combine-nnet-fast.cc
16.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
// nnet2/combine-nnet-fast.cc
// Copyright 2012 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "nnet2/combine-nnet-fast.h"
#include "nnet2/nnet-update-parallel.h"
#include "util/kaldi-thread.h"
namespace kaldi {
namespace nnet2 {
/*
This class is responsible for computing a Fisher matrix which is a kind of
scatter of gradients on subsets; it's used for preconditioning the update in
class FastNnetCombiner. */
class FisherComputationClass: public MultiThreadable {
public:
FisherComputationClass(const Nnet &nnet,
const std::vector<Nnet> &nnets,
const std::vector<NnetExample> &egs,
int32 minibatch_size,
SpMatrix<double> *scatter):
nnet_(nnet), nnets_(nnets), egs_(egs), minibatch_size_(minibatch_size),
scatter_ptr_(scatter) { } // This initializer is only used to create a
// temporary version of the object; the next initializer is used to
// create the separate versions for the parallel jobs.
FisherComputationClass(const FisherComputationClass &other):
MultiThreadable(other),
nnet_(other.nnet_), nnets_(other.nnets_), egs_(other.egs_),
minibatch_size_(other.minibatch_size_), scatter_ptr_(other.scatter_ptr_) {
scatter_.Resize(nnets_.size() * nnet_.NumUpdatableComponents()); }
void operator () () {
// b is the "minibatch id."
int32 num_egs = static_cast<int32>(egs_.size());
Nnet nnet_gradient(nnet_);
for (int32 b = 0; b * minibatch_size_ < num_egs; b++) {
if (b % num_threads_ != thread_id_)
continue; // We're not responsible for this minibatch.
int32 offset = b * minibatch_size_,
length = std::min(minibatch_size_,
num_egs - offset);
bool is_gradient = true;
nnet_gradient.SetZero(is_gradient);
std::vector<NnetExample> minibatch(egs_.begin() + offset,
egs_.begin() + offset + length);
DoBackprop(nnet_, minibatch, &nnet_gradient);
Vector<double> gradient(nnets_.size() * nnet_.NumUpdatableComponents());
int32 i = 0;
for (int32 n = 0; n < static_cast<int32>(nnets_.size()); n++) {
for (int32 c = 0; c < nnet_.NumComponents(); c++) {
const UpdatableComponent *uc = dynamic_cast<const UpdatableComponent*>(
&(nnet_gradient.GetComponent(c))),
*uc_other = dynamic_cast<const UpdatableComponent*>(
&(nnets_[n].GetComponent(c)));
if (uc != NULL) {
gradient(i) = uc->DotProduct(*uc_other);
i++;
}
}
}
KALDI_ASSERT(i == gradient.Dim());
scatter_.AddVec2(1.0, gradient);
}
}
~FisherComputationClass() {
if (scatter_.NumRows() != 0) {
if (scatter_ptr_->NumRows() == 0)
scatter_ptr_->Resize(scatter_.NumRows());
scatter_ptr_->AddSp(1.0, scatter_);
}
}
private:
const Nnet &nnet_; // point at which we compute the parameter gradients.
const std::vector<Nnet> &nnets_; // The dot-product of each of these with the parameter gradients,
// are the actual gradients that go into "scatter".
const std::vector<NnetExample> &egs_;
int32 minibatch_size_; // equals config --fisher-minbatch-size e.g. 64 (smaller than
// regular minibatch size.)
SpMatrix<double> *scatter_ptr_;
SpMatrix<double> scatter_; // Local accumulation of the scatter.
};
class FastNnetCombiner {
public:
FastNnetCombiner(const NnetCombineFastConfig &combine_config,
const std::vector<NnetExample> &validation_set,
const std::vector<Nnet> &nnets_in,
Nnet *nnet_out):
config_(combine_config), egs_(validation_set),
nnets_(nnets_in), nnet_out_(nnet_out) {
GetInitialParams();
ComputePreconditioner();
int32 dim = params_.Dim();
KALDI_ASSERT(dim > 0);
Vector<double> gradient(dim);
double regularizer_objf, initial_regularizer_objf; // for diagnostics
double objf, initial_objf;
LbfgsOptions lbfgs_options;
lbfgs_options.minimize = false; // We're maximizing.
lbfgs_options.m = std::min(dim, config_.max_lbfgs_dim);
lbfgs_options.first_step_impr = config_.initial_impr;
OptimizeLbfgs<double> lbfgs(params_,
lbfgs_options);
for (int32 i = 0; i < config_.num_lbfgs_iters; i++) {
params_.CopyFromVec(lbfgs.GetProposedValue());
objf = ComputeObjfAndGradient(&gradient, ®ularizer_objf);
// Note: there is debug printout in ComputeObjfAndGradient
// (at verbose-level 2).
if (i == 0) {
initial_objf = objf;
initial_regularizer_objf = regularizer_objf;
}
lbfgs.DoStep(objf, gradient);
}
params_ = lbfgs.GetValue(&objf);
ComputeCurrentNnet(nnet_out_, true); // create the output neural net, and
// print out the scaling factors.
if (config_.regularizer != 0.0) {
double initial_part = initial_objf - initial_regularizer_objf,
part = objf - regularizer_objf;
KALDI_LOG << "Combining nnets, objf/frame + regularizer changed from "
<< initial_part << " + " << initial_regularizer_objf
<< " = " << initial_objf << " to " << part << " + "
<< regularizer_objf << " = " << objf;
} else {
KALDI_LOG << "Combining nnets, objf per frame changed from "
<< initial_objf << " to " << objf;
}
}
private:
int32 GetInitialModel(
const std::vector<NnetExample> &validation_set,
const std::vector<Nnet> &nnets) const;
void GetInitialParams();
void ComputePreconditioner();
// Computes and returns objective function per frame, including
// regularizer term if applicable. Also puts just the regularizer
// term in *regularizer_objf.
double ComputeObjfAndGradient(
Vector<double> *gradient,
double *regularizer_objf);
void ComputeCurrentNnet(
Nnet *dest, bool debug = false);
static void CombineNnets(const Vector<double> &scale_params,
const std::vector<Nnet> &nnets,
Nnet *dest);
// C_ is the cholesky of the smoothed Fisher matrix F.
// Let F = C C^T.
// Preconditioned gradient is \hat{g} = C^{-1} g
// Note: preconditioned parameter is \hat{p} = C^T p,
// so p = C^{-T} \hat{p}.
TpMatrix<double> C_;
TpMatrix<double> C_inv_;
Vector<double> params_; // the parameters we're optimizing-- in the
// preconditioned space. These are the same dimension
// as the number of nnets we're combining times the
// number of updatable layers.
const NnetCombineFastConfig &config_;
const std::vector<NnetExample> &egs_;
const std::vector<Nnet> &nnets_;
Nnet *nnet_out_;
};
// static
void FastNnetCombiner::CombineNnets(const Vector<double> &scale_params,
const std::vector<Nnet> &nnets,
Nnet *dest) {
int32 num_nnets = nnets.size();
KALDI_ASSERT(num_nnets >= 1);
int32 num_uc = nnets[0].NumUpdatableComponents();
KALDI_ASSERT(nnets[0].NumUpdatableComponents() >= 1);
*dest = nnets[0];
SubVector<double> scale_params0(scale_params, 0, num_uc);
dest->ScaleComponents(Vector<BaseFloat>(scale_params0));
for (int32 n = 1; n < num_nnets; n++) {
SubVector<double> scale_params_n(scale_params, n * num_uc, num_uc);
dest->AddNnet(Vector<BaseFloat>(scale_params_n), nnets[n]);
}
}
void FastNnetCombiner::ComputePreconditioner() {
SpMatrix<double> F; // Fisher matrix.
Nnet nnet;
ComputeCurrentNnet(&nnet); // will be at initial value of neural net.
{ // This block does the multi-threaded computation.
// The next line just initializes an "example" object.
FisherComputationClass fc(nnet, nnets_, egs_,
config_.fisher_minibatch_size,
&F);
// Setting num_threads to zero if config_.num_threads == 1
// is a signal to the MultiThreader class to run without creating
// any extra threads in this case; it helps support GPUs.
int32 num_threads = config_.num_threads == 1 ? 0 : config_.num_threads;
// The work gets done in the initializer and destructor of
// the class below.
MultiThreader<FisherComputationClass> m(num_threads, fc);
}
// The scale of F is irrelevant but it might be quite
// large at this point, so we just normalize it.
KALDI_ASSERT(F.Trace() > 0);
F.Scale(F.NumRows() / F.Trace()); // same scale as unit matrix.
// Make zero diagonal elements of F non-zero. Relates to updatable
// components that have no effect, e.g. MixtureProbComponents that have
// no real free parameters.
KALDI_ASSERT(config_.fisher_floor > 0.0);
for (int32 i = 0; i < F.NumRows(); i++)
F(i, i) = std::max<BaseFloat>(F(i, i), config_.fisher_floor);
// We next smooth the diagonal elements of F by a small amount.
// This is mainly necessary in case the number of minibatches is
// smaller than the dimension of F; we want to ensure F is full rank.
for (int32 i = 0; i < F.NumRows(); i++)
F(i, i) *= (1.0 + config_.alpha);
C_.Resize(F.NumRows());
C_.Cholesky(F);
C_inv_ = C_;
C_inv_.Invert();
// Transform the params_ data-member to be in the preconditioned space.
Vector<double> raw_params(params_);
params_.AddTpVec(1.0, C_, kTrans, raw_params, 0.0);
}
// Note, we ignore the regularizer in selecting the best one. It shouldn't
// really matter.
void FastNnetCombiner::GetInitialParams() {
int32 initial_model = config_.initial_model,
num_nnets = static_cast<int32>(nnets_.size());
if (initial_model > num_nnets)
initial_model = num_nnets;
if (initial_model < 0)
initial_model = GetInitialModel(egs_, nnets_);
KALDI_ASSERT(initial_model >= 0 && initial_model <= num_nnets);
int32 num_uc = nnets_[0].NumUpdatableComponents();
Vector<double> raw_params(num_uc * num_nnets); // parameters in
// non-preconditioned space.
if (initial_model < num_nnets) {
KALDI_LOG << "Initializing with neural net with index " << initial_model;
// At this point we're using the best of the individual neural nets.
raw_params.Set(0.0);
// Set the block of parameters corresponding to the "best" of the
// source neural nets to
SubVector<double> best_block(raw_params, num_uc * initial_model, num_uc);
best_block.Set(1.0);
} else { // initial_model == num_nnets
KALDI_LOG << "Initializing with all neural nets averaged.";
raw_params.Set(1.0 / num_nnets);
}
KALDI_ASSERT(C_.NumRows() == 0); // Assume this not set up yet.
params_ = raw_params; // this is in non-preconditioned space.
}
/// Computes objf at point "params_".
double FastNnetCombiner::ComputeObjfAndGradient(
Vector<double> *gradient,
double *regularizer_objf_ptr) {
Nnet nnet;
ComputeCurrentNnet(&nnet); // compute it at the value "params_".
Nnet nnet_gradient(nnet);
bool is_gradient = true;
nnet_gradient.SetZero(is_gradient);
double tot_weight = 0.0;
double objf = DoBackpropParallel(nnet, config_.minibatch_size, config_.num_threads,
egs_, &tot_weight, &nnet_gradient) / egs_.size();
// raw_gradient is gradient in non-preconditioned space.
Vector<double> raw_gradient(params_.Dim());
double regularizer_objf = 0.0; // sum of -0.5 * config_.regularizer * params-squared.
int32 i = 0; // index into raw_gradient
int32 num_nnets = nnets_.size();
for (int32 n = 0; n < num_nnets; n++) {
for (int32 j = 0; j < nnet.NumComponents(); j++) {
const UpdatableComponent *uc =
dynamic_cast<const UpdatableComponent*>(&(nnets_[n].GetComponent(j))),
*uc_gradient =
dynamic_cast<const UpdatableComponent*>(&(nnet_gradient.GetComponent(j))),
*uc_params =
dynamic_cast<const UpdatableComponent*>(&(nnet.GetComponent(j)));
if (uc != NULL) {
double gradient = uc->DotProduct(*uc_gradient) / tot_weight;
// "gradient" is the derivative of the objective function w.r.t. this
// element of the parameters (i.e. this weight, which gets applied to
// the j'th component of the n'th source neural net).
if (config_.regularizer != 0.0) {
gradient -= config_.regularizer * uc->DotProduct(*uc_params);
if (n == 0) // only add this once...
regularizer_objf +=
-0.5 * config_.regularizer * uc_params->DotProduct(*uc_params);
}
raw_gradient(i) = gradient;
i++;
}
}
}
if (config_.regularizer != 0.0) {
KALDI_VLOG(2) << "Objf is " << objf << " + regularizer " << regularizer_objf
<< " = " << (objf + regularizer_objf) << ", raw gradient is "
<< raw_gradient;
} else {
KALDI_VLOG(2) << "Objf is " << objf << ", raw gradient is " << raw_gradient;
}
KALDI_ASSERT(i == raw_gradient.Dim());
// \hat{g} = C^{-1} g.
gradient->AddTpVec(1.0, C_inv_, kNoTrans, raw_gradient, 0.0);
*regularizer_objf_ptr = regularizer_objf;
return objf + regularizer_objf;
}
void FastNnetCombiner::ComputeCurrentNnet(
Nnet *dest, bool debug) {
int32 num_nnets = nnets_.size();
KALDI_ASSERT(num_nnets >= 1);
KALDI_ASSERT(params_.Dim() == num_nnets * nnets_[0].NumUpdatableComponents());
Vector<double> raw_params(params_.Dim()); // Weights in non-preconditioned space:
// p = C^{-T} \hat{p}. Here, raw_params is p, params_, is \hat{p}.
if (C_inv_.NumRows() > 0)
raw_params.AddTpVec(1.0, C_inv_, kTrans, params_, 0.0);
else
raw_params = params_; // C not set up yet: interpret params_ as raw parameters.
if (debug) {
Matrix<double> params_mat(num_nnets,
nnets_[0].NumUpdatableComponents());
params_mat.CopyRowsFromVec(raw_params);
KALDI_LOG << "Scale parameters are " << params_mat;
}
CombineNnets(raw_params, nnets_, dest);
}
/// Returns an integer saying which model to use:
/// either 0 ... num-models - 1 for the best individual model,
/// or (#models) for the average of all of them.
int32 FastNnetCombiner::GetInitialModel(
const std::vector<NnetExample> &validation_set,
const std::vector<Nnet> &nnets) const {
int32 num_nnets = static_cast<int32>(nnets.size());
KALDI_ASSERT(!nnets.empty());
int32 best_n = -1;
double best_objf = -std::numeric_limits<double>::infinity();
Vector<double> objfs(nnets.size());
for (int32 n = 0; n < num_nnets; n++) {
double num_frames;
double objf = ComputeNnetObjfParallel(nnets[n], config_.minibatch_size,
config_.num_threads, validation_set,
&num_frames);
KALDI_ASSERT(num_frames != 0);
objf /= num_frames;
if (n == 0 || objf > best_objf) {
best_objf = objf;
best_n = n;
}
objfs(n) = objf;
}
KALDI_LOG << "Objective functions for the source neural nets are " << objfs;
int32 num_uc = nnets[0].NumUpdatableComponents();
if (num_nnets > 1) { // Now try a version where all the neural nets have the
// same weight. Don't do this if num_nnets == 1 as
// it would be a waste of time (identical to n == 0).
Vector<double> scale_params(num_uc * num_nnets);
scale_params.Set(1.0 / num_nnets);
Nnet average_nnet;
CombineNnets(scale_params, nnets, &average_nnet);
double num_frames;
double objf = ComputeNnetObjfParallel(average_nnet, config_.minibatch_size,
config_.num_threads, validation_set,
&num_frames);
objf /= num_frames;
KALDI_LOG << "Objf with all neural nets averaged is " << objf;
if (objf > best_objf) {
return num_nnets;
} else {
return best_n;
}
} else {
return best_n;
}
}
void CombineNnetsFast(const NnetCombineFastConfig &combine_config,
const std::vector<NnetExample> &validation_set,
const std::vector<Nnet> &nnets_in,
Nnet *nnet_out) {
// Everything happens in the initializer.
FastNnetCombiner combiner(combine_config,
validation_set,
nnets_in,
nnet_out);
}
} // namespace nnet2
} // namespace kaldi