compressed-matrix.cc 32.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
// matrix/compressed-matrix.cc

// Copyright 2012    Johns Hopkins University (author: Daniel Povey)
//                   Frantisek Skala, Wei Shi
//           2015    Tom Ko

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include "matrix/compressed-matrix.h"
#include <algorithm>

namespace kaldi {

//static
MatrixIndexT CompressedMatrix::DataSize(const GlobalHeader &header) {
  // Returns size in bytes of the data.
  DataFormat format = static_cast<DataFormat>(header.format);
  if (format == kOneByteWithColHeaders) {
    return sizeof(GlobalHeader) +
        header.num_cols * (sizeof(PerColHeader) + header.num_rows);
  } else if (format == kTwoByte) {
    return sizeof(GlobalHeader) +
        2 * header.num_rows * header.num_cols;
  } else {
    KALDI_ASSERT(format == kOneByte);
    return sizeof(GlobalHeader) +
        header.num_rows * header.num_cols;
  }
}

// scale all element of matrix by scaling floats
// in GlobalHeader with alpha.
void CompressedMatrix::Scale(float alpha) {
  if (data_ != NULL) {
    GlobalHeader *h = reinterpret_cast<GlobalHeader*>(data_);
    // scale the floating point values in each PerColHolder
    // and leave all integers the same.
    h->min_value *= alpha;
    h->range *= alpha;
  }
}

template<typename Real>  // static inline
void CompressedMatrix::ComputeGlobalHeader(
    const MatrixBase<Real> &mat, CompressionMethod method,
    GlobalHeader *header) {
  if (method == kAutomaticMethod) {
    if (mat.NumRows() > 8) method = kSpeechFeature;
    else method = kTwoByteAuto;
  }

  switch (method) {
    case kSpeechFeature:
      header->format = static_cast<int32>(kOneByteWithColHeaders);  // 1.
      break;
    case kTwoByteAuto: case kTwoByteSignedInteger:
      header->format = static_cast<int32>(kTwoByte);  // 2.
      break;
    case kOneByteAuto: case kOneByteUnsignedInteger: case kOneByteZeroOne:
      header->format = static_cast<int32>(kOneByte);  // 3.
      break;
    default:
      KALDI_ERR << "Invalid compression type: "
                << static_cast<int32>(method);
  }

  header->num_rows = mat.NumRows();
  header->num_cols = mat.NumCols();

  // Now compute 'min_value' and 'range'.
  switch (method) {
    case kSpeechFeature: case kTwoByteAuto: case kOneByteAuto: {
      float min_value = mat.Min(), max_value = mat.Max();
      // ensure that max_value is strictly greater than min_value, even if matrix is
      // constant; this avoids crashes in ComputeColHeader when compressing speech
      // featupres.
      if (max_value == min_value)
        max_value = min_value + (1.0 + fabs(min_value));
      KALDI_ASSERT(min_value - min_value == 0 &&
                   max_value - max_value == 0 &&
                   "Cannot compress a matrix with Nan's or Inf's");

      header->min_value = min_value;
      header->range = max_value - min_value;

      // we previously checked that max_value != min_value, so their
      // difference should be nonzero.
      KALDI_ASSERT(header->range > 0.0);
      break;
    }
    case kTwoByteSignedInteger: {
      header->min_value = -32768.0;
      header->range = 65535.0;
      break;
    }
    case kOneByteUnsignedInteger: {
      header->min_value = 0.0;
      header->range = 255.0;
      break;
    }
    case kOneByteZeroOne: {
      header->min_value = 0.0;
      header->range = 1.0;
      break;
    }
    default:
      KALDI_ERR << "Unknown compression method = "
                << static_cast<int32>(method);
  }
  KALDI_COMPILE_TIME_ASSERT(sizeof(*header) == 20);  // otherwise
  // something weird is happening and our code probably won't work or
  // won't be robust across platforms.
}

template<typename Real>
void CompressedMatrix::CopyFromMat(
    const MatrixBase<Real> &mat, CompressionMethod method) {
  if (data_ != NULL) {
    delete [] static_cast<float*>(data_);  // call delete [] because was allocated with new float[]
    data_ = NULL;
  }
  if (mat.NumRows() == 0) { return; }  // Zero-size matrix stored as zero pointer.


  GlobalHeader global_header;
  ComputeGlobalHeader(mat, method, &global_header);

  int32 data_size = DataSize(global_header);

  data_ = AllocateData(data_size);

  *(reinterpret_cast<GlobalHeader*>(data_)) = global_header;

  DataFormat format = static_cast<DataFormat>(global_header.format);
  if (format == kOneByteWithColHeaders) {
    PerColHeader *header_data =
        reinterpret_cast<PerColHeader*>(static_cast<char*>(data_) +
                                        sizeof(GlobalHeader));
    uint8 *byte_data =
        reinterpret_cast<uint8*>(header_data + global_header.num_cols);

    const Real *matrix_data = mat.Data();

    for (int32 col = 0; col < global_header.num_cols; col++) {
      CompressColumn(global_header,
                     matrix_data + col, mat.Stride(),
                     global_header.num_rows,
                     header_data, byte_data);
      header_data++;
      byte_data += global_header.num_rows;
    }
  } else if (format == kTwoByte) {
    uint16 *data = reinterpret_cast<uint16*>(static_cast<char*>(data_) +
                                             sizeof(GlobalHeader));
    int32 num_rows = mat.NumRows(), num_cols = mat.NumCols();
    for (int32 r = 0; r < num_rows; r++) {
      const Real *row_data = mat.RowData(r);
      for (int32 c = 0; c < num_cols; c++)
        data[c] = FloatToUint16(global_header, row_data[c]);
      data += num_cols;
    }
  } else {
    KALDI_ASSERT(format == kOneByte);
    uint8 *data = reinterpret_cast<uint8*>(static_cast<char*>(data_) +
                                           sizeof(GlobalHeader));
    int32 num_rows = mat.NumRows(), num_cols = mat.NumCols();
    for (int32 r = 0; r < num_rows; r++) {
      const Real *row_data = mat.RowData(r);
      for (int32 c = 0; c < num_cols; c++)
        data[c] = FloatToUint8(global_header, row_data[c]);
      data += num_cols;
    }
  }
}

// Instantiate the template for float and double.
template
void CompressedMatrix::CopyFromMat(const MatrixBase<float> &mat,
                                   CompressionMethod method);

template
void CompressedMatrix::CopyFromMat(const MatrixBase<double> &mat,
                                   CompressionMethod method);


CompressedMatrix::CompressedMatrix(
    const CompressedMatrix &cmat,
    const MatrixIndexT row_offset,
    const MatrixIndexT num_rows,
    const MatrixIndexT col_offset,
    const MatrixIndexT num_cols,
    bool allow_padding): data_(NULL) {
  int32 old_num_rows = cmat.NumRows(), old_num_cols = cmat.NumCols();

  if (old_num_rows == 0) {
    KALDI_ASSERT(num_rows == 0 && num_cols == 0);
    // The empty matrix is stored as a zero pointer.
    return;
  }

  KALDI_ASSERT(row_offset < old_num_rows);
  KALDI_ASSERT(col_offset < old_num_cols);
  KALDI_ASSERT(row_offset >= 0 || allow_padding);
  KALDI_ASSERT(col_offset >= 0);
  KALDI_ASSERT(row_offset + num_rows <= old_num_rows || allow_padding);
  KALDI_ASSERT(col_offset + num_cols <= old_num_cols);

  if (num_rows == 0 || num_cols == 0) { return; }

  bool padding_is_used = (row_offset < 0 ||
                          row_offset + num_rows > old_num_rows);

  GlobalHeader new_global_header;
  KALDI_COMPILE_TIME_ASSERT(sizeof(new_global_header) == 20);

  GlobalHeader *old_global_header = reinterpret_cast<GlobalHeader*>(cmat.Data());

  new_global_header = *old_global_header;
  new_global_header.num_cols = num_cols;
  new_global_header.num_rows = num_rows;

  // We don't switch format from 1 -> 2 (in case of size reduction) yet; if this
  // is needed, we will do this below by creating a temporary Matrix.
  new_global_header.format = old_global_header->format;

  data_ = AllocateData(DataSize(new_global_header));  // allocate memory
  *(reinterpret_cast<GlobalHeader*>(data_)) = new_global_header;


  DataFormat format = static_cast<DataFormat>(old_global_header->format);
  if (format == kOneByteWithColHeaders) {
    PerColHeader *old_per_col_header =
        reinterpret_cast<PerColHeader*>(old_global_header + 1);
    uint8 *old_byte_data =
        reinterpret_cast<uint8*>(old_per_col_header +
                                 old_global_header->num_cols);
    PerColHeader *new_per_col_header =
        reinterpret_cast<PerColHeader*>(
            reinterpret_cast<GlobalHeader*>(data_) + 1);

    memcpy(new_per_col_header, old_per_col_header + col_offset,
           sizeof(PerColHeader) * num_cols);

    uint8 *new_byte_data =
        reinterpret_cast<uint8*>(new_per_col_header + num_cols);
    if (!padding_is_used) {
      uint8 *old_start_of_subcol =
          old_byte_data + row_offset + (col_offset * old_num_rows),
          *new_start_of_col = new_byte_data;
      for (int32 i = 0; i < num_cols; i++) {
        memcpy(new_start_of_col, old_start_of_subcol, num_rows);
        new_start_of_col += num_rows;
        old_start_of_subcol += old_num_rows;
      }
    } else {
      uint8 *old_start_of_col =
          old_byte_data + (col_offset * old_num_rows),
          *new_start_of_col = new_byte_data;
      for (int32 i = 0; i < num_cols; i++) {

        for (int32 j = 0; j < num_rows; j++) {
          int32 old_j = j + row_offset;
          if (old_j < 0) old_j = 0;
          else if (old_j >= old_num_rows) old_j = old_num_rows - 1;
          new_start_of_col[j] = old_start_of_col[old_j];
        }
        new_start_of_col += num_rows;
        old_start_of_col += old_num_rows;
      }
    }
  } else if (format == kTwoByte) {
    const uint16 *old_data =
        reinterpret_cast<const uint16*>(old_global_header + 1);
    uint16 *new_row_data =
        reinterpret_cast<uint16*>(reinterpret_cast<GlobalHeader*>(data_) + 1);

    for (int32 row = 0; row < num_rows; row++) {
      int32 old_row = row + row_offset;
      // The next two lines are only relevant if padding_is_used.
      if (old_row < 0) old_row = 0;
      else if (old_row >= old_num_rows) old_row = old_num_rows - 1;
      const uint16 *old_row_data =
          old_data + col_offset + (old_num_cols * old_row);
      memcpy(new_row_data, old_row_data, sizeof(uint16) * num_cols);
      new_row_data += num_cols;
    }
  } else {
    KALDI_ASSERT(format == kOneByte);
    const uint8 *old_data =
        reinterpret_cast<const uint8*>(old_global_header + 1);
    uint8 *new_row_data =
        reinterpret_cast<uint8*>(reinterpret_cast<GlobalHeader*>(data_) + 1);

    for (int32 row = 0; row < num_rows; row++) {
      int32 old_row = row + row_offset;
      // The next two lines are only relevant if padding_is_used.
      if (old_row < 0) old_row = 0;
      else if (old_row >= old_num_rows) old_row = old_num_rows - 1;
      const uint8 *old_row_data =
          old_data + col_offset + (old_num_cols * old_row);
      memcpy(new_row_data, old_row_data, sizeof(uint8) * num_cols);
      new_row_data += num_cols;
    }
  }

  if (num_rows < 8 && format == kOneByteWithColHeaders) {
    // format was 1 but we want it to be 2 -> create a temporary
    // Matrix (uncompress), re-compress, and swap.
    // This gives us almost exact reconstruction while saving
    // memory (the elements take more space but there will be
    // no per-column headers).
    Matrix<float> temp(this->NumRows(), this->NumCols(),
                       kUndefined);
    this->CopyToMat(&temp);
    CompressedMatrix temp_cmat(temp, kTwoByteAuto);
    this->Swap(&temp_cmat);
  }
}


template<typename Real>
CompressedMatrix &CompressedMatrix::operator =(const MatrixBase<Real> &mat) {
  this->CopyFromMat(mat);
  return *this;
}

// Instantiate the template for float and double.
template
CompressedMatrix& CompressedMatrix::operator =(const MatrixBase<float> &mat);

template
CompressedMatrix& CompressedMatrix::operator =(const MatrixBase<double> &mat);

inline uint16 CompressedMatrix::FloatToUint16(
    const GlobalHeader &global_header,
    float value) {
  float f = (value - global_header.min_value) /
      global_header.range;
  if (f > 1.0) f = 1.0;  // Note: this should not happen.
  if (f < 0.0) f = 0.0;  // Note: this should not happen.
  return static_cast<int>(f * 65535 + 0.499);  // + 0.499 is to
  // round to closest int; avoids bias.
}


inline uint8 CompressedMatrix::FloatToUint8(
    const GlobalHeader &global_header,
    float value) {
  float f = (value - global_header.min_value) /
      global_header.range;
  if (f > 1.0) f = 1.0;  // Note: this should not happen.
  if (f < 0.0) f = 0.0;  // Note: this should not happen.
  return static_cast<int>(f * 255 + 0.499);  // + 0.499 is to
  // round to closest int; avoids bias.
}


inline float CompressedMatrix::Uint16ToFloat(
    const GlobalHeader &global_header,
    uint16 value) {
  // the constant 1.52590218966964e-05 is 1/65535.
  return global_header.min_value
      + global_header.range * 1.52590218966964e-05F * value;
}

template<typename Real>  // static
void CompressedMatrix::ComputeColHeader(
    const GlobalHeader &global_header,
    const Real *data, MatrixIndexT stride,
    int32 num_rows, CompressedMatrix::PerColHeader *header) {
  KALDI_ASSERT(num_rows > 0);
  std::vector<Real> sdata(num_rows); // the sorted data.
  for (size_t i = 0, size = sdata.size(); i < size; i++)
    sdata[i] = data[i*stride];

  if (num_rows >= 5) {
    int quarter_nr = num_rows/4;
    // std::sort(sdata.begin(), sdata.end());
    // The elements at positions 0, quarter_nr,
    // 3*quarter_nr, and num_rows-1 need to be in sorted order.
    std::nth_element(sdata.begin(), sdata.begin() + quarter_nr, sdata.end());
    // Now, sdata.begin() + quarter_nr contains the element that would appear
    // in sorted order, in that position.
    std::nth_element(sdata.begin(), sdata.begin(), sdata.begin() + quarter_nr);
    // Now, sdata.begin() and sdata.begin() + quarter_nr contain the elements
    // that would appear at those positions in sorted order.
    std::nth_element(sdata.begin() + quarter_nr + 1,
                     sdata.begin() + (3*quarter_nr), sdata.end());
    // Now, sdata.begin(), sdata.begin() + quarter_nr, and sdata.begin() +
    // 3*quarter_nr, contain the elements that would appear at those positions
    // in sorted order.
    std::nth_element(sdata.begin() + (3*quarter_nr) + 1, sdata.end() - 1,
                     sdata.end());
    // Now, sdata.begin(), sdata.begin() + quarter_nr, and sdata.begin() +
    // 3*quarter_nr, and sdata.end() - 1, contain the elements that would appear
    // at those positions in sorted order.

    header->percentile_0 =
        std::min<uint16>(FloatToUint16(global_header, sdata[0]), 65532);
    header->percentile_25 =
        std::min<uint16>(
            std::max<uint16>(
                FloatToUint16(global_header, sdata[quarter_nr]),
                header->percentile_0 + static_cast<uint16>(1)), 65533);
    header->percentile_75 =
        std::min<uint16>(
            std::max<uint16>(
                FloatToUint16(global_header, sdata[3*quarter_nr]),
                header->percentile_25 + static_cast<uint16>(1)), 65534);
    header->percentile_100 = std::max<uint16>(
        FloatToUint16(global_header, sdata[num_rows-1]),
        header->percentile_75 + static_cast<uint16>(1));

  } else {  // handle this pathological case.
    std::sort(sdata.begin(), sdata.end());
    // Note: we know num_rows is at least 1.
    header->percentile_0 =
        std::min<uint16>(FloatToUint16(global_header, sdata[0]),
                         65532);
    if (num_rows > 1)
      header->percentile_25 =
          std::min<uint16>(
              std::max<uint16>(FloatToUint16(global_header, sdata[1]),
                               header->percentile_0 + 1), 65533);
    else
      header->percentile_25 = header->percentile_0 + 1;
    if (num_rows > 2)
      header->percentile_75 =
          std::min<uint16>(
              std::max<uint16>(FloatToUint16(global_header, sdata[2]),
                               header->percentile_25 + 1), 65534);
    else
      header->percentile_75 = header->percentile_25 + 1;
    if (num_rows > 3)
      header->percentile_100 =
          std::max<uint16>(FloatToUint16(global_header, sdata[3]),
                           header->percentile_75 + 1);
    else
      header->percentile_100 = header->percentile_75 + 1;
  }
}

// static
inline uint8 CompressedMatrix::FloatToChar(
    float p0, float p25, float p75, float p100,
    float value) {
  int ans;
  if (value < p25) {  // range [ p0, p25 ) covered by
    // characters 0 .. 64.  We round to the closest int.
    float f = (value - p0) / (p25 - p0);
    ans = static_cast<int>(f * 64 + 0.5);
    // Note: the checks on the next two lines
    // are necessary in pathological cases when all the elements in a row
    // are the same and the percentile_* values are separated by one.
    if (ans < 0) ans = 0;
    if (ans > 64) ans = 64;
  } else if (value < p75) {  // range [ p25, p75 )covered
    // by characters 64 .. 192.  We round to the closest int.
    float f = (value - p25) / (p75 - p25);
    ans = 64 + static_cast<int>(f * 128 + 0.5);
    if (ans < 64) ans = 64;
    if (ans > 192) ans = 192;
  } else {  // range [ p75, p100 ] covered by
    // characters 192 .. 255.  Note: this last range
    // has fewer characters than the left range, because
    // we go up to 255, not 256.
    float f = (value - p75) / (p100 - p75);
    ans = 192 + static_cast<int>(f * 63 + 0.5);
    if (ans < 192) ans = 192;
    if (ans > 255) ans = 255;
  }
  return static_cast<uint8>(ans);
}


// static
inline float CompressedMatrix::CharToFloat(
    float p0, float p25, float p75, float p100,
    uint8 value) {
  if (value <= 64) {
    return p0 + (p25 - p0) * value * (1/64.0);
  } else if (value <= 192) {
    return p25 + (p75 - p25) * (value - 64) * (1/128.0);
  } else {
    return p75 + (p100 - p75) * (value - 192) * (1/63.0);
  }
}


template<typename Real>  // static
void CompressedMatrix::CompressColumn(
    const GlobalHeader &global_header,
    const Real *data, MatrixIndexT stride,
    int32 num_rows, CompressedMatrix::PerColHeader *header,
    uint8 *byte_data) {
  ComputeColHeader(global_header, data, stride,
                   num_rows, header);

  float p0 = Uint16ToFloat(global_header, header->percentile_0),
      p25 = Uint16ToFloat(global_header, header->percentile_25),
      p75 = Uint16ToFloat(global_header, header->percentile_75),
      p100 = Uint16ToFloat(global_header, header->percentile_100);

  for (int32 i = 0; i < num_rows; i++) {
    Real this_data = data[i * stride];
    byte_data[i] = FloatToChar(p0, p25, p75, p100, this_data);
  }
}

// static
void* CompressedMatrix::AllocateData(int32 num_bytes) {
  KALDI_ASSERT(num_bytes > 0);
  KALDI_COMPILE_TIME_ASSERT(sizeof(float) == 4);
  // round size up to nearest number of floats.
  return reinterpret_cast<void*>(new float[(num_bytes/3) + 4]);
}

void CompressedMatrix::Write(std::ostream &os, bool binary) const {
  if (binary) {  // Binary-mode write:
    if (data_ != NULL) {
      GlobalHeader &h = *reinterpret_cast<GlobalHeader*>(data_);
      DataFormat format = static_cast<DataFormat>(h.format);
      if (format == kOneByteWithColHeaders) {
        WriteToken(os, binary, "CM");
      } else if (format == kTwoByte) {
        WriteToken(os, binary, "CM2");
      } else if (format == kOneByte) {
        WriteToken(os, binary, "CM3");
      }
      MatrixIndexT size = DataSize(h);  // total size of data in data_
      // We don't write out the "int32 format", hence the + 4, - 4.
      os.write(reinterpret_cast<const char*>(data_) + 4, size - 4);
    } else {  // special case: where data_ == NULL, we treat it as an empty
      // matrix.
      WriteToken(os, binary, "CM");
      GlobalHeader h;
      h.range = h.min_value = 0.0;
      h.num_rows = h.num_cols = 0;
      os.write(reinterpret_cast<const char*>(&h), sizeof(h));
    }
  } else {
    // In text mode, just use the same format as a regular matrix.
    // This is not compressed.
    Matrix<BaseFloat> temp_mat(this->NumRows(), this->NumCols(),
                               kUndefined);
    this->CopyToMat(&temp_mat);
    temp_mat.Write(os, binary);
  }
  if (os.fail())
    KALDI_ERR << "Error writing compressed matrix to stream.";
}

void CompressedMatrix::Read(std::istream &is, bool binary) {
  if (data_ != NULL) {
    delete [] (static_cast<float*>(data_));
    data_ = NULL;
  }
  if (binary) {
    int peekval = Peek(is, binary);
    if (peekval == 'C') {
      std::string tok; // Should be CM (format 1) or CM2 (format 2)
      ReadToken(is, binary, &tok);
      GlobalHeader h;
      if (tok == "CM") { h.format = 1; } //  kOneByteWithColHeaders
      else if (tok == "CM2") { h.format = 2; }  // kTwoByte
      else if (tok == "CM3") { h.format = 3; }  // kOneByte
      else {
        KALDI_ERR << "Unexpected token " << tok << ", expecting CM, CM2 or CM3";
      }
      // don't read the "format" -> hence + 4, - 4.
      is.read(reinterpret_cast<char*>(&h) + 4, sizeof(h) - 4);
      if (is.fail())
        KALDI_ERR << "Failed to read header";
      if (h.num_cols == 0) // empty matrix.
        return;
      int32 size = DataSize(h), remaining_size = size - sizeof(GlobalHeader);
      data_ = AllocateData(size);
      *(reinterpret_cast<GlobalHeader*>(data_)) = h;
      is.read(reinterpret_cast<char*>(data_) + sizeof(GlobalHeader),
              remaining_size);
    } else {
      // Assume that what we're reading is a regular Matrix.  This might be the
      // case if you changed your code, making a Matrix into a CompressedMatrix,
      // and you want back-compatibility for reading.
      Matrix<BaseFloat> M;
      M.Read(is, binary); // This will crash if it was not a Matrix.
      this->CopyFromMat(M);
    }
  } else {  // Text-mode read.  In this case you don't get to
    // choose the compression type.  Anyway this branch would only
    // be taken when debugging.
    Matrix<BaseFloat> temp;
    temp.Read(is, binary);
    this->CopyFromMat(temp);
  }
  if (is.fail())
    KALDI_ERR << "Failed to read data.";
}

template<typename Real>
void CompressedMatrix::CopyToMat(MatrixBase<Real> *mat,
                                 MatrixTransposeType trans) const {
  if (trans == kTrans) {
    Matrix<Real> temp(this->NumCols(), this->NumRows());
    CopyToMat(&temp, kNoTrans);
    mat->CopyFromMat(temp, kTrans);
    return;
  }

  if (data_ == NULL) {
    KALDI_ASSERT(mat->NumRows() == 0);
    KALDI_ASSERT(mat->NumCols() == 0);
    return;
  }
  GlobalHeader *h = reinterpret_cast<GlobalHeader*>(data_);
  int32 num_cols = h->num_cols, num_rows = h->num_rows;
  KALDI_ASSERT(mat->NumRows() == num_rows);
  KALDI_ASSERT(mat->NumCols() == num_cols);

  DataFormat format = static_cast<DataFormat>(h->format);
  if (format == kOneByteWithColHeaders) {
    PerColHeader *per_col_header = reinterpret_cast<PerColHeader*>(h+1);
    uint8 *byte_data = reinterpret_cast<uint8*>(per_col_header +
                                                h->num_cols);
    for (int32 i = 0; i < num_cols; i++, per_col_header++) {
      float p0 = Uint16ToFloat(*h, per_col_header->percentile_0),
          p25 = Uint16ToFloat(*h, per_col_header->percentile_25),
          p75 = Uint16ToFloat(*h, per_col_header->percentile_75),
          p100 = Uint16ToFloat(*h, per_col_header->percentile_100);
      for (int32 j = 0; j < num_rows; j++, byte_data++) {
        float f = CharToFloat(p0, p25, p75, p100, *byte_data);
        (*mat)(j, i) = f;
      }
    }
  } else if (format == kTwoByte) {
    const uint16 *data = reinterpret_cast<const uint16*>(h + 1);
    float min_value = h->min_value,
        increment = h->range * (1.0 / 65535.0);
    for (int32 i = 0; i < num_rows; i++) {
      Real *row_data = mat->RowData(i);
      for (int32 j = 0; j < num_cols; j++)
        row_data[j] = min_value + data[j] * increment;
      data += num_cols;
    }
  } else {
    KALDI_ASSERT(format == kOneByte);
    float min_value = h->min_value, increment = h->range * (1.0 / 255.0);

    const uint8 *data = reinterpret_cast<const uint8*>(h + 1);
    for (int32 i = 0; i < num_rows; i++) {
      Real *row_data = mat->RowData(i);
      for (int32 j = 0; j < num_cols; j++)
        row_data[j] = min_value + data[j] * increment;
      data += num_cols;
    }
  }
}

// Instantiate the template for float and double.
template
void CompressedMatrix::CopyToMat(MatrixBase<float> *mat,
                                 MatrixTransposeType trans) const;
template
void CompressedMatrix::CopyToMat(MatrixBase<double> *mat,
                                 MatrixTransposeType trans) const;

template<typename Real>
void CompressedMatrix::CopyRowToVec(MatrixIndexT row,
                                    VectorBase<Real> *v) const {
  KALDI_ASSERT(row < this->NumRows());
  KALDI_ASSERT(row >= 0);
  KALDI_ASSERT(v->Dim() == this->NumCols());

  GlobalHeader *h = reinterpret_cast<GlobalHeader*>(data_);
  DataFormat format = static_cast<DataFormat>(h->format);
  if (format == kOneByteWithColHeaders) {
    PerColHeader *per_col_header = reinterpret_cast<PerColHeader*>(h+1);
    uint8 *byte_data = reinterpret_cast<uint8*>(per_col_header +
                                                h->num_cols);
    byte_data += row;  // point to first value we are interested in
    for (int32 i = 0; i < h->num_cols;
         i++, per_col_header++, byte_data += h->num_rows) {
      float p0 = Uint16ToFloat(*h, per_col_header->percentile_0),
          p25 = Uint16ToFloat(*h, per_col_header->percentile_25),
          p75 = Uint16ToFloat(*h, per_col_header->percentile_75),
          p100 = Uint16ToFloat(*h, per_col_header->percentile_100);
      float f = CharToFloat(p0, p25, p75, p100, *byte_data);
      (*v)(i) = f;
    }
  } else if (format == kTwoByte) {
    int32 num_cols = h->num_cols;
    float min_value = h->min_value,
        increment = h->range * (1.0 / 65535.0);
    const uint16 *row_data = reinterpret_cast<uint16*>(h + 1) + (num_cols * row);
    Real *v_data = v->Data();
    for (int32 c = 0; c < num_cols; c++)
      v_data[c] = min_value + row_data[c] * increment;
  } else {
    KALDI_ASSERT(format == kOneByte);
    int32 num_cols = h->num_cols;
    float min_value = h->min_value,
        increment = h->range * (1.0 / 255.0);
    const uint8 *row_data = reinterpret_cast<uint8*>(h + 1) + (num_cols * row);
    Real *v_data = v->Data();
    for (int32 c = 0; c < num_cols; c++)
      v_data[c] = min_value + row_data[c] * increment;
  }
}

template<typename Real>
void CompressedMatrix::CopyColToVec(MatrixIndexT col,
                                    VectorBase<Real> *v) const {
  KALDI_ASSERT(col < this->NumCols());
  KALDI_ASSERT(col >= 0);
  KALDI_ASSERT(v->Dim() == this->NumRows());

  GlobalHeader *h = reinterpret_cast<GlobalHeader*>(data_);

  DataFormat format = static_cast<DataFormat>(h->format);
  if (format == kOneByteWithColHeaders) {
    PerColHeader *per_col_header = reinterpret_cast<PerColHeader*>(h+1);
    uint8 *byte_data = reinterpret_cast<uint8*>(per_col_header +
                                                h->num_cols);
    byte_data += col*h->num_rows;  // point to first value in the column we want
    per_col_header += col;
    float p0 = Uint16ToFloat(*h, per_col_header->percentile_0),
        p25 = Uint16ToFloat(*h, per_col_header->percentile_25),
        p75 = Uint16ToFloat(*h, per_col_header->percentile_75),
        p100 = Uint16ToFloat(*h, per_col_header->percentile_100);
    for (int32 i = 0; i < h->num_rows; i++, byte_data++) {
      float f = CharToFloat(p0, p25, p75, p100, *byte_data);
      (*v)(i) = f;
    }
  } else if (format == kTwoByte) {
    int32 num_rows = h->num_rows, num_cols = h->num_cols;
    float min_value = h->min_value,
        increment = h->range * (1.0 / 65535.0);
    const uint16 *col_data = reinterpret_cast<uint16*>(h + 1) + col;
    Real *v_data = v->Data();
    for (int32 r = 0; r < num_rows; r++)
      v_data[r] = min_value + increment * col_data[r * num_cols];
  } else {
    KALDI_ASSERT(format == kOneByte);
    int32 num_rows = h->num_rows, num_cols = h->num_cols;
    float min_value = h->min_value,
        increment = h->range * (1.0 / 255.0);
    const uint8 *col_data = reinterpret_cast<uint8*>(h + 1) + col;
    Real *v_data = v->Data();
    for (int32 r = 0; r < num_rows; r++)
      v_data[r] = min_value + increment * col_data[r * num_cols];
  }
}

// instantiate the templates.
template void
CompressedMatrix::CopyColToVec(MatrixIndexT, VectorBase<double> *) const;
template void
CompressedMatrix::CopyColToVec(MatrixIndexT, VectorBase<float> *) const;
template void
CompressedMatrix::CopyRowToVec(MatrixIndexT, VectorBase<double> *) const;
template void
CompressedMatrix::CopyRowToVec(MatrixIndexT, VectorBase<float> *) const;

template<typename Real>
void CompressedMatrix::CopyToMat(int32 row_offset,
                                 int32 col_offset,
                                 MatrixBase<Real> *dest) const {
  KALDI_PARANOID_ASSERT(row_offset < this->NumRows());
  KALDI_PARANOID_ASSERT(col_offset < this->NumCols());
  KALDI_PARANOID_ASSERT(row_offset >= 0);
  KALDI_PARANOID_ASSERT(col_offset >= 0);
  KALDI_ASSERT(row_offset+dest->NumRows() <= this->NumRows());
  KALDI_ASSERT(col_offset+dest->NumCols() <= this->NumCols());
  // everything is OK
  GlobalHeader *h = reinterpret_cast<GlobalHeader*>(data_);
  int32 num_rows = h->num_rows, num_cols = h->num_cols,
      tgt_cols = dest->NumCols(), tgt_rows = dest->NumRows();

  DataFormat format = static_cast<DataFormat>(h->format);
  if (format == kOneByteWithColHeaders) {
    PerColHeader *per_col_header = reinterpret_cast<PerColHeader*>(h+1);
    uint8 *byte_data = reinterpret_cast<uint8*>(per_col_header +
                                                h->num_cols);

    uint8 *start_of_subcol = byte_data+row_offset;  // skip appropriate
    // number of columns
    start_of_subcol += col_offset*num_rows;  // skip appropriate number of rows

    per_col_header += col_offset;  // skip the appropriate number of headers

    for (int32 i = 0;
         i < tgt_cols;
         i++, per_col_header++, start_of_subcol+=num_rows) {
      byte_data = start_of_subcol;
      float p0 = Uint16ToFloat(*h, per_col_header->percentile_0),
          p25 = Uint16ToFloat(*h, per_col_header->percentile_25),
          p75 = Uint16ToFloat(*h, per_col_header->percentile_75),
          p100 = Uint16ToFloat(*h, per_col_header->percentile_100);
      for (int32 j = 0; j < tgt_rows; j++, byte_data++) {
        float f = CharToFloat(p0, p25, p75, p100, *byte_data);
        (*dest)(j, i) = f;
      }
    }
  } else if (format == kTwoByte) {
    const uint16 *data = reinterpret_cast<const uint16*>(h+1) + col_offset +
        (num_cols * row_offset);
    float min_value = h->min_value,
        increment = h->range * (1.0 / 65535.0);

    for (int32 row = 0; row < tgt_rows; row++) {
      Real *dest_row = dest->RowData(row);
      for (int32 col = 0; col < tgt_cols; col++)
        dest_row[col] = min_value + increment * data[col];
      data += num_cols;
    }
  } else {
    KALDI_ASSERT(format == kOneByte);
    const uint8 *data = reinterpret_cast<const uint8*>(h+1) + col_offset +
        (num_cols * row_offset);
    float min_value = h->min_value,
        increment = h->range * (1.0 / 255.0);
    for (int32 row = 0; row < tgt_rows; row++) {
      Real *dest_row = dest->RowData(row);
      for (int32 col = 0; col < tgt_cols; col++)
        dest_row[col] = min_value + increment * data[col];
      data += num_cols;
    }
  }
}

// instantiate the templates.
template void CompressedMatrix::CopyToMat(int32,
                                          int32,
                                          MatrixBase<float> *dest) const;
template void CompressedMatrix::CopyToMat(int32,
                                          int32,
                                          MatrixBase<double> *dest) const;

void CompressedMatrix::Clear() {
  if (data_ != NULL) {
    delete [] static_cast<float*>(data_);
    data_ = NULL;
  }
}

CompressedMatrix::CompressedMatrix(const CompressedMatrix &mat): data_(NULL) {
  *this = mat; // use assignment operator.
}

CompressedMatrix &CompressedMatrix::operator = (const CompressedMatrix &mat) {
  Clear(); // now this->data_ == NULL.
  if (mat.data_ != NULL) {
    MatrixIndexT data_size = DataSize(*static_cast<GlobalHeader*>(mat.data_));
    data_ = AllocateData(data_size);
    memcpy(static_cast<void*>(data_),
           static_cast<void*>(mat.data_),
           data_size);
  }
  return *this;
}


}  // namespace kaldi