nnet-various.h
16 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
// nnet/nnet-various.h
// Copyright 2012-2016 Brno University of Technology (author: Karel Vesely)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET_NNET_VARIOUS_H_
#define KALDI_NNET_NNET_VARIOUS_H_
#include <string>
#include <vector>
#include <algorithm>
#include <sstream>
#include "nnet/nnet-component.h"
#include "nnet/nnet-utils.h"
#include "cudamatrix/cu-math.h"
#include "util/text-utils.h"
namespace kaldi {
namespace nnet1 {
/**
* Splices the time context of the input features
* in N, out k*N, FrameOffset o_1,o_2,...,o_k
* FrameOffset example 11frames: -5 -4 -3 -2 -1 0 1 2 3 4 5
*/
class Splice: public Component {
public:
Splice(int32 dim_in, int32 dim_out):
Component(dim_in, dim_out)
{ }
~Splice()
{ }
Component* Copy() const { return new Splice(*this); }
ComponentType GetType() const { return kSplice; }
void InitData(std::istream &is) {
// define options,
std::vector<std::vector<int32> > build_vector;
// parse config,
std::string token;
while (is >> std::ws, !is.eof()) {
ReadToken(is, false, &token);
/**/ if (token == "<ReadVector>") {
frame_offsets_.Read(is, false);
} else if (token == "<BuildVector>") {
// Parse the list of 'matlab-like' indices:
// <BuildVector> 1:1:1000 1 2 3 1:10 </BuildVector>
while (is >> std::ws, !is.eof()) {
std::string colon_sep_list_or_end;
ReadToken(is, false, &colon_sep_list_or_end);
if (colon_sep_list_or_end == "</BuildVector>") break;
std::vector<int32> v;
SplitStringToIntegers(colon_sep_list_or_end, ":", false, &v);
build_vector.push_back(v);
}
} else {
KALDI_ERR << "Unknown token " << token << ", a typo in config?"
<< " (ReadVector|BuildVector)";
}
}
if (build_vector.size() > 0) {
// build the vector, using <BuildVector> ... </BuildVector> inputs,
BuildIntegerVector(build_vector, &frame_offsets_);
}
// check dim
KALDI_ASSERT(frame_offsets_.Dim()*InputDim() == OutputDim());
}
void ReadData(std::istream &is, bool binary) {
frame_offsets_.Read(is, binary);
KALDI_ASSERT(frame_offsets_.Dim() * InputDim() == OutputDim());
}
void WriteData(std::ostream &os, bool binary) const {
frame_offsets_.Write(os, binary);
}
std::string Info() const {
std::ostringstream ostr;
ostr << "\n frame_offsets " << frame_offsets_;
std::string str = ostr.str();
str.erase(str.end()-1);
return str;
}
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
cu::Splice(in, frame_offsets_, out);
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
// WARNING!!! WARNING!!! WARNING!!!
// THIS BACKPROPAGATION CAN BE USED ONLY WITH 'PER-UTTERANCE' TRAINING!
// IN MINI-BATCH TRAINING, THIS <Splice> COMPONENT HAS TO BE PART OF THE
// 'feature_transform' SO WE DON'T BACKPROPAGATE THROUGH IT...
// dims,
int32 input_dim = in.NumCols(),
num_frames = out_diff.NumRows();
// Copy offsets to 'host',
std::vector<int32> offsets(frame_offsets_.Dim());
frame_offsets_.CopyToVec(&offsets);
// loop over the offsets,
for (int32 i = 0; i < offsets.size(); i++) {
int32 o_i = offsets.at(i);
int32 n_rows = num_frames - abs(o_i),
src_row = std::max(-o_i, 0),
tgt_row = std::max(o_i, 0);
const CuSubMatrix<BaseFloat> src = out_diff.Range(src_row, n_rows, i*input_dim, input_dim);
CuSubMatrix<BaseFloat> tgt = in_diff->RowRange(tgt_row, n_rows);
tgt.AddMat(1.0, src, kNoTrans);
}
}
protected:
CuArray<int32> frame_offsets_;
};
/**
* Rearrange the matrix columns according to the indices in copy_from_indices_
*/
class CopyComponent: public Component {
public:
CopyComponent(int32 dim_in, int32 dim_out):
Component(dim_in, dim_out)
{ }
~CopyComponent()
{ }
Component* Copy() const { return new CopyComponent(*this); }
ComponentType GetType() const { return kCopy; }
void InitData(std::istream &is) {
// define options,
std::vector<std::vector<int32> > build_vector;
// parse config,
std::string token;
while (is >> std::ws, !is.eof()) {
ReadToken(is, false, &token);
/**/ if (token == "<ReadVector>") {
copy_from_indices_.Read(is, false);
} else if (token == "<BuildVector>") {
// <BuildVector> 1:1:1000 1:1:1000 1 2 3 1:10 </BuildVector>
// 'matlab-line' indexing, read the colon-separated-lists:
while (is >> std::ws, !is.eof()) {
std::string colon_sep_list_or_end;
ReadToken(is, false, &colon_sep_list_or_end);
if (colon_sep_list_or_end == "</BuildVector>") break;
std::vector<int32> v;
SplitStringToIntegers(colon_sep_list_or_end, ":", false, &v);
build_vector.push_back(v);
}
} else {
KALDI_ERR << "Unknown token " << token << ", a typo in config?"
<< " (ReadVector|BuildVector)";
}
}
if (build_vector.size() > 0) {
// build the vector, using <BuildVector> ... </BuildVector> inputs,
BuildIntegerVector(build_vector, ©_from_indices_);
}
// decrease by 1,
copy_from_indices_.Add(-1);
// check range,
KALDI_ASSERT(copy_from_indices_.Min() >= 0);
KALDI_ASSERT(copy_from_indices_.Max() < InputDim());
// check dim,
KALDI_ASSERT(copy_from_indices_.Dim() == OutputDim());
}
void ReadData(std::istream &is, bool binary) {
copy_from_indices_.Read(is, binary);
KALDI_ASSERT(copy_from_indices_.Dim() == OutputDim());
copy_from_indices_.Add(-1); // -1 from each element,
}
void WriteData(std::ostream &os, bool binary) const {
CuArray<int32> tmp(copy_from_indices_);
tmp.Add(1); // +1 to each element,
tmp.Write(os, binary);
}
std::string Info() const {
return std::string("\n min ") + ToString(copy_from_indices_.Min()) +
", max " + ToString(copy_from_indices_.Max());
}
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
cu::Copy(in, copy_from_indices_,out);
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
static bool warning_displayed = false;
if (!warning_displayed) {
KALDI_WARN << Component::TypeToMarker(GetType()) << " : "
<< __func__ << "() Not implemented!";
warning_displayed = true;
}
in_diff->SetZero();
}
protected:
CuArray<int32> copy_from_indices_;
};
/**
* Rescale the matrix-rows to have unit length (L2-norm).
*/
class LengthNormComponent: public Component {
public:
LengthNormComponent(int32 dim_in, int32 dim_out):
Component(dim_in, dim_out)
{ }
~LengthNormComponent()
{ }
Component* Copy() const { return new LengthNormComponent(*this); }
ComponentType GetType() const { return kLengthNormComponent; }
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
// resize vector when needed,
if (row_scales_.Dim() != in.NumRows()) {
row_scales_.Resize(in.NumRows());
}
// get the normalization scalars,
l2_aux_ = in;
l2_aux_.MulElements(l2_aux_); // x^2,
row_scales_.AddColSumMat(1.0, l2_aux_, 0.0); // sum_of_cols(x^2),
row_scales_.ApplyPow(0.5); // L2norm = sqrt(sum_of_cols(x^2)),
row_scales_.InvertElements(); // 1/L2norm,
// compute the output,
out->CopyFromMat(in);
out->MulRowsVec(row_scales_); // re-normalize,
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
in_diff->CopyFromMat(out_diff);
in_diff->MulRowsVec(row_scales_); // diff_by_x(s * x) = s,
}
private:
CuMatrix<BaseFloat> l2_aux_; ///< auxiliary matrix for L2 norm computation,
CuVector<BaseFloat> row_scales_; ///< normalization scale of each row,
};
/**
* Adds shift to all the lines of the matrix
* (can be used for global mean normalization)
*/
class AddShift : public UpdatableComponent {
public:
AddShift(int32 dim_in, int32 dim_out):
UpdatableComponent(dim_in, dim_out),
shift_data_(dim_in)
{ }
~AddShift()
{ }
Component* Copy() const { return new AddShift(*this); }
ComponentType GetType() const { return kAddShift; }
void InitData(std::istream &is) {
// define options
float init_param = 0.0;
// parse config
std::string token;
while (is >> std::ws, !is.eof()) {
ReadToken(is, false, &token);
/**/ if (token == "<InitParam>") ReadBasicType(is, false, &init_param);
else if (token == "<LearnRateCoef>") ReadBasicType(is, false, &learn_rate_coef_);
else KALDI_ERR << "Unknown token " << token << ", a typo in config?"
<< " (InitParam)";
}
// initialize
shift_data_.Resize(InputDim(), kSetZero); // set to zero
shift_data_.Set(init_param);
}
void ReadData(std::istream &is, bool binary) {
// optional learning-rate coef,
if ('<' == Peek(is, binary)) {
ExpectToken(is, binary, "<LearnRateCoef>");
ReadBasicType(is, binary, &learn_rate_coef_);
}
// read the shift data
shift_data_.Read(is, binary);
}
void WriteData(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<LearnRateCoef>");
WriteBasicType(os, binary, learn_rate_coef_);
shift_data_.Write(os, binary);
}
int32 NumParams() const { return shift_data_.Dim(); }
void GetGradient(VectorBase<BaseFloat>* gradient) const {
KALDI_ASSERT(gradient->Dim() == NumParams());
shift_data_grad_.CopyToVec(gradient);
}
void GetParams(VectorBase<BaseFloat>* params) const {
KALDI_ASSERT(params->Dim() == NumParams());
shift_data_.CopyToVec(params);
}
void SetParams(const VectorBase<BaseFloat>& params) {
KALDI_ASSERT(params.Dim() == NumParams());
shift_data_.CopyFromVec(params);
}
std::string Info() const {
return std::string("\n shift_data") +
MomentStatistics(shift_data_) +
", lr-coef " + ToString(learn_rate_coef_);
}
std::string InfoGradient() const {
return std::string("\n shift_data_grad") +
MomentStatistics(shift_data_grad_) +
", lr-coef " + ToString(learn_rate_coef_);
}
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
// copy, add the shift,
out->CopyFromMat(in);
out->AddVecToRows(1.0, shift_data_, 1.0);
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
// the derivative of additive constant is zero...
in_diff->CopyFromMat(out_diff);
}
void Update(const CuMatrixBase<BaseFloat> &input,
const CuMatrixBase<BaseFloat> &diff) {
// we use following hyperparameters from the option class,
const BaseFloat lr = opts_.learn_rate;
// gradient,
shift_data_grad_.Resize(InputDim(), kSetZero); // reset to zero,
shift_data_grad_.AddRowSumMat(1.0, diff, 0.0);
// update,
shift_data_.AddVec(-lr * learn_rate_coef_, shift_data_grad_);
}
void SetLearnRateCoef(BaseFloat c) { learn_rate_coef_ = c; }
protected:
CuVector<BaseFloat> shift_data_;
CuVector<BaseFloat> shift_data_grad_;
};
/**
* Rescale the data column-wise by a vector
* (can be used for global variance normalization)
*/
class Rescale : public UpdatableComponent {
public:
Rescale(int32 dim_in, int32 dim_out):
UpdatableComponent(dim_in, dim_out),
scale_data_(dim_in)
{ }
~Rescale()
{ }
Component* Copy() const { return new Rescale(*this); }
ComponentType GetType() const { return kRescale; }
void InitData(std::istream &is) {
// define options
float init_param = 0.0;
// parse config
std::string token;
while (is >> std::ws, !is.eof()) {
ReadToken(is, false, &token);
/**/ if (token == "<InitParam>") ReadBasicType(is, false, &init_param);
else if (token == "<LearnRateCoef>") ReadBasicType(is, false, &learn_rate_coef_);
else KALDI_ERR << "Unknown token " << token << ", a typo in config?"
<< " (InitParam)";
}
// initialize
scale_data_.Resize(InputDim(), kSetZero);
scale_data_.Set(init_param);
}
void ReadData(std::istream &is, bool binary) {
// optional learning-rate coef,
if ('<' == Peek(is, binary)) {
ExpectToken(is, binary, "<LearnRateCoef>");
ReadBasicType(is, binary, &learn_rate_coef_);
}
// read the shift data
scale_data_.Read(is, binary);
}
void WriteData(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<LearnRateCoef>");
WriteBasicType(os, binary, learn_rate_coef_);
scale_data_.Write(os, binary);
}
int32 NumParams() const { return scale_data_.Dim(); }
void GetGradient(VectorBase<BaseFloat>* gradient) const {
KALDI_ASSERT(gradient->Dim() == NumParams());
scale_data_grad_.CopyToVec(gradient);
}
void GetParams(VectorBase<BaseFloat>* params) const {
KALDI_ASSERT(params->Dim() == NumParams());
scale_data_.CopyToVec(params);
}
void SetParams(const VectorBase<BaseFloat>& params) {
KALDI_ASSERT(params.Dim() == NumParams());
scale_data_.CopyFromVec(params);
}
std::string Info() const {
return std::string("\n scale_data") +
MomentStatistics(scale_data_) +
", lr-coef " + ToString(learn_rate_coef_);
}
std::string InfoGradient() const {
return std::string("\n scale_data_grad") +
MomentStatistics(scale_data_grad_) +
", lr-coef " + ToString(learn_rate_coef_);
}
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
// copy, rescale the data,
out->CopyFromMat(in);
out->MulColsVec(scale_data_);
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
// derivatives are scaled with the scale_data_,
in_diff->CopyFromMat(out_diff);
in_diff->MulColsVec(scale_data_);
}
void Update(const CuMatrixBase<BaseFloat> &input,
const CuMatrixBase<BaseFloat> &diff) {
// we use following hyperparameters from the option class,
const BaseFloat lr = opts_.learn_rate;
// gradient,
scale_data_grad_.Resize(InputDim(), kSetZero); // reset,
CuMatrix<BaseFloat> gradient_aux(diff);
gradient_aux.MulElements(input);
scale_data_grad_.AddRowSumMat(1.0, gradient_aux, 0.0);
// update,
scale_data_.AddVec(-lr * learn_rate_coef_, scale_data_grad_);
}
void SetLearnRateCoef(BaseFloat c) { learn_rate_coef_ = c; }
protected:
CuVector<BaseFloat> scale_data_;
CuVector<BaseFloat> scale_data_grad_;
};
} // namespace nnet1
} // namespace kaldi
#endif // KALDI_NNET_NNET_VARIOUS_H_