phone-align-lattice.cc 17 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
// lat/phone-align-lattice.cc

// Copyright 2012-2013  Microsoft Corporation
//                      Johns Hopkins University (Author: Daniel Povey)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.


#include "lat/phone-align-lattice.h"
#include "hmm/transition-model.h"
#include "util/stl-utils.h"

namespace kaldi {

class LatticePhoneAligner {
 public:
  typedef CompactLatticeArc::StateId StateId;
  typedef CompactLatticeArc::Label Label;

  class ComputationState { /// The state of the computation in which,
    /// along a single path in the lattice, we work out the phone
    /// boundaries and output phone-aligned arcs. [These may or may not have
    /// words on them; the word symbols are not aligned with anything.
   public:

    /// Advance the computation state by adding the symbols and weights
    /// from this arc.  Gets rid of the weight and puts it in "weight" which
    /// will be put on the output arc; this keeps the state-space small.
    void Advance(const CompactLatticeArc &arc, const PhoneAlignLatticeOptions &opts,
                 LatticeWeight *weight) {
      const std::vector<int32> &string = arc.weight.String();
      transition_ids_.insert(transition_ids_.end(),
                             string.begin(), string.end());
      if (arc.ilabel != 0 && !opts.replace_output_symbols) // note: arc.ilabel==arc.olabel (acceptor)
        word_labels_.push_back(arc.ilabel);
      *weight = Times(weight_, arc.weight.Weight());
      weight_ = LatticeWeight::One();
    }

    /// If it can output a whole phone, it will do so, will put it in arc_out,
    /// and return true; else it will return false.  If it detects an error
    /// condition and *error = false, it will set *error to true and print
    /// a warning.  In this case it will still output phone arcs, they will
    /// just be inaccurate.  Of course once *error is set, something has gone
    /// wrong so don't trust the output too fully.
    /// Note: the "next_state" of the arc will not be set, you have to do that
    /// yourself.
    bool OutputPhoneArc(const TransitionModel &tmodel,
                        const PhoneAlignLatticeOptions &opts,
                        CompactLatticeArc *arc_out,
                        bool *error);

    /// This will succeed (and output the arc) if we have >1 word in words_;
    /// the arc won't have any transition-ids on it.  This is intended to fix
    /// a particular pathology where too many words were pending and we had
    /// blowup.
    bool OutputWordArc(const TransitionModel &tmodel,
                       const PhoneAlignLatticeOptions &opts,
                       CompactLatticeArc *arc_out,
                       bool *error);

    bool IsEmpty() { return (transition_ids_.empty() && word_labels_.empty()); }

    /// FinalWeight() will return "weight" if both transition_ids
    /// and word_labels are empty, otherwise it will return
    /// Weight::Zero().
    LatticeWeight FinalWeight() { return (IsEmpty() ? weight_ : LatticeWeight::Zero()); }

    /// This function may be called when you reach the end of
    /// the lattice and this structure hasn't voluntarily
    /// output words using "OutputArc".  If IsEmpty() == false,
    /// then you can call this function and it will output
    /// an arc.  The only
    /// non-error state in which this happens, is when a word
    /// (or silence) has ended, but we don't know that it's
    /// ended because we haven't seen the first transition-id
    /// from the next word.  Otherwise (error state), the output
    /// will consist of partial words, and this will only
    /// happen for lattices that were somehow broken, i.e.
    /// had not reached the final state.
    void OutputArcForce(const TransitionModel &tmodel,
                        const PhoneAlignLatticeOptions &opts,
                        CompactLatticeArc *arc_out,
                        bool *error);

    size_t Hash() const {
      VectorHasher<int32> vh;
      return vh(transition_ids_) + 90647 * vh(word_labels_);
      // 90647 is an arbitrary largish prime number.
      // We don't bother including the weight in the hash--
      // we don't really expect duplicates with the same vectors
      // but different weights, and anyway, this is only an
      // efficiency issue.
    }

    // Just need an arbitrary complete order.
    bool operator == (const ComputationState &other) const {
      return (transition_ids_ == other.transition_ids_
              && word_labels_ == other.word_labels_
              && weight_ == other.weight_);
    }

    ComputationState(): weight_(LatticeWeight::One()) { } // initial state.
    ComputationState(const ComputationState &other):
        transition_ids_(other.transition_ids_), word_labels_(other.word_labels_),
        weight_(other.weight_) { }
   private:
    std::vector<int32> transition_ids_;
    std::vector<int32> word_labels_;
    LatticeWeight weight_; // contains two floats.
  };


  struct Tuple {
    Tuple(StateId input_state, ComputationState comp_state):
        input_state(input_state), comp_state(comp_state) {}
    StateId input_state;
    ComputationState comp_state;
  };

  struct TupleHash {
    size_t operator() (const Tuple &state) const {
      return state.input_state + 102763 * state.comp_state.Hash();
      // 102763 is just an arbitrary prime number
    }
  };
  struct TupleEqual {
    bool operator () (const Tuple &state1, const Tuple &state2) const {
      // treat this like operator ==
      return (state1.input_state == state2.input_state
              && state1.comp_state == state2.comp_state);
    }
  };

  typedef unordered_map<Tuple, StateId, TupleHash, TupleEqual> MapType;

  StateId GetStateForTuple(const Tuple &tuple, bool add_to_queue) {
    MapType::iterator iter = map_.find(tuple);
    if (iter == map_.end()) { // not in map.
      StateId output_state = lat_out_->AddState();
      map_[tuple] = output_state;
      if (add_to_queue)
        queue_.push_back(std::make_pair(tuple, output_state));
      return output_state;
    } else {
      return iter->second;
    }
  }

  void ProcessFinal(Tuple tuple, StateId output_state) {
    // ProcessFinal is only called if the input_state has
    // final-prob of One().  [else it should be zero.  This
    // is because we called CreateSuperFinal().]

    if (tuple.comp_state.IsEmpty()) { // computation state doesn't have
      // anything pending.
      std::vector<int32> empty_vec;
      CompactLatticeWeight cw(tuple.comp_state.FinalWeight(), empty_vec);
      lat_out_->SetFinal(output_state, Plus(lat_out_->Final(output_state), cw));
    } else {
      // computation state has something pending, i.e. input or
      // output symbols that need to be flushed out.  Note: OutputArc() would
      // have returned false or we wouldn't have been called, so we have to
      // force it out.
      CompactLatticeArc lat_arc;
      tuple.comp_state.OutputArcForce(tmodel_, opts_, &lat_arc, &error_);
      lat_arc.nextstate = GetStateForTuple(tuple, true); // true == add to queue.
      // The final-prob stuff will get called again from ProcessQueueElement().
      // Note: because we did CreateSuperFinal(), this final-state on the input
      // lattice will have no output arcs (and unit final-prob), so there will be
      // no complications with processing the arcs from this state (there won't
      // be any).
      KALDI_ASSERT(output_state != lat_arc.nextstate);
      lat_out_->AddArc(output_state, lat_arc);
    }
  }


  void ProcessQueueElement() {
    KALDI_ASSERT(!queue_.empty());
    Tuple tuple = queue_.back().first;
    StateId output_state = queue_.back().second;
    queue_.pop_back();

    // First thing is-- we see whether the computation-state has something
    // pending that it wants to output.  In this case we don't do
    // anything further.  This is a chosen behavior similar to the
    // epsilon-sequencing rules encoded by the filters in
    // composition.
    CompactLatticeArc lat_arc;
    Tuple tuple2(tuple); // temp
    if (tuple.comp_state.OutputPhoneArc(tmodel_, opts_, &lat_arc, &error_) ||
        tuple.comp_state.OutputWordArc(tmodel_, opts_, &lat_arc, &error_)) {
      // note: this function changes the tuple (when it returns true).
      lat_arc.nextstate = GetStateForTuple(tuple, true); // true == add to queue,
      // if not already present.
      KALDI_ASSERT(output_state != lat_arc.nextstate);
      lat_out_->AddArc(output_state, lat_arc);
    } else {
      // when there's nothing to output, we'll process arcs from the input-state.
      // note: it would in a sense be valid to do both (i.e. process the stuff
      // above, and also these), but this is a bit like the epsilon-sequencing
      // stuff in composition: we avoid duplicate arcs by doing it this way.

      if (lat_.Final(tuple.input_state) != CompactLatticeWeight::Zero()) {
        KALDI_ASSERT(lat_.Final(tuple.input_state) == CompactLatticeWeight::One());
        // ... since we did CreateSuperFinal.
        ProcessFinal(tuple, output_state);
      }
      // Now process the arcs.  Note: final-state shouldn't have any arcs.
      for(fst::ArcIterator<CompactLattice> aiter(lat_, tuple.input_state);
          !aiter.Done(); aiter.Next()) {
        const CompactLatticeArc &arc = aiter.Value();
        Tuple next_tuple(tuple);
        LatticeWeight weight;
        next_tuple.comp_state.Advance(arc, opts_, &weight);
        next_tuple.input_state = arc.nextstate;
        StateId next_output_state = GetStateForTuple(next_tuple, true); // true == add to queue,
        // if not already present.
        // We add an epsilon arc here (as the input and output happens
        // separately)... the epsilons will get removed later.
        KALDI_ASSERT(next_output_state != output_state);
        lat_out_->AddArc(output_state,
                         CompactLatticeArc(0, 0,
                            CompactLatticeWeight(weight, std::vector<int32>()),
                            next_output_state));
      }
    }
  }

  LatticePhoneAligner(const CompactLattice &lat,
                      const TransitionModel &tmodel,
                      const PhoneAlignLatticeOptions &opts,
                     CompactLattice *lat_out):
      lat_(lat), tmodel_(tmodel), opts_(opts), lat_out_(lat_out),
      error_(false) {
    fst::CreateSuperFinal(&lat_); // Creates a super-final state, so the
    // only final-probs are One().
  }

  // Removes epsilons; also removes unreachable states...
  // not sure if these would exist if original was connected.
  // This also replaces the temporary symbols for the silence
  // and partial-words, with epsilons, if we wanted epsilons.
  void RemoveEpsilonsFromLattice() {
    RmEpsilon(lat_out_, true); // true = connect.
  }

  bool AlignLattice() {
    lat_out_->DeleteStates();
    if (lat_.Start() == fst::kNoStateId) {
      KALDI_WARN << "Trying to word-align empty lattice.";
      return false;
    }
    ComputationState initial_comp_state;
    Tuple initial_tuple(lat_.Start(), initial_comp_state);
    StateId start_state = GetStateForTuple(initial_tuple, true); // True = add this to queue.
    lat_out_->SetStart(start_state);

    while (!queue_.empty())
      ProcessQueueElement();

    if (opts_.remove_epsilon)
      RemoveEpsilonsFromLattice();

    return !error_;
  }

  CompactLattice lat_;
  const TransitionModel &tmodel_;
  const PhoneAlignLatticeOptions &opts_;
  CompactLattice *lat_out_;

  std::vector<std::pair<Tuple, StateId> > queue_;
  MapType map_; // map from tuples to StateId.
  bool error_;
};

bool LatticePhoneAligner::ComputationState::OutputPhoneArc(
    const TransitionModel &tmodel,
    const PhoneAlignLatticeOptions &opts,
    CompactLatticeArc *arc_out,
    bool *error) {
  if (transition_ids_.empty()) return false;
  int32 phone = tmodel.TransitionIdToPhone(transition_ids_[0]);
  // we assume the start of transition_ids_ is the start of the phone;
  // this is a precondition.
  size_t len = transition_ids_.size(), i;
  // Keep going till we reach a "final" transition-id; note, if
  // reorder==true, we have to go a bit further after this.
  for (i = 0; i < len; i++) {
    int32 tid = transition_ids_[i];
    int32 this_phone = tmodel.TransitionIdToPhone(tid);
    if (this_phone != phone && ! *error) { // error condition: should have
                                           // reached final transition-id first.
      *error = true;
      KALDI_WARN << phone << " -> " << this_phone;
      KALDI_WARN << "Phone changed before final transition-id found "
          "[broken lattice or mismatched model or wrong --reorder option?]";
    }
    if (tmodel.IsFinal(tid))
      break;
  }
  if (i == len) return false; // fell off loop.
  i++; // go past the one for which IsFinal returned true.
  if (opts.reorder) // we have to consume the following self-loop transition-ids.
    while (i < len && tmodel.IsSelfLoop(transition_ids_[i])) i++;
  if (i == len) return false; // we don't know if it ends here... so can't output arc.

  // interpret i as the number of transition-ids to consume.
  std::vector<int32> tids_out(transition_ids_.begin(),
                              transition_ids_.begin()+i);

  Label output_label = 0;
  if (!word_labels_.empty()) {
    output_label = word_labels_[0];
    word_labels_.erase(word_labels_.begin(), word_labels_.begin()+1);
  }
  if (opts.replace_output_symbols)
    output_label = phone;
  *arc_out = CompactLatticeArc(output_label, output_label,
                               CompactLatticeWeight(weight_, tids_out),
                               fst::kNoStateId);
  transition_ids_.erase(transition_ids_.begin(), transition_ids_.begin()+i);
  weight_ = LatticeWeight::One(); // we just output the weight.
  return true;
}

bool LatticePhoneAligner::ComputationState::OutputWordArc(
    const TransitionModel &tmodel,
    const PhoneAlignLatticeOptions &opts,
    CompactLatticeArc *arc_out,
    bool *error) {
  // output a word but no phones.
  if (word_labels_.size() < 2) return false;

  int32 output_label = word_labels_[0];
  word_labels_.erase(word_labels_.begin(), word_labels_.begin()+1);

  *arc_out = CompactLatticeArc(output_label, output_label,
                               CompactLatticeWeight(weight_, std::vector<int32>()),
                               fst::kNoStateId);
  weight_ = LatticeWeight::One(); // we just output the weight, so set it to one.
  return true;
}


void LatticePhoneAligner::ComputationState::OutputArcForce(
    const TransitionModel &tmodel,
    const PhoneAlignLatticeOptions &opts,
    CompactLatticeArc *arc_out,
    bool *error) {
  KALDI_ASSERT(!IsEmpty());

  int32 phone = -1; // This value -1 will never be used,
  // although it might not be obvious from superficially checking
  // the code.  IsEmpty() would be true if we had transition_ids_.empty()
  // and opts.replace_output_symbols, so we would already die by assertion;
  // in fact, this function would neve be called.

  if (!transition_ids_.empty()) { // Do some checking here.
    int32 tid = transition_ids_[0];
    phone = tmodel.TransitionIdToPhone(tid);
    int32 num_final = 0;
    for (int32 i = 0; i < transition_ids_.size(); i++) { // A check.
      int32 this_tid = transition_ids_[i];
      int32 this_phone = tmodel.TransitionIdToPhone(this_tid);
      bool is_final = tmodel.IsFinal(this_tid); // should be exactly one.
      if (is_final) num_final++;
      if (this_phone != phone && ! *error) {
        KALDI_WARN << "Mismatch in phone: error in lattice or mismatched transition model?";
        *error = true;
      }
    }
    if (num_final != 1 && ! *error) {
      KALDI_WARN << "Problem phone-aligning lattice: saw " << num_final
                 << " final-states in last phone in lattice (forced out?) "
                 << "Producing partial lattice.";
      *error = true;
    }
  }

  Label output_label = 0;
  if (!word_labels_.empty()) {
    output_label = word_labels_[0];
    word_labels_.erase(word_labels_.begin(), word_labels_.begin()+1);
  }
  if (opts.replace_output_symbols)
    output_label = phone;
  *arc_out = CompactLatticeArc(output_label, output_label,
                               CompactLatticeWeight(weight_, transition_ids_),
                               fst::kNoStateId);
  transition_ids_.clear();
  weight_ = LatticeWeight::One(); // we just output the weight.
}

bool PhoneAlignLattice(const CompactLattice &lat,
                       const TransitionModel &tmodel,
                       const PhoneAlignLatticeOptions &opts,
                       CompactLattice *lat_out) {
  LatticePhoneAligner aligner(lat, tmodel, opts, lat_out);
  return aligner.AlignLattice();
}


}  // namespace kaldi