nnet-convolutional-component.h
18 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
// nnet/nnet-convolutional-component.h
// Copyright 2014 Brno University of Technology (author: Karel Vesely)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET_NNET_CONVOLUTIONAL_COMPONENT_H_
#define KALDI_NNET_NNET_CONVOLUTIONAL_COMPONENT_H_
#include <string>
#include <vector>
#include "nnet/nnet-component.h"
#include "nnet/nnet-utils.h"
#include "cudamatrix/cu-math.h"
namespace kaldi {
namespace nnet1 {
/**
* ConvolutionalComponent implements convolution over single axis
* (i.e. frequency axis in case we are the 1st component in NN).
* We don't do convolution along temporal axis, which simplifies the
* implementation (and was not helpful for Tara).
*
* We assume the input featrues are spliced, i.e. each frame
* is in fact a set of stacked frames, where we can form patches
* which span over several frequency bands and whole time axis.
*
* The convolution is done over whole axis with same filters,
* i.e. we don't use separate filters for different 'regions'
* of frequency axis.
*
* In order to have a fast implementations, the filters
* are represented in vectorized form, where each rectangular
* filter corresponds to a row in a matrix, where all the filters
* are stored. The features are then re-shaped to a set of matrices,
* where one matrix corresponds to single patch-position,
* where all the filters get applied.
*
* The type of convolution is controled by hyperparameters:
* patch_dim_ ... frequency axis size of the patch
* patch_step_ ... size of shift in the convolution
* patch_stride_ ... shift for 2nd dim of a patch
* (i.e. frame length before splicing)
*
* Due to convolution same weights are used repeateadly,
* the final gradient is a sum of all position-specific
* gradients (the sum was found better than averaging).
*
*/
class ConvolutionalComponent : public UpdatableComponent {
public:
ConvolutionalComponent(int32 dim_in, int32 dim_out):
UpdatableComponent(dim_in, dim_out),
patch_dim_(0),
patch_step_(0),
patch_stride_(0),
max_norm_(0.0)
{ }
~ConvolutionalComponent()
{ }
Component* Copy() const { return new ConvolutionalComponent(*this); }
ComponentType GetType() const { return kConvolutionalComponent; }
void InitData(std::istream &is) {
// define options
BaseFloat bias_mean = -2.0, bias_range = 2.0, param_stddev = 0.1;
// parse config
std::string token;
while (is >> std::ws, !is.eof()) {
ReadToken(is, false, &token);
/**/ if (token == "<ParamStddev>") ReadBasicType(is, false, ¶m_stddev);
else if (token == "<BiasMean>") ReadBasicType(is, false, &bias_mean);
else if (token == "<BiasRange>") ReadBasicType(is, false, &bias_range);
else if (token == "<PatchDim>") ReadBasicType(is, false, &patch_dim_);
else if (token == "<PatchStep>") ReadBasicType(is, false, &patch_step_);
else if (token == "<PatchStride>") ReadBasicType(is, false, &patch_stride_);
else if (token == "<LearnRateCoef>") ReadBasicType(is, false, &learn_rate_coef_);
else if (token == "<BiasLearnRateCoef>") ReadBasicType(is, false, &bias_learn_rate_coef_);
else if (token == "<MaxNorm>") ReadBasicType(is, false, &max_norm_);
else KALDI_ERR << "Unknown token " << token << ", a typo in config?"
<< " (ParamStddev|BiasMean|BiasRange|PatchDim|PatchStep|PatchStride)";
}
//
// Sanity checks:
//
// splice (input are spliced frames):
KALDI_ASSERT(input_dim_ % patch_stride_ == 0);
int32 num_splice = input_dim_ / patch_stride_;
KALDI_LOG << "num_splice " << num_splice;
// number of patches:
KALDI_ASSERT((patch_stride_ - patch_dim_) % patch_step_ == 0);
int32 num_patches = 1 + (patch_stride_ - patch_dim_) / patch_step_;
KALDI_LOG << "num_patches " << num_patches;
// filter dim:
int32 filter_dim = num_splice * patch_dim_;
KALDI_LOG << "filter_dim " << filter_dim;
// num filters:
KALDI_ASSERT(output_dim_ % num_patches == 0);
int32 num_filters = output_dim_ / num_patches;
KALDI_LOG << "num_filters " << num_filters;
//
//
// Initialize trainable parameters,
//
// Gaussian with given std_dev (mean = 0),
filters_.Resize(num_filters, filter_dim);
RandGauss(0.0, param_stddev, &filters_);
// Uniform,
bias_.Resize(num_filters);
RandUniform(bias_mean, bias_range, &bias_);
}
void ReadData(std::istream &is, bool binary) {
// convolution hyperparameters,
ExpectToken(is, binary, "<PatchDim>");
ReadBasicType(is, binary, &patch_dim_);
ExpectToken(is, binary, "<PatchStep>");
ReadBasicType(is, binary, &patch_step_);
ExpectToken(is, binary, "<PatchStride>");
ReadBasicType(is, binary, &patch_stride_);
// variant-length list of parameters,
bool end_loop = false;
while (!end_loop) {
int first_char = PeekToken(is, binary);
switch (first_char) {
case 'L': ExpectToken(is, binary, "<LearnRateCoef>");
ReadBasicType(is, binary, &learn_rate_coef_);
break;
case 'B': ExpectToken(is, binary, "<BiasLearnRateCoef>");
ReadBasicType(is, binary, &bias_learn_rate_coef_);
break;
case 'M': ExpectToken(is, binary, "<MaxNorm>");
ReadBasicType(is, binary, &max_norm_);
break;
case '!': ExpectToken(is, binary, "<!EndOfComponent>");
default: end_loop = true;
}
}
// trainable parameters
ExpectToken(is, binary, "<Filters>");
filters_.Read(is, binary);
ExpectToken(is, binary, "<Bias>");
bias_.Read(is, binary);
//
// Sanity checks:
//
// splice (input are spliced frames):
KALDI_ASSERT(input_dim_ % patch_stride_ == 0);
int32 num_splice = input_dim_ / patch_stride_;
// number of patches:
KALDI_ASSERT((patch_stride_ - patch_dim_) % patch_step_ == 0);
int32 num_patches = 1 + (patch_stride_ - patch_dim_) / patch_step_;
// filter dim:
int32 filter_dim = num_splice * patch_dim_;
// num filters:
KALDI_ASSERT(output_dim_ % num_patches == 0);
int32 num_filters = output_dim_ / num_patches;
// check parameter dims:
KALDI_ASSERT(num_filters == filters_.NumRows());
KALDI_ASSERT(num_filters == bias_.Dim());
KALDI_ASSERT(filter_dim == filters_.NumCols());
//
}
void WriteData(std::ostream &os, bool binary) const {
// convolution hyperparameters
WriteToken(os, binary, "<PatchDim>");
WriteBasicType(os, binary, patch_dim_);
WriteToken(os, binary, "<PatchStep>");
WriteBasicType(os, binary, patch_step_);
WriteToken(os, binary, "<PatchStride>");
WriteBasicType(os, binary, patch_stride_);
if (!binary) os << "\n";
// re-scale learn rate
WriteToken(os, binary, "<LearnRateCoef>");
WriteBasicType(os, binary, learn_rate_coef_);
WriteToken(os, binary, "<BiasLearnRateCoef>");
WriteBasicType(os, binary, bias_learn_rate_coef_);
// max-norm regularization
WriteToken(os, binary, "<MaxNorm>");
WriteBasicType(os, binary, max_norm_);
if (!binary) os << "\n";
// trainable parameters
WriteToken(os, binary, "<Filters>");
if (!binary) os << "\n";
filters_.Write(os, binary);
WriteToken(os, binary, "<Bias>");
if (!binary) os << "\n";
bias_.Write(os, binary);
}
int32 NumParams() const {
return filters_.NumRows()*filters_.NumCols() + bias_.Dim();
}
void GetGradient(VectorBase<BaseFloat>* gradient) const {
KALDI_ASSERT(gradient->Dim() == NumParams());
int32 filters_num_elem = filters_.NumRows() * filters_.NumCols();
gradient->Range(0, filters_num_elem).CopyRowsFromMat(filters_);
gradient->Range(filters_num_elem, bias_.Dim()).CopyFromVec(bias_);
}
void GetParams(VectorBase<BaseFloat>* params) const {
KALDI_ASSERT(params->Dim() == NumParams());
int32 filters_num_elem = filters_.NumRows() * filters_.NumCols();
params->Range(0, filters_num_elem).CopyRowsFromMat(filters_);
params->Range(filters_num_elem, bias_.Dim()).CopyFromVec(bias_);
}
void SetParams(const VectorBase<BaseFloat>& params) {
KALDI_ASSERT(params.Dim() == NumParams());
int32 filters_num_elem = filters_.NumRows() * filters_.NumCols();
filters_.CopyRowsFromVec(params.Range(0, filters_num_elem));
bias_.CopyFromVec(params.Range(filters_num_elem, bias_.Dim()));
}
std::string Info() const {
return std::string("\n filters") + MomentStatistics(filters_) +
", lr-coef " + ToString(learn_rate_coef_) +
", max-norm " + ToString(max_norm_) +
"\n bias" + MomentStatistics(bias_) +
", lr-coef " + ToString(bias_learn_rate_coef_);
}
std::string InfoGradient() const {
return std::string("\n filters_grad") + MomentStatistics(filters_grad_) +
", lr-coef " + ToString(learn_rate_coef_) +
", max-norm " + ToString(max_norm_) +
"\n bias_grad" + MomentStatistics(bias_grad_) +
", lr-coef " + ToString(bias_learn_rate_coef_);
}
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
// useful dims
int32 num_splice = input_dim_ / patch_stride_;
int32 num_patches = 1 + (patch_stride_ - patch_dim_) / patch_step_;
int32 num_filters = filters_.NumRows();
int32 num_frames = in.NumRows();
int32 filter_dim = filters_.NumCols();
// we will need the buffers
if (vectorized_feature_patches_.NumRows() != num_frames) {
vectorized_feature_patches_.Resize(num_frames, filter_dim * num_patches, kUndefined);
feature_patch_diffs_.Resize(num_frames, filter_dim * num_patches, kSetZero);
}
/* Prepare feature patches, the layout is:
* |----------|----------|----------|---------| (in = spliced frames)
* xxx xxx xxx xxx (x = selected elements)
*
* xxx : patch dim
* xxx
* ^---: patch step
* |----------| : patch stride
*
* xxx-xxx-xxx-xxx : filter dim
*
*/
// build-up a column selection map:
int32 index = 0;
column_map_.resize(filter_dim * num_patches);
for (int32 p = 0; p < num_patches; p++) {
for (int32 s = 0; s < num_splice; s++) {
for (int32 d = 0; d < patch_dim_; d++) {
column_map_[index] = p * patch_step_ + s * patch_stride_ + d;
index++;
}
}
}
// select the columns
CuArray<int32> cu_column_map(column_map_);
vectorized_feature_patches_.CopyCols(in, cu_column_map);
// compute filter activations
for (int32 p = 0; p < num_patches; p++) {
CuSubMatrix<BaseFloat> tgt(out->ColRange(p * num_filters, num_filters));
CuSubMatrix<BaseFloat> patch(vectorized_feature_patches_.ColRange(
p * filter_dim, filter_dim));
tgt.AddVecToRows(1.0, bias_, 0.0); // add bias
// apply all filters
tgt.AddMatMat(1.0, patch, kNoTrans, filters_, kTrans, 1.0);
}
}
/*
This function does an operation similar to reversing a map,
except it handles maps that are not one-to-one by outputting
the reversed map as a vector of lists.
@param[in] forward_indexes is a vector of int32, each of whose
elements is between 0 and input_dim - 1.
@param[in] input_dim. See definitions of forward_indexes and
backward_indexes.
@param[out] backward_indexes is a vector of dimension input_dim
of lists, The list at (backward_indexes[i]) is a list
of all indexes j such that forward_indexes[j] = i.
*/
void ReverseIndexes(const std::vector<int32> &forward_indexes,
std::vector<std::vector<int32> > *backward_indexes) {
int32 i;
int32 size = forward_indexes.size();
backward_indexes->resize(input_dim_);
int32 reserve_size = 2+ forward_indexes.size() / input_dim_;
std::vector<std::vector<int32> >::iterator iter = backward_indexes->begin(),
end = backward_indexes->end();
for (; iter != end; ++iter)
iter->reserve(reserve_size);
for (int32 j = 0; j < size; j++) {
i = forward_indexes[j];
KALDI_ASSERT(i < input_dim_);
(*backward_indexes)[i].push_back(j);
}
}
/*
This function transforms a vector of lists into a list of vectors,
padded with -1.
@param[in] The input vector of lists. Let in.size() be D, and let
the longest list length (i.e. the max of in[i].size()) be L.
@param[out] The output list of vectors. The length of the list will
be L, each vector-dimension will be D (i.e. out[i].size() == D),
and if in[i] == j, then for some k we will have that
out[k][j] = i. The output vectors are padded with -1
where necessary if not all the input lists have the same side.
*/
void RearrangeIndexes(const std::vector<std::vector<int32> > &in,
std::vector<std::vector<int32> > *out) {
int32 D = in.size();
int32 L = 0;
for (int32 i = 0; i < D; i++)
if (in[i].size() > L)
L = in[i].size();
out->resize(L);
for (int32 i = 0; i < L; i++)
(*out)[i].resize(D, -1);
for (int32 i = 0; i < D; i++) {
for (int32 j = 0; j < in[i].size(); j++) {
(*out)[j][i] = in[i][j];
}
}
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
// useful dims
int32 num_patches = 1 + (patch_stride_ - patch_dim_) / patch_step_;
int32 num_filters = filters_.NumRows();
int32 filter_dim = filters_.NumCols();
// backpropagate to vector of matrices
// (corresponding to position of a filter)
for (int32 p = 0; p < num_patches; p++) {
CuSubMatrix<BaseFloat> patch_diff(feature_patch_diffs_.ColRange(
p * filter_dim, filter_dim));
CuSubMatrix<BaseFloat> out_diff_patch(out_diff.ColRange(
p * num_filters, num_filters));
patch_diff.AddMatMat(1.0, out_diff_patch, kNoTrans,
filters_, kNoTrans, 0.0);
}
// sum the derivatives into in_diff, we will compensate #summands
std::vector<std::vector<int32> > reversed_column_map;
ReverseIndexes(column_map_, &reversed_column_map);
std::vector<std::vector<int32> > rearranged_column_map;
RearrangeIndexes(reversed_column_map, &rearranged_column_map);
for (int32 p = 0; p < rearranged_column_map.size(); p++) {
CuArray<int32> cu_cols(rearranged_column_map[p]);
in_diff->AddCols(feature_patch_diffs_, cu_cols);
}
}
void Update(const CuMatrixBase<BaseFloat> &input,
const CuMatrixBase<BaseFloat> &diff) {
// useful dims
int32 num_patches = 1 + (patch_stride_ - patch_dim_) / patch_step_;
int32 num_filters = filters_.NumRows();
int32 filter_dim = filters_.NumCols();
// we use following hyperparameters from the option class
const BaseFloat lr = opts_.learn_rate;
//
// calculate the gradient
//
filters_grad_.Resize(num_filters, filter_dim, kSetZero); // reset
bias_grad_.Resize(num_filters, kSetZero); // reset
// use all the patches
for (int32 p = 0; p < num_patches; p++) { // sum
CuSubMatrix<BaseFloat> diff_patch(diff.ColRange(p * num_filters,
num_filters));
CuSubMatrix<BaseFloat> patch(vectorized_feature_patches_.ColRange(
p * filter_dim, filter_dim));
filters_grad_.AddMatMat(1.0, diff_patch, kTrans, patch, kNoTrans, 1.0);
bias_grad_.AddRowSumMat(1.0, diff_patch, 1.0);
}
//
// update
//
filters_.AddMat(-lr*learn_rate_coef_, filters_grad_);
bias_.AddVec(-lr*bias_learn_rate_coef_, bias_grad_);
//
// max-norm
if (max_norm_ > 0.0) {
CuMatrix<BaseFloat> lin_sqr(filters_);
lin_sqr.MulElements(filters_);
CuVector<BaseFloat> l2(filters_.NumRows());
l2.AddColSumMat(1.0, lin_sqr, 0.0);
l2.ApplyPow(0.5); // we have per-neuron L2 norms
CuVector<BaseFloat> scl(l2);
scl.Scale(1.0/max_norm_);
scl.ApplyFloor(1.0);
scl.InvertElements();
filters_.MulRowsVec(scl); // shink to sphere!
}
}
private:
int32 patch_dim_, ///< number of consecutive inputs, 1st dim of patch
patch_step_, ///< step of the convolution
/// (i.e. shift between 2 patches)
patch_stride_; ///< shift for 2nd dim of a patch
/// (i.e. frame length before splicing)
CuMatrix<BaseFloat> filters_; ///< row = vectorized rectangular filter
CuVector<BaseFloat> bias_; ///< bias for each filter
CuMatrix<BaseFloat> filters_grad_; ///< gradient of filters
CuVector<BaseFloat> bias_grad_; ///< gradient of biases
BaseFloat max_norm_; ///< limit L2 norm of a neuron weights to positive value
/** Buffer of reshaped inputs:
* 1row = vectorized rectangular feature patches,
* 1col = dim over speech frames
* Map of input features:
* std::vector-dim = patch-position
*/
CuMatrix<BaseFloat> vectorized_feature_patches_;
std::vector<int32> column_map_;
/** Buffer for backpropagation:
* derivatives in the domain of 'vectorized_feature_patches_',
* 1row = vectorized rectangular feature patches,
* 1col = dim over speech frames,
*/
CuMatrix<BaseFloat> feature_patch_diffs_;
};
} // namespace nnet1
} // namespace kaldi
#endif // KALDI_NNET_NNET_CONVOLUTIONAL_COMPONENT_H_