) {
KALDI_WARN << "Reading lattice: error reading FST header.";
return false;
}
if (hdr.FstType() != "vector") {
KALDI_WARN << "Reading lattice: unsupported FST type: "
<< hdr.FstType();
return false;
}
fst::FstReadOptions ropts("<unspecified>",
&hdr);
typedef fst::CompactLatticeWeightTpl<fst::LatticeWeightTpl<float>, int32> T1;
typedef fst::CompactLatticeWeightTpl<fst::LatticeWeightTpl<double>, int32> T2;
typedef fst::LatticeWeightTpl<float> T3;
typedef fst::LatticeWeightTpl<double> T4;
typedef fst::VectorFst<fst::ArcTpl<T1> > F1;
typedef fst::VectorFst<fst::ArcTpl<T2> > F2;
typedef fst::VectorFst<fst::ArcTpl<T3> > F3;
typedef fst::VectorFst<fst::ArcTpl<T4> > F4;
Lattice *ans = NULL;
if (hdr.ArcType() == T1::Type()) {
ans = ConvertToLattice(F1::Read(is, ropts));
} else if (hdr.ArcType() == T2::Type()) {
ans = ConvertToLattice(F2::Read(is, ropts));
} else if (hdr.ArcType() == T3::Type()) {
ans = ConvertToLattice(F3::Read(is, ropts));
} else if (hdr.ArcType() == T4::Type()) {
ans = ConvertToLattice(F4::Read(is, ropts));
} else {
KALDI_WARN << "FST with arc type " << hdr.ArcType()
<< " cannot be converted to Lattice.\n";
return false;
}
if (ans == NULL) {
KALDI_WARN << "Error reading lattice (after reading header).";
return false;
}
*lat = ans;
return true;
} else {
// The next line would normally consume the \r on Windows, plus any
// extra spaces that might have got in there somehow.
while (std::isspace(is.peek()) && is.peek() != '\n') is.get();
if (is.peek() == '\n') is.get(); // consume the newline.
else { // saw spaces but no newline.. this is not expected.
KALDI_WARN << "Reading compact lattice: unexpected sequence of spaces "
<< " at file position " << is.tellg();
return false;
}
*lat = ReadLatticeText(is); // that routine will warn on error.
return (*lat != NULL);
}
}
/* Since we don't write the binary headers for this type of holder,
we use a different method to work out whether we're in binary mode.
*/
bool LatticeHolder::Read(std::istream &is) {
Clear(); // in case anything currently stored.
int c = is.peek();
if (c == -1) {
KALDI_WARN << "End of stream detected reading Lattice.";
return false;
} else if (isspace(c)) { // The text form of the lattice begins
// with space (normally, '\n'), so this means it's text (the binary form
// cannot begin with space because it starts with the FST Type() which is not
// space).
return ReadLattice(is, false, &t_);
} else if (c != 214) { // 214 is first char of FST magic number,
// on little-endian machines which is all we support (\326 octal)
KALDI_WARN << "Reading compact lattice: does not appear to be an FST "
<< " [non-space but no magic number detected], file pos is "
<< is.tellg();
return false;
} else {
return ReadLattice(is, true, &t_);
}
}
} // end namespace kaldi