compressed-matrix.cc
32.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
// matrix/compressed-matrix.cc
// Copyright 2012 Johns Hopkins University (author: Daniel Povey)
// Frantisek Skala, Wei Shi
// 2015 Tom Ko
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "matrix/compressed-matrix.h"
#include <algorithm>
namespace kaldi {
//static
MatrixIndexT CompressedMatrix::DataSize(const GlobalHeader &header) {
// Returns size in bytes of the data.
DataFormat format = static_cast<DataFormat>(header.format);
if (format == kOneByteWithColHeaders) {
return sizeof(GlobalHeader) +
header.num_cols * (sizeof(PerColHeader) + header.num_rows);
} else if (format == kTwoByte) {
return sizeof(GlobalHeader) +
2 * header.num_rows * header.num_cols;
} else {
KALDI_ASSERT(format == kOneByte);
return sizeof(GlobalHeader) +
header.num_rows * header.num_cols;
}
}
// scale all element of matrix by scaling floats
// in GlobalHeader with alpha.
void CompressedMatrix::Scale(float alpha) {
if (data_ != NULL) {
GlobalHeader *h = reinterpret_cast<GlobalHeader*>(data_);
// scale the floating point values in each PerColHolder
// and leave all integers the same.
h->min_value *= alpha;
h->range *= alpha;
}
}
template<typename Real> // static inline
void CompressedMatrix::ComputeGlobalHeader(
const MatrixBase<Real> &mat, CompressionMethod method,
GlobalHeader *header) {
if (method == kAutomaticMethod) {
if (mat.NumRows() > 8) method = kSpeechFeature;
else method = kTwoByteAuto;
}
switch (method) {
case kSpeechFeature:
header->format = static_cast<int32>(kOneByteWithColHeaders); // 1.
break;
case kTwoByteAuto: case kTwoByteSignedInteger:
header->format = static_cast<int32>(kTwoByte); // 2.
break;
case kOneByteAuto: case kOneByteUnsignedInteger: case kOneByteZeroOne:
header->format = static_cast<int32>(kOneByte); // 3.
break;
default:
KALDI_ERR << "Invalid compression type: "
<< static_cast<int32>(method);
}
header->num_rows = mat.NumRows();
header->num_cols = mat.NumCols();
// Now compute 'min_value' and 'range'.
switch (method) {
case kSpeechFeature: case kTwoByteAuto: case kOneByteAuto: {
float min_value = mat.Min(), max_value = mat.Max();
// ensure that max_value is strictly greater than min_value, even if matrix is
// constant; this avoids crashes in ComputeColHeader when compressing speech
// featupres.
if (max_value == min_value)
max_value = min_value + (1.0 + fabs(min_value));
KALDI_ASSERT(min_value - min_value == 0 &&
max_value - max_value == 0 &&
"Cannot compress a matrix with Nan's or Inf's");
header->min_value = min_value;
header->range = max_value - min_value;
// we previously checked that max_value != min_value, so their
// difference should be nonzero.
KALDI_ASSERT(header->range > 0.0);
break;
}
case kTwoByteSignedInteger: {
header->min_value = -32768.0;
header->range = 65535.0;
break;
}
case kOneByteUnsignedInteger: {
header->min_value = 0.0;
header->range = 255.0;
break;
}
case kOneByteZeroOne: {
header->min_value = 0.0;
header->range = 1.0;
break;
}
default:
KALDI_ERR << "Unknown compression method = "
<< static_cast<int32>(method);
}
KALDI_COMPILE_TIME_ASSERT(sizeof(*header) == 20); // otherwise
// something weird is happening and our code probably won't work or
// won't be robust across platforms.
}
template<typename Real>
void CompressedMatrix::CopyFromMat(
const MatrixBase<Real> &mat, CompressionMethod method) {
if (data_ != NULL) {
delete [] static_cast<float*>(data_); // call delete [] because was allocated with new float[]
data_ = NULL;
}
if (mat.NumRows() == 0) { return; } // Zero-size matrix stored as zero pointer.
GlobalHeader global_header;
ComputeGlobalHeader(mat, method, &global_header);
int32 data_size = DataSize(global_header);
data_ = AllocateData(data_size);
*(reinterpret_cast<GlobalHeader*>(data_)) = global_header;
DataFormat format = static_cast<DataFormat>(global_header.format);
if (format == kOneByteWithColHeaders) {
PerColHeader *header_data =
reinterpret_cast<PerColHeader*>(static_cast<char*>(data_) +
sizeof(GlobalHeader));
uint8 *byte_data =
reinterpret_cast<uint8*>(header_data + global_header.num_cols);
const Real *matrix_data = mat.Data();
for (int32 col = 0; col < global_header.num_cols; col++) {
CompressColumn(global_header,
matrix_data + col, mat.Stride(),
global_header.num_rows,
header_data, byte_data);
header_data++;
byte_data += global_header.num_rows;
}
} else if (format == kTwoByte) {
uint16 *data = reinterpret_cast<uint16*>(static_cast<char*>(data_) +
sizeof(GlobalHeader));
int32 num_rows = mat.NumRows(), num_cols = mat.NumCols();
for (int32 r = 0; r < num_rows; r++) {
const Real *row_data = mat.RowData(r);
for (int32 c = 0; c < num_cols; c++)
data[c] = FloatToUint16(global_header, row_data[c]);
data += num_cols;
}
} else {
KALDI_ASSERT(format == kOneByte);
uint8 *data = reinterpret_cast<uint8*>(static_cast<char*>(data_) +
sizeof(GlobalHeader));
int32 num_rows = mat.NumRows(), num_cols = mat.NumCols();
for (int32 r = 0; r < num_rows; r++) {
const Real *row_data = mat.RowData(r);
for (int32 c = 0; c < num_cols; c++)
data[c] = FloatToUint8(global_header, row_data[c]);
data += num_cols;
}
}
}
// Instantiate the template for float and double.
template
void CompressedMatrix::CopyFromMat(const MatrixBase<float> &mat,
CompressionMethod method);
template
void CompressedMatrix::CopyFromMat(const MatrixBase<double> &mat,
CompressionMethod method);
CompressedMatrix::CompressedMatrix(
const CompressedMatrix &cmat,
const MatrixIndexT row_offset,
const MatrixIndexT num_rows,
const MatrixIndexT col_offset,
const MatrixIndexT num_cols,
bool allow_padding): data_(NULL) {
int32 old_num_rows = cmat.NumRows(), old_num_cols = cmat.NumCols();
if (old_num_rows == 0) {
KALDI_ASSERT(num_rows == 0 && num_cols == 0);
// The empty matrix is stored as a zero pointer.
return;
}
KALDI_ASSERT(row_offset < old_num_rows);
KALDI_ASSERT(col_offset < old_num_cols);
KALDI_ASSERT(row_offset >= 0 || allow_padding);
KALDI_ASSERT(col_offset >= 0);
KALDI_ASSERT(row_offset + num_rows <= old_num_rows || allow_padding);
KALDI_ASSERT(col_offset + num_cols <= old_num_cols);
if (num_rows == 0 || num_cols == 0) { return; }
bool padding_is_used = (row_offset < 0 ||
row_offset + num_rows > old_num_rows);
GlobalHeader new_global_header;
KALDI_COMPILE_TIME_ASSERT(sizeof(new_global_header) == 20);
GlobalHeader *old_global_header = reinterpret_cast<GlobalHeader*>(cmat.Data());
new_global_header = *old_global_header;
new_global_header.num_cols = num_cols;
new_global_header.num_rows = num_rows;
// We don't switch format from 1 -> 2 (in case of size reduction) yet; if this
// is needed, we will do this below by creating a temporary Matrix.
new_global_header.format = old_global_header->format;
data_ = AllocateData(DataSize(new_global_header)); // allocate memory
*(reinterpret_cast<GlobalHeader*>(data_)) = new_global_header;
DataFormat format = static_cast<DataFormat>(old_global_header->format);
if (format == kOneByteWithColHeaders) {
PerColHeader *old_per_col_header =
reinterpret_cast<PerColHeader*>(old_global_header + 1);
uint8 *old_byte_data =
reinterpret_cast<uint8*>(old_per_col_header +
old_global_header->num_cols);
PerColHeader *new_per_col_header =
reinterpret_cast<PerColHeader*>(
reinterpret_cast<GlobalHeader*>(data_) + 1);
memcpy(new_per_col_header, old_per_col_header + col_offset,
sizeof(PerColHeader) * num_cols);
uint8 *new_byte_data =
reinterpret_cast<uint8*>(new_per_col_header + num_cols);
if (!padding_is_used) {
uint8 *old_start_of_subcol =
old_byte_data + row_offset + (col_offset * old_num_rows),
*new_start_of_col = new_byte_data;
for (int32 i = 0; i < num_cols; i++) {
memcpy(new_start_of_col, old_start_of_subcol, num_rows);
new_start_of_col += num_rows;
old_start_of_subcol += old_num_rows;
}
} else {
uint8 *old_start_of_col =
old_byte_data + (col_offset * old_num_rows),
*new_start_of_col = new_byte_data;
for (int32 i = 0; i < num_cols; i++) {
for (int32 j = 0; j < num_rows; j++) {
int32 old_j = j + row_offset;
if (old_j < 0) old_j = 0;
else if (old_j >= old_num_rows) old_j = old_num_rows - 1;
new_start_of_col[j] = old_start_of_col[old_j];
}
new_start_of_col += num_rows;
old_start_of_col += old_num_rows;
}
}
} else if (format == kTwoByte) {
const uint16 *old_data =
reinterpret_cast<const uint16*>(old_global_header + 1);
uint16 *new_row_data =
reinterpret_cast<uint16*>(reinterpret_cast<GlobalHeader*>(data_) + 1);
for (int32 row = 0; row < num_rows; row++) {
int32 old_row = row + row_offset;
// The next two lines are only relevant if padding_is_used.
if (old_row < 0) old_row = 0;
else if (old_row >= old_num_rows) old_row = old_num_rows - 1;
const uint16 *old_row_data =
old_data + col_offset + (old_num_cols * old_row);
memcpy(new_row_data, old_row_data, sizeof(uint16) * num_cols);
new_row_data += num_cols;
}
} else {
KALDI_ASSERT(format == kOneByte);
const uint8 *old_data =
reinterpret_cast<const uint8*>(old_global_header + 1);
uint8 *new_row_data =
reinterpret_cast<uint8*>(reinterpret_cast<GlobalHeader*>(data_) + 1);
for (int32 row = 0; row < num_rows; row++) {
int32 old_row = row + row_offset;
// The next two lines are only relevant if padding_is_used.
if (old_row < 0) old_row = 0;
else if (old_row >= old_num_rows) old_row = old_num_rows - 1;
const uint8 *old_row_data =
old_data + col_offset + (old_num_cols * old_row);
memcpy(new_row_data, old_row_data, sizeof(uint8) * num_cols);
new_row_data += num_cols;
}
}
if (num_rows < 8 && format == kOneByteWithColHeaders) {
// format was 1 but we want it to be 2 -> create a temporary
// Matrix (uncompress), re-compress, and swap.
// This gives us almost exact reconstruction while saving
// memory (the elements take more space but there will be
// no per-column headers).
Matrix<float> temp(this->NumRows(), this->NumCols(),
kUndefined);
this->CopyToMat(&temp);
CompressedMatrix temp_cmat(temp, kTwoByteAuto);
this->Swap(&temp_cmat);
}
}
template<typename Real>
CompressedMatrix &CompressedMatrix::operator =(const MatrixBase<Real> &mat) {
this->CopyFromMat(mat);
return *this;
}
// Instantiate the template for float and double.
template
CompressedMatrix& CompressedMatrix::operator =(const MatrixBase<float> &mat);
template
CompressedMatrix& CompressedMatrix::operator =(const MatrixBase<double> &mat);
inline uint16 CompressedMatrix::FloatToUint16(
const GlobalHeader &global_header,
float value) {
float f = (value - global_header.min_value) /
global_header.range;
if (f > 1.0) f = 1.0; // Note: this should not happen.
if (f < 0.0) f = 0.0; // Note: this should not happen.
return static_cast<int>(f * 65535 + 0.499); // + 0.499 is to
// round to closest int; avoids bias.
}
inline uint8 CompressedMatrix::FloatToUint8(
const GlobalHeader &global_header,
float value) {
float f = (value - global_header.min_value) /
global_header.range;
if (f > 1.0) f = 1.0; // Note: this should not happen.
if (f < 0.0) f = 0.0; // Note: this should not happen.
return static_cast<int>(f * 255 + 0.499); // + 0.499 is to
// round to closest int; avoids bias.
}
inline float CompressedMatrix::Uint16ToFloat(
const GlobalHeader &global_header,
uint16 value) {
// the constant 1.52590218966964e-05 is 1/65535.
return global_header.min_value
+ global_header.range * 1.52590218966964e-05F * value;
}
template<typename Real> // static
void CompressedMatrix::ComputeColHeader(
const GlobalHeader &global_header,
const Real *data, MatrixIndexT stride,
int32 num_rows, CompressedMatrix::PerColHeader *header) {
KALDI_ASSERT(num_rows > 0);
std::vector<Real> sdata(num_rows); // the sorted data.
for (size_t i = 0, size = sdata.size(); i < size; i++)
sdata[i] = data[i*stride];
if (num_rows >= 5) {
int quarter_nr = num_rows/4;
// std::sort(sdata.begin(), sdata.end());
// The elements at positions 0, quarter_nr,
// 3*quarter_nr, and num_rows-1 need to be in sorted order.
std::nth_element(sdata.begin(), sdata.begin() + quarter_nr, sdata.end());
// Now, sdata.begin() + quarter_nr contains the element that would appear
// in sorted order, in that position.
std::nth_element(sdata.begin(), sdata.begin(), sdata.begin() + quarter_nr);
// Now, sdata.begin() and sdata.begin() + quarter_nr contain the elements
// that would appear at those positions in sorted order.
std::nth_element(sdata.begin() + quarter_nr + 1,
sdata.begin() + (3*quarter_nr), sdata.end());
// Now, sdata.begin(), sdata.begin() + quarter_nr, and sdata.begin() +
// 3*quarter_nr, contain the elements that would appear at those positions
// in sorted order.
std::nth_element(sdata.begin() + (3*quarter_nr) + 1, sdata.end() - 1,
sdata.end());
// Now, sdata.begin(), sdata.begin() + quarter_nr, and sdata.begin() +
// 3*quarter_nr, and sdata.end() - 1, contain the elements that would appear
// at those positions in sorted order.
header->percentile_0 =
std::min<uint16>(FloatToUint16(global_header, sdata[0]), 65532);
header->percentile_25 =
std::min<uint16>(
std::max<uint16>(
FloatToUint16(global_header, sdata[quarter_nr]),
header->percentile_0 + static_cast<uint16>(1)), 65533);
header->percentile_75 =
std::min<uint16>(
std::max<uint16>(
FloatToUint16(global_header, sdata[3*quarter_nr]),
header->percentile_25 + static_cast<uint16>(1)), 65534);
header->percentile_100 = std::max<uint16>(
FloatToUint16(global_header, sdata[num_rows-1]),
header->percentile_75 + static_cast<uint16>(1));
} else { // handle this pathological case.
std::sort(sdata.begin(), sdata.end());
// Note: we know num_rows is at least 1.
header->percentile_0 =
std::min<uint16>(FloatToUint16(global_header, sdata[0]),
65532);
if (num_rows > 1)
header->percentile_25 =
std::min<uint16>(
std::max<uint16>(FloatToUint16(global_header, sdata[1]),
header->percentile_0 + 1), 65533);
else
header->percentile_25 = header->percentile_0 + 1;
if (num_rows > 2)
header->percentile_75 =
std::min<uint16>(
std::max<uint16>(FloatToUint16(global_header, sdata[2]),
header->percentile_25 + 1), 65534);
else
header->percentile_75 = header->percentile_25 + 1;
if (num_rows > 3)
header->percentile_100 =
std::max<uint16>(FloatToUint16(global_header, sdata[3]),
header->percentile_75 + 1);
else
header->percentile_100 = header->percentile_75 + 1;
}
}
// static
inline uint8 CompressedMatrix::FloatToChar(
float p0, float p25, float p75, float p100,
float value) {
int ans;
if (value < p25) { // range [ p0, p25 ) covered by
// characters 0 .. 64. We round to the closest int.
float f = (value - p0) / (p25 - p0);
ans = static_cast<int>(f * 64 + 0.5);
// Note: the checks on the next two lines
// are necessary in pathological cases when all the elements in a row
// are the same and the percentile_* values are separated by one.
if (ans < 0) ans = 0;
if (ans > 64) ans = 64;
} else if (value < p75) { // range [ p25, p75 )covered
// by characters 64 .. 192. We round to the closest int.
float f = (value - p25) / (p75 - p25);
ans = 64 + static_cast<int>(f * 128 + 0.5);
if (ans < 64) ans = 64;
if (ans > 192) ans = 192;
} else { // range [ p75, p100 ] covered by
// characters 192 .. 255. Note: this last range
// has fewer characters than the left range, because
// we go up to 255, not 256.
float f = (value - p75) / (p100 - p75);
ans = 192 + static_cast<int>(f * 63 + 0.5);
if (ans < 192) ans = 192;
if (ans > 255) ans = 255;
}
return static_cast<uint8>(ans);
}
// static
inline float CompressedMatrix::CharToFloat(
float p0, float p25, float p75, float p100,
uint8 value) {
if (value <= 64) {
return p0 + (p25 - p0) * value * (1/64.0);
} else if (value <= 192) {
return p25 + (p75 - p25) * (value - 64) * (1/128.0);
} else {
return p75 + (p100 - p75) * (value - 192) * (1/63.0);
}
}
template<typename Real> // static
void CompressedMatrix::CompressColumn(
const GlobalHeader &global_header,
const Real *data, MatrixIndexT stride,
int32 num_rows, CompressedMatrix::PerColHeader *header,
uint8 *byte_data) {
ComputeColHeader(global_header, data, stride,
num_rows, header);
float p0 = Uint16ToFloat(global_header, header->percentile_0),
p25 = Uint16ToFloat(global_header, header->percentile_25),
p75 = Uint16ToFloat(global_header, header->percentile_75),
p100 = Uint16ToFloat(global_header, header->percentile_100);
for (int32 i = 0; i < num_rows; i++) {
Real this_data = data[i * stride];
byte_data[i] = FloatToChar(p0, p25, p75, p100, this_data);
}
}
// static
void* CompressedMatrix::AllocateData(int32 num_bytes) {
KALDI_ASSERT(num_bytes > 0);
KALDI_COMPILE_TIME_ASSERT(sizeof(float) == 4);
// round size up to nearest number of floats.
return reinterpret_cast<void*>(new float[(num_bytes/3) + 4]);
}
void CompressedMatrix::Write(std::ostream &os, bool binary) const {
if (binary) { // Binary-mode write:
if (data_ != NULL) {
GlobalHeader &h = *reinterpret_cast<GlobalHeader*>(data_);
DataFormat format = static_cast<DataFormat>(h.format);
if (format == kOneByteWithColHeaders) {
WriteToken(os, binary, "CM");
} else if (format == kTwoByte) {
WriteToken(os, binary, "CM2");
} else if (format == kOneByte) {
WriteToken(os, binary, "CM3");
}
MatrixIndexT size = DataSize(h); // total size of data in data_
// We don't write out the "int32 format", hence the + 4, - 4.
os.write(reinterpret_cast<const char*>(data_) + 4, size - 4);
} else { // special case: where data_ == NULL, we treat it as an empty
// matrix.
WriteToken(os, binary, "CM");
GlobalHeader h;
h.range = h.min_value = 0.0;
h.num_rows = h.num_cols = 0;
os.write(reinterpret_cast<const char*>(&h), sizeof(h));
}
} else {
// In text mode, just use the same format as a regular matrix.
// This is not compressed.
Matrix<BaseFloat> temp_mat(this->NumRows(), this->NumCols(),
kUndefined);
this->CopyToMat(&temp_mat);
temp_mat.Write(os, binary);
}
if (os.fail())
KALDI_ERR << "Error writing compressed matrix to stream.";
}
void CompressedMatrix::Read(std::istream &is, bool binary) {
if (data_ != NULL) {
delete [] (static_cast<float*>(data_));
data_ = NULL;
}
if (binary) {
int peekval = Peek(is, binary);
if (peekval == 'C') {
std::string tok; // Should be CM (format 1) or CM2 (format 2)
ReadToken(is, binary, &tok);
GlobalHeader h;
if (tok == "CM") { h.format = 1; } // kOneByteWithColHeaders
else if (tok == "CM2") { h.format = 2; } // kTwoByte
else if (tok == "CM3") { h.format = 3; } // kOneByte
else {
KALDI_ERR << "Unexpected token " << tok << ", expecting CM, CM2 or CM3";
}
// don't read the "format" -> hence + 4, - 4.
is.read(reinterpret_cast<char*>(&h) + 4, sizeof(h) - 4);
if (is.fail())
KALDI_ERR << "Failed to read header";
if (h.num_cols == 0) // empty matrix.
return;
int32 size = DataSize(h), remaining_size = size - sizeof(GlobalHeader);
data_ = AllocateData(size);
*(reinterpret_cast<GlobalHeader*>(data_)) = h;
is.read(reinterpret_cast<char*>(data_) + sizeof(GlobalHeader),
remaining_size);
} else {
// Assume that what we're reading is a regular Matrix. This might be the
// case if you changed your code, making a Matrix into a CompressedMatrix,
// and you want back-compatibility for reading.
Matrix<BaseFloat> M;
M.Read(is, binary); // This will crash if it was not a Matrix.
this->CopyFromMat(M);
}
} else { // Text-mode read. In this case you don't get to
// choose the compression type. Anyway this branch would only
// be taken when debugging.
Matrix<BaseFloat> temp;
temp.Read(is, binary);
this->CopyFromMat(temp);
}
if (is.fail())
KALDI_ERR << "Failed to read data.";
}
template<typename Real>
void CompressedMatrix::CopyToMat(MatrixBase<Real> *mat,
MatrixTransposeType trans) const {
if (trans == kTrans) {
Matrix<Real> temp(this->NumCols(), this->NumRows());
CopyToMat(&temp, kNoTrans);
mat->CopyFromMat(temp, kTrans);
return;
}
if (data_ == NULL) {
KALDI_ASSERT(mat->NumRows() == 0);
KALDI_ASSERT(mat->NumCols() == 0);
return;
}
GlobalHeader *h = reinterpret_cast<GlobalHeader*>(data_);
int32 num_cols = h->num_cols, num_rows = h->num_rows;
KALDI_ASSERT(mat->NumRows() == num_rows);
KALDI_ASSERT(mat->NumCols() == num_cols);
DataFormat format = static_cast<DataFormat>(h->format);
if (format == kOneByteWithColHeaders) {
PerColHeader *per_col_header = reinterpret_cast<PerColHeader*>(h+1);
uint8 *byte_data = reinterpret_cast<uint8*>(per_col_header +
h->num_cols);
for (int32 i = 0; i < num_cols; i++, per_col_header++) {
float p0 = Uint16ToFloat(*h, per_col_header->percentile_0),
p25 = Uint16ToFloat(*h, per_col_header->percentile_25),
p75 = Uint16ToFloat(*h, per_col_header->percentile_75),
p100 = Uint16ToFloat(*h, per_col_header->percentile_100);
for (int32 j = 0; j < num_rows; j++, byte_data++) {
float f = CharToFloat(p0, p25, p75, p100, *byte_data);
(*mat)(j, i) = f;
}
}
} else if (format == kTwoByte) {
const uint16 *data = reinterpret_cast<const uint16*>(h + 1);
float min_value = h->min_value,
increment = h->range * (1.0 / 65535.0);
for (int32 i = 0; i < num_rows; i++) {
Real *row_data = mat->RowData(i);
for (int32 j = 0; j < num_cols; j++)
row_data[j] = min_value + data[j] * increment;
data += num_cols;
}
} else {
KALDI_ASSERT(format == kOneByte);
float min_value = h->min_value, increment = h->range * (1.0 / 255.0);
const uint8 *data = reinterpret_cast<const uint8*>(h + 1);
for (int32 i = 0; i < num_rows; i++) {
Real *row_data = mat->RowData(i);
for (int32 j = 0; j < num_cols; j++)
row_data[j] = min_value + data[j] * increment;
data += num_cols;
}
}
}
// Instantiate the template for float and double.
template
void CompressedMatrix::CopyToMat(MatrixBase<float> *mat,
MatrixTransposeType trans) const;
template
void CompressedMatrix::CopyToMat(MatrixBase<double> *mat,
MatrixTransposeType trans) const;
template<typename Real>
void CompressedMatrix::CopyRowToVec(MatrixIndexT row,
VectorBase<Real> *v) const {
KALDI_ASSERT(row < this->NumRows());
KALDI_ASSERT(row >= 0);
KALDI_ASSERT(v->Dim() == this->NumCols());
GlobalHeader *h = reinterpret_cast<GlobalHeader*>(data_);
DataFormat format = static_cast<DataFormat>(h->format);
if (format == kOneByteWithColHeaders) {
PerColHeader *per_col_header = reinterpret_cast<PerColHeader*>(h+1);
uint8 *byte_data = reinterpret_cast<uint8*>(per_col_header +
h->num_cols);
byte_data += row; // point to first value we are interested in
for (int32 i = 0; i < h->num_cols;
i++, per_col_header++, byte_data += h->num_rows) {
float p0 = Uint16ToFloat(*h, per_col_header->percentile_0),
p25 = Uint16ToFloat(*h, per_col_header->percentile_25),
p75 = Uint16ToFloat(*h, per_col_header->percentile_75),
p100 = Uint16ToFloat(*h, per_col_header->percentile_100);
float f = CharToFloat(p0, p25, p75, p100, *byte_data);
(*v)(i) = f;
}
} else if (format == kTwoByte) {
int32 num_cols = h->num_cols;
float min_value = h->min_value,
increment = h->range * (1.0 / 65535.0);
const uint16 *row_data = reinterpret_cast<uint16*>(h + 1) + (num_cols * row);
Real *v_data = v->Data();
for (int32 c = 0; c < num_cols; c++)
v_data[c] = min_value + row_data[c] * increment;
} else {
KALDI_ASSERT(format == kOneByte);
int32 num_cols = h->num_cols;
float min_value = h->min_value,
increment = h->range * (1.0 / 255.0);
const uint8 *row_data = reinterpret_cast<uint8*>(h + 1) + (num_cols * row);
Real *v_data = v->Data();
for (int32 c = 0; c < num_cols; c++)
v_data[c] = min_value + row_data[c] * increment;
}
}
template<typename Real>
void CompressedMatrix::CopyColToVec(MatrixIndexT col,
VectorBase<Real> *v) const {
KALDI_ASSERT(col < this->NumCols());
KALDI_ASSERT(col >= 0);
KALDI_ASSERT(v->Dim() == this->NumRows());
GlobalHeader *h = reinterpret_cast<GlobalHeader*>(data_);
DataFormat format = static_cast<DataFormat>(h->format);
if (format == kOneByteWithColHeaders) {
PerColHeader *per_col_header = reinterpret_cast<PerColHeader*>(h+1);
uint8 *byte_data = reinterpret_cast<uint8*>(per_col_header +
h->num_cols);
byte_data += col*h->num_rows; // point to first value in the column we want
per_col_header += col;
float p0 = Uint16ToFloat(*h, per_col_header->percentile_0),
p25 = Uint16ToFloat(*h, per_col_header->percentile_25),
p75 = Uint16ToFloat(*h, per_col_header->percentile_75),
p100 = Uint16ToFloat(*h, per_col_header->percentile_100);
for (int32 i = 0; i < h->num_rows; i++, byte_data++) {
float f = CharToFloat(p0, p25, p75, p100, *byte_data);
(*v)(i) = f;
}
} else if (format == kTwoByte) {
int32 num_rows = h->num_rows, num_cols = h->num_cols;
float min_value = h->min_value,
increment = h->range * (1.0 / 65535.0);
const uint16 *col_data = reinterpret_cast<uint16*>(h + 1) + col;
Real *v_data = v->Data();
for (int32 r = 0; r < num_rows; r++)
v_data[r] = min_value + increment * col_data[r * num_cols];
} else {
KALDI_ASSERT(format == kOneByte);
int32 num_rows = h->num_rows, num_cols = h->num_cols;
float min_value = h->min_value,
increment = h->range * (1.0 / 255.0);
const uint8 *col_data = reinterpret_cast<uint8*>(h + 1) + col;
Real *v_data = v->Data();
for (int32 r = 0; r < num_rows; r++)
v_data[r] = min_value + increment * col_data[r * num_cols];
}
}
// instantiate the templates.
template void
CompressedMatrix::CopyColToVec(MatrixIndexT, VectorBase<double> *) const;
template void
CompressedMatrix::CopyColToVec(MatrixIndexT, VectorBase<float> *) const;
template void
CompressedMatrix::CopyRowToVec(MatrixIndexT, VectorBase<double> *) const;
template void
CompressedMatrix::CopyRowToVec(MatrixIndexT, VectorBase<float> *) const;
template<typename Real>
void CompressedMatrix::CopyToMat(int32 row_offset,
int32 col_offset,
MatrixBase<Real> *dest) const {
KALDI_PARANOID_ASSERT(row_offset < this->NumRows());
KALDI_PARANOID_ASSERT(col_offset < this->NumCols());
KALDI_PARANOID_ASSERT(row_offset >= 0);
KALDI_PARANOID_ASSERT(col_offset >= 0);
KALDI_ASSERT(row_offset+dest->NumRows() <= this->NumRows());
KALDI_ASSERT(col_offset+dest->NumCols() <= this->NumCols());
// everything is OK
GlobalHeader *h = reinterpret_cast<GlobalHeader*>(data_);
int32 num_rows = h->num_rows, num_cols = h->num_cols,
tgt_cols = dest->NumCols(), tgt_rows = dest->NumRows();
DataFormat format = static_cast<DataFormat>(h->format);
if (format == kOneByteWithColHeaders) {
PerColHeader *per_col_header = reinterpret_cast<PerColHeader*>(h+1);
uint8 *byte_data = reinterpret_cast<uint8*>(per_col_header +
h->num_cols);
uint8 *start_of_subcol = byte_data+row_offset; // skip appropriate
// number of columns
start_of_subcol += col_offset*num_rows; // skip appropriate number of rows
per_col_header += col_offset; // skip the appropriate number of headers
for (int32 i = 0;
i < tgt_cols;
i++, per_col_header++, start_of_subcol+=num_rows) {
byte_data = start_of_subcol;
float p0 = Uint16ToFloat(*h, per_col_header->percentile_0),
p25 = Uint16ToFloat(*h, per_col_header->percentile_25),
p75 = Uint16ToFloat(*h, per_col_header->percentile_75),
p100 = Uint16ToFloat(*h, per_col_header->percentile_100);
for (int32 j = 0; j < tgt_rows; j++, byte_data++) {
float f = CharToFloat(p0, p25, p75, p100, *byte_data);
(*dest)(j, i) = f;
}
}
} else if (format == kTwoByte) {
const uint16 *data = reinterpret_cast<const uint16*>(h+1) + col_offset +
(num_cols * row_offset);
float min_value = h->min_value,
increment = h->range * (1.0 / 65535.0);
for (int32 row = 0; row < tgt_rows; row++) {
Real *dest_row = dest->RowData(row);
for (int32 col = 0; col < tgt_cols; col++)
dest_row[col] = min_value + increment * data[col];
data += num_cols;
}
} else {
KALDI_ASSERT(format == kOneByte);
const uint8 *data = reinterpret_cast<const uint8*>(h+1) + col_offset +
(num_cols * row_offset);
float min_value = h->min_value,
increment = h->range * (1.0 / 255.0);
for (int32 row = 0; row < tgt_rows; row++) {
Real *dest_row = dest->RowData(row);
for (int32 col = 0; col < tgt_cols; col++)
dest_row[col] = min_value + increment * data[col];
data += num_cols;
}
}
}
// instantiate the templates.
template void CompressedMatrix::CopyToMat(int32,
int32,
MatrixBase<float> *dest) const;
template void CompressedMatrix::CopyToMat(int32,
int32,
MatrixBase<double> *dest) const;
void CompressedMatrix::Clear() {
if (data_ != NULL) {
delete [] static_cast<float*>(data_);
data_ = NULL;
}
}
CompressedMatrix::CompressedMatrix(const CompressedMatrix &mat): data_(NULL) {
*this = mat; // use assignment operator.
}
CompressedMatrix &CompressedMatrix::operator = (const CompressedMatrix &mat) {
Clear(); // now this->data_ == NULL.
if (mat.data_ != NULL) {
MatrixIndexT data_size = DataSize(*static_cast<GlobalHeader*>(mat.data_));
data_ = AllocateData(data_size);
memcpy(static_cast<void*>(data_),
static_cast<void*>(mat.data_),
data_size);
}
return *this;
}
} // namespace kaldi