jama-svd.h 15.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
// matrix/jama-svd.h

// Copyright 2009-2011 Microsoft Corporation

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

// This file consists of a port and modification of materials from
//   JAMA: A Java Matrix Package
// under the following notice: This software is a cooperative product of
// The MathWorks and the National Institute of Standards and Technology (NIST)
// which has been released to the public.  This notice and the original code are
// available at http://math.nist.gov/javanumerics/jama/domain.notice


#ifndef KALDI_MATRIX_JAMA_SVD_H_
#define KALDI_MATRIX_JAMA_SVD_H_ 1


#include "matrix/kaldi-matrix.h"
#include "matrix/sp-matrix.h"
#include "matrix/cblas-wrappers.h"

namespace kaldi {

#if defined(HAVE_ATLAS) || defined(USE_KALDI_SVD)
// using ATLAS as our math library, which doesn't have SVD -> need
// to implement it.

// This routine is a modified form of jama_svd.h which is part of the TNT distribution.
// (originally comes from JAMA).

/** Singular Value Decomposition.
 * <P>
 * For an m-by-n matrix A with m >= n, the singular value decomposition is
 * an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
 * an n-by-n orthogonal matrix V so that A = U*S*V'.
 * <P>
 * The singular values, sigma[k] = S(k, k), are ordered so that
 * sigma[0] >= sigma[1] >= ... >= sigma[n-1].
 * <P>
 * The singular value decompostion always exists, so the constructor will
 * never fail.  The matrix condition number and the effective numerical
 * rank can be computed from this decomposition.

 * <p>
 *     (Adapted from JAMA, a Java Matrix Library, developed by jointly
 *     by the Mathworks and NIST; see  http://math.nist.gov/javanumerics/jama).
 */


template<typename Real>
bool MatrixBase<Real>::JamaSvd(VectorBase<Real> *s_in,
                               MatrixBase<Real> *U_in,
                               MatrixBase<Real> *V_in) {  //  Destructive!
  KALDI_ASSERT(s_in != NULL && U_in != this && V_in != this);
  int wantu = (U_in != NULL), wantv = (V_in != NULL);
  Matrix<Real> Utmp, Vtmp;
  MatrixBase<Real> &U = (U_in ? *U_in : Utmp), &V = (V_in ? *V_in : Vtmp);
  VectorBase<Real> &s = *s_in;

  int m = num_rows_, n = num_cols_;
  KALDI_ASSERT(m>=n && m != 0 && n != 0);
  if (wantu) KALDI_ASSERT((int)U.num_rows_ == m && (int)U.num_cols_ == n);
  if (wantv) KALDI_ASSERT((int)V.num_rows_ == n && (int)V.num_cols_ == n);
  KALDI_ASSERT((int)s.Dim() == n);  // n<=m so n is min.

  int nu = n;
  U.SetZero();  // make sure all zero.
  Vector<Real> e(n);
  Vector<Real> work(m);
  MatrixBase<Real> &A(*this);
  Real *adata = A.Data(), *workdata = work.Data(), *edata = e.Data(),
      *udata = U.Data(), *vdata = V.Data();
  int astride = static_cast<int>(A.Stride()),
      ustride = static_cast<int>(U.Stride()),
      vstride = static_cast<int>(V.Stride());
  int i = 0, j = 0, k = 0;

  // Reduce A to bidiagonal form, storing the diagonal elements
  // in s and the super-diagonal elements in e.

  int nct = std::min(m-1, n);
  int nrt = std::max(0, std::min(n-2, m));
  for (k = 0; k < std::max(nct, nrt); k++) {
    if (k < nct) {

      // Compute the transformation for the k-th column and
      // place the k-th diagonal in s(k).
      // Compute 2-norm of k-th column without under/overflow.
      s(k) = 0;
      for (i = k; i < m; i++) {
        s(k) = hypot(s(k), A(i, k));
      }
      if (s(k) != 0.0) {
        if (A(k, k) < 0.0) {
          s(k) = -s(k);
        }
        for (i = k; i < m; i++) {
          A(i, k) /= s(k);
        }
        A(k, k) += 1.0;
      }
      s(k) = -s(k);
    }
    for (j = k+1; j < n; j++) {
      if ((k < nct) && (s(k) != 0.0))  {

        // Apply the transformation.

        Real t = cblas_Xdot(m - k, adata + astride*k + k, astride,
                            adata + astride*k + j, astride);
        /*for (i = k; i < m; i++) {
          t += adata[i*astride + k]*adata[i*astride + j];  //   A(i, k)*A(i, j); // 3
          }*/
        t = -t/A(k, k);
        cblas_Xaxpy(m - k, t, adata + k*astride + k, astride,
                    adata + k*astride + j, astride);
        /*for (i = k; i < m; i++) {
          adata[i*astride + j] += t*adata[i*astride + k];  // A(i, j) += t*A(i, k); // 5
          }*/
      }

      // Place the k-th row of A into e for the
      // subsequent calculation of the row transformation.

      e(j) = A(k, j);
    }
    if (wantu & (k < nct)) {

      // Place the transformation in U for subsequent back
      // multiplication.

      for (i = k; i < m; i++) {
        U(i, k) = A(i, k);
      }
    }
    if (k < nrt) {

      // Compute the k-th row transformation and place the
      // k-th super-diagonal in e(k).
      // Compute 2-norm without under/overflow.
      e(k) = 0;
      for (i = k+1; i < n; i++) {
        e(k) = hypot(e(k), e(i));
      }
      if (e(k) != 0.0) {
        if (e(k+1) < 0.0) {
          e(k) = -e(k);
        }
        for (i = k+1; i < n; i++) {
          e(i) /= e(k);
        }
        e(k+1) += 1.0;
      }
      e(k) = -e(k);
      if ((k+1 < m) & (e(k) != 0.0)) {

        // Apply the transformation.

        for (i = k+1; i < m; i++) {
          work(i) = 0.0;
        }
        for (j = k+1; j < n; j++) {
          for (i = k+1; i < m; i++) {
            workdata[i] += edata[j] * adata[i*astride + j];  // work(i) += e(j)*A(i, j); // 5
          }
        }
        for (j = k+1; j < n; j++) {
          Real t(-e(j)/e(k+1));
          cblas_Xaxpy(m - (k+1), t, workdata + (k+1), 1,
                      adata + (k+1)*astride + j, astride);
          /*
          for (i = k+1; i < m; i++) {
            adata[i*astride + j] += t*workdata[i];  // A(i, j) += t*work(i); // 5
            }*/
        }
      }
      if (wantv) {

        // Place the transformation in V for subsequent
        // back multiplication.

        for (i = k+1; i < n; i++) {
          V(i, k) = e(i);
        }
      }
    }
  }

  // Set up the final bidiagonal matrix or order p.

  int p = std::min(n, m+1);
  if (nct < n) {
    s(nct) = A(nct, nct);
  }
  if (m < p) {
    s(p-1) = 0.0;
  }
  if (nrt+1 < p) {
    e(nrt) = A(nrt, p-1);
  }
  e(p-1) = 0.0;

  // If required, generate U.

  if (wantu) {
    for (j = nct; j < nu; j++) {
      for (i = 0; i < m; i++) {
        U(i, j) = 0.0;
      }
      U(j, j) = 1.0;
    }
    for (k = nct-1; k >= 0; k--) {
      if (s(k) != 0.0) {
        for (j = k+1; j < nu; j++) {
          Real t = cblas_Xdot(m - k, udata + k*ustride + k, ustride, udata + k*ustride + j, ustride);
          //for (i = k; i < m; i++) {
          //  t += udata[i*ustride + k]*udata[i*ustride + j];  // t += U(i, k)*U(i, j); // 8
          // }
          t = -t/U(k, k);
          cblas_Xaxpy(m - k, t, udata + ustride*k + k, ustride,
                      udata + k*ustride + j, ustride);
          /*for (i = k; i < m; i++) {
            udata[i*ustride + j] += t*udata[i*ustride + k];  // U(i, j) += t*U(i, k); // 4
            }*/
        }
        for (i = k; i < m; i++ ) {
          U(i, k) = -U(i, k);
        }
        U(k, k) = 1.0 + U(k, k);
        for (i = 0; i < k-1; i++) {
          U(i, k) = 0.0;
        }
      } else {
        for (i = 0; i < m; i++) {
          U(i, k) = 0.0;
        }
        U(k, k) = 1.0;
      }
    }
  }

  // If required, generate V.

  if (wantv) {
    for (k = n-1; k >= 0; k--) {
      if ((k < nrt) & (e(k) != 0.0)) {
        for (j = k+1; j < nu; j++) {
          Real t = cblas_Xdot(n - (k+1), vdata + (k+1)*vstride + k, vstride,
                              vdata + (k+1)*vstride + j, vstride); 
          /*Real t (0.0);
          for (i = k+1; i < n; i++) {
            t += vdata[i*vstride + k]*vdata[i*vstride + j];  // t += V(i, k)*V(i, j); // 7
            }*/
          t = -t/V(k+1, k);
          cblas_Xaxpy(n - (k+1), t, vdata + (k+1)*vstride + k, vstride,
                      vdata + (k+1)*vstride + j, vstride);
          /*for (i = k+1; i < n; i++) {
            vdata[i*vstride + j] += t*vdata[i*vstride + k];  // V(i, j) += t*V(i, k); // 7
            }*/
        }
      }
      for (i = 0; i < n; i++) {
        V(i, k) = 0.0;
      }
      V(k, k) = 1.0;
    }
  }

  // Main iteration loop for the singular values.

  int pp = p-1;
  int iter = 0;
  // note: -52.0 is from Jama code; the -23 is the extension
  // to float, because mantissa length in (double, float)
  // is (52, 23) bits respectively.
  Real eps(pow(2.0, sizeof(Real) == 4 ? -23.0 : -52.0));
  // Note: the -966 was taken from Jama code, but the -120 is a guess
  // of how to extend this to float... the exponent in double goes
  // from -1022 .. 1023, and in float from -126..127.  I'm not sure
  // what the significance of 966 is, so -120 just represents a number
  // that's a bit less negative than -126.  If we get convergence
  // failure in float only, this may mean that we have to make the
  // -120 value less negative.
  Real tiny(pow(2.0, sizeof(Real) == 4 ? -120.0: -966.0 ));
  
  while (p > 0) {
    int k = 0;
    int kase = 0;

    if (iter == 500 || iter == 750) {
      KALDI_WARN << "Svd taking a long time: making convergence criterion less exact.";
      eps = pow(static_cast<Real>(0.8), eps);
      tiny = pow(static_cast<Real>(0.8), tiny);
    }
    if (iter > 1000) {
      KALDI_WARN << "Svd not converging on matrix of size " << m << " by " <<n;
      return false;
    }

    // This section of the program inspects for
    // negligible elements in the s and e arrays.  On
    // completion the variables kase and k are set as follows.

    // kase = 1     if s(p) and e(k-1) are negligible and k < p
    // kase = 2     if s(k) is negligible and k < p
    // kase = 3     if e(k-1) is negligible, k < p, and
    //              s(k), ..., s(p) are not negligible (qr step).
    // kase = 4     if e(p-1) is negligible (convergence).

    for (k = p-2; k >= -1; k--) {
      if (k == -1) {
        break;
      }
      if (std::abs(e(k)) <=
          tiny + eps*(std::abs(s(k)) + std::abs(s(k+1)))) {
        e(k) = 0.0;
        break;
      }
    }
    if (k == p-2) {
      kase = 4;
    } else {
      int ks;
      for (ks = p-1; ks >= k; ks--) {
        if (ks == k) {
          break;
        }
        Real t( (ks != p ? std::abs(e(ks)) : 0.) +
                (ks != k+1 ? std::abs(e(ks-1)) : 0.));
        if (std::abs(s(ks)) <= tiny + eps*t)  {
          s(ks) = 0.0;
          break;
        }
      }
      if (ks == k) {
        kase = 3;
      } else if (ks == p-1) {
        kase = 1;
      } else {
        kase = 2;
        k = ks;
      }
    }
    k++;

    // Perform the task indicated by kase.

    switch (kase) {

      // Deflate negligible s(p).

      case 1: {
        Real f(e(p-2));
        e(p-2) = 0.0;
        for (j = p-2; j >= k; j--) {
          Real t( hypot(s(j), f));
          Real cs(s(j)/t);
          Real sn(f/t);
          s(j) = t;
          if (j != k) {
            f = -sn*e(j-1);
            e(j-1) = cs*e(j-1);
          }
          if (wantv) {
            for (i = 0; i < n; i++) {
              t = cs*V(i, j) + sn*V(i, p-1);
              V(i, p-1) = -sn*V(i, j) + cs*V(i, p-1);
              V(i, j) = t;
            }
          }
        }
      }
        break;

        // Split at negligible s(k).

      case 2: {
        Real f(e(k-1));
        e(k-1) = 0.0;
        for (j = k; j < p; j++) {
          Real t(hypot(s(j), f));
          Real cs( s(j)/t);
          Real sn(f/t);
          s(j) = t;
          f = -sn*e(j);
          e(j) = cs*e(j);
          if (wantu) {
            for (i = 0; i < m; i++) {
              t = cs*U(i, j) + sn*U(i, k-1);
              U(i, k-1) = -sn*U(i, j) + cs*U(i, k-1);
              U(i, j) = t;
            }
          }
        }
      }
        break;

        // Perform one qr step.

      case 3: {

        // Calculate the shift.

        Real scale = std::max(std::max(std::max(std::max(
            std::abs(s(p-1)), std::abs(s(p-2))), std::abs(e(p-2))),
                                       std::abs(s(k))), std::abs(e(k)));
        Real sp = s(p-1)/scale;
        Real spm1 = s(p-2)/scale;
        Real epm1 = e(p-2)/scale;
        Real sk = s(k)/scale;
        Real ek = e(k)/scale;
        Real b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
        Real c = (sp*epm1)*(sp*epm1);
        Real shift = 0.0;
        if ((b != 0.0) || (c != 0.0)) {
          shift = std::sqrt(b*b + c);
          if (b < 0.0) {
            shift = -shift;
          }
          shift = c/(b + shift);
        }
        Real f = (sk + sp)*(sk - sp) + shift;
        Real g = sk*ek;

        // Chase zeros.

        for (j = k; j < p-1; j++) {
          Real t = hypot(f, g);
          Real cs = f/t;
          Real sn = g/t;
          if (j != k) {
            e(j-1) = t;
          }
          f = cs*s(j) + sn*e(j);
          e(j) = cs*e(j) - sn*s(j);
          g = sn*s(j+1);
          s(j+1) = cs*s(j+1);
          if (wantv) {
            cblas_Xrot(n, vdata + j, vstride, vdata + j+1, vstride, cs, sn);
            /*for (i = 0; i < n; i++) {
              t = cs*vdata[i*vstride + j] + sn*vdata[i*vstride + j+1];  // t = cs*V(i, j) + sn*V(i, j+1);         // 13
              vdata[i*vstride + j+1] = -sn*vdata[i*vstride + j] + cs*vdata[i*vstride + j+1];  // V(i, j+1) = -sn*V(i, j) + cs*V(i, j+1); // 5
              vdata[i*vstride + j] = t;  // V(i, j) = t; // 4
              }*/
          }
          t = hypot(f, g);
          cs = f/t;
          sn = g/t;
          s(j) = t;
          f = cs*e(j) + sn*s(j+1);
          s(j+1) = -sn*e(j) + cs*s(j+1);
          g = sn*e(j+1);
          e(j+1) = cs*e(j+1);
          if (wantu && (j < m-1)) {
            cblas_Xrot(m, udata + j, ustride, udata + j+1, ustride, cs, sn);
            /*for (i = 0; i < m; i++) {
              t = cs*udata[i*ustride + j] + sn*udata[i*ustride + j+1];  // t = cs*U(i, j) + sn*U(i, j+1); // 7
              udata[i*ustride + j+1] = -sn*udata[i*ustride + j] +cs*udata[i*ustride + j+1];  // U(i, j+1) = -sn*U(i, j) + cs*U(i, j+1); // 8
              udata[i*ustride + j] = t;  // U(i, j) = t; // 1
              }*/
          }
        }
        e(p-2) = f;
        iter = iter + 1;
      }
        break;

        // Convergence.

      case 4: {

        // Make the singular values positive.

        if (s(k) <= 0.0) {
          s(k) = (s(k) < 0.0 ? -s(k) : 0.0);
          if (wantv) {
            for (i = 0; i <= pp; i++) {
              V(i, k) = -V(i, k);
            }
          }
        }

        // Order the singular values.

        while (k < pp) {
          if (s(k) >= s(k+1)) {
            break;
          }
          Real t = s(k);
          s(k) = s(k+1);
          s(k+1) = t;
          if (wantv && (k < n-1)) {
            for (i = 0; i < n; i++) {
              t = V(i, k+1); V(i, k+1) = V(i, k); V(i, k) = t;
            }
          }
          if (wantu && (k < m-1)) {
            for (i = 0; i < m; i++) {
              t = U(i, k+1); U(i, k+1) = U(i, k); U(i, k) = t;
            }
          }
          k++;
        }
        iter = 0;
        p--;
      }
        break;
    }
  }
  return true;
}

#endif // defined(HAVE_ATLAS) || defined(USE_KALDI_SVD)

} // namespace kaldi

#endif // KALDI_MATRIX_JAMA_SVD_H_