combine-nnet-fast.cc 16.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
// nnet2/combine-nnet-fast.cc

// Copyright 2012   Johns Hopkins University (author: Daniel Povey)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include "nnet2/combine-nnet-fast.h"
#include "nnet2/nnet-update-parallel.h"
#include "util/kaldi-thread.h"

namespace kaldi {
namespace nnet2 {

/*
  This class is responsible for computing a Fisher matrix which is a kind of
  scatter of gradients on subsets; it's used for preconditioning the update in
  class FastNnetCombiner.  */
class FisherComputationClass: public MultiThreadable {
 public:
  FisherComputationClass(const Nnet &nnet,
                         const std::vector<Nnet> &nnets,
                         const std::vector<NnetExample> &egs,
                         int32 minibatch_size,
                         SpMatrix<double> *scatter):
      nnet_(nnet), nnets_(nnets), egs_(egs), minibatch_size_(minibatch_size),
      scatter_ptr_(scatter) { } // This initializer is only used to create a
  // temporary version of the object; the next initializer is used to
  // create the separate versions for the parallel jobs.

  FisherComputationClass(const FisherComputationClass &other):
      MultiThreadable(other),
      nnet_(other.nnet_), nnets_(other.nnets_), egs_(other.egs_),
      minibatch_size_(other.minibatch_size_), scatter_ptr_(other.scatter_ptr_) {
    scatter_.Resize(nnets_.size() * nnet_.NumUpdatableComponents());  }

  void operator () () {
    // b is the "minibatch id."
    int32 num_egs = static_cast<int32>(egs_.size());
    Nnet nnet_gradient(nnet_);
    for (int32 b = 0; b * minibatch_size_ < num_egs; b++) {
      if (b % num_threads_ != thread_id_)
        continue; // We're not responsible for this minibatch.
      int32 offset = b * minibatch_size_,
          length = std::min(minibatch_size_,
                       num_egs - offset);
      bool is_gradient = true;
      nnet_gradient.SetZero(is_gradient);
      std::vector<NnetExample> minibatch(egs_.begin() + offset,
                                                 egs_.begin() + offset + length);
      DoBackprop(nnet_, minibatch, &nnet_gradient);
      Vector<double> gradient(nnets_.size() * nnet_.NumUpdatableComponents());
      int32 i = 0;
      for (int32 n = 0; n < static_cast<int32>(nnets_.size()); n++) {
        for (int32 c = 0; c < nnet_.NumComponents(); c++) {
          const UpdatableComponent *uc = dynamic_cast<const UpdatableComponent*>(
              &(nnet_gradient.GetComponent(c))),
              *uc_other = dynamic_cast<const UpdatableComponent*>(
                  &(nnets_[n].GetComponent(c)));
          if (uc != NULL) {
            gradient(i) = uc->DotProduct(*uc_other);
            i++;
          }
        }
      }
      KALDI_ASSERT(i == gradient.Dim());
      scatter_.AddVec2(1.0, gradient);
    }
  }
  ~FisherComputationClass() {
    if (scatter_.NumRows() != 0) {
      if (scatter_ptr_->NumRows() == 0)
        scatter_ptr_->Resize(scatter_.NumRows());
      scatter_ptr_->AddSp(1.0, scatter_);
    }
  }

 private:
  const Nnet &nnet_; // point at which we compute the parameter gradients.
  const std::vector<Nnet> &nnets_; // The dot-product  of each of these with the parameter gradients,
  // are the actual gradients that go into "scatter".
  const std::vector<NnetExample> &egs_;
  int32 minibatch_size_; // equals config --fisher-minbatch-size e.g. 64 (smaller than
                         // regular minibatch size.)
  SpMatrix<double> *scatter_ptr_;
  SpMatrix<double> scatter_; // Local accumulation of the scatter.
};


class FastNnetCombiner {
 public:
  FastNnetCombiner(const NnetCombineFastConfig &combine_config,
                   const std::vector<NnetExample> &validation_set,
                   const std::vector<Nnet> &nnets_in,
                   Nnet *nnet_out):
      config_(combine_config), egs_(validation_set),
      nnets_(nnets_in), nnet_out_(nnet_out) {

    GetInitialParams();
    ComputePreconditioner();

    int32 dim = params_.Dim();
    KALDI_ASSERT(dim > 0);
    Vector<double> gradient(dim);

    double regularizer_objf, initial_regularizer_objf; // for diagnostics
    double objf, initial_objf;

    LbfgsOptions lbfgs_options;
    lbfgs_options.minimize = false; // We're maximizing.
    lbfgs_options.m = std::min(dim, config_.max_lbfgs_dim);
    lbfgs_options.first_step_impr = config_.initial_impr;

    OptimizeLbfgs<double> lbfgs(params_,
                                lbfgs_options);

    for (int32 i = 0; i < config_.num_lbfgs_iters; i++) {
      params_.CopyFromVec(lbfgs.GetProposedValue());
      objf = ComputeObjfAndGradient(&gradient, &regularizer_objf);
      // Note: there is debug printout in ComputeObjfAndGradient
      // (at verbose-level 2).
      if (i == 0) {
        initial_objf = objf;
        initial_regularizer_objf = regularizer_objf;
      }
      lbfgs.DoStep(objf, gradient);
    }
    params_ = lbfgs.GetValue(&objf);

    ComputeCurrentNnet(nnet_out_, true); // create the output neural net, and
                                         // print out the scaling factors.
    if (config_.regularizer != 0.0) {
      double initial_part = initial_objf - initial_regularizer_objf,
          part = objf - regularizer_objf;
      KALDI_LOG << "Combining nnets, objf/frame + regularizer changed from "
                << initial_part << " + " << initial_regularizer_objf
                << " = " << initial_objf << " to " << part << " + "
                << regularizer_objf << " = " << objf;
    } else {
      KALDI_LOG << "Combining nnets, objf per frame changed from "
                << initial_objf << " to " << objf;
    }
  }

 private:
  int32 GetInitialModel(
      const std::vector<NnetExample> &validation_set,
      const std::vector<Nnet> &nnets) const;

  void GetInitialParams();

  void ComputePreconditioner();

  // Computes and returns objective function per frame, including
  // regularizer term if applicable.  Also puts just the regularizer
  // term in *regularizer_objf.
  double ComputeObjfAndGradient(
      Vector<double> *gradient,
      double *regularizer_objf);

  void ComputeCurrentNnet(
      Nnet *dest, bool debug = false);

  static void CombineNnets(const Vector<double> &scale_params,
                           const std::vector<Nnet> &nnets,
                           Nnet *dest);


  // C_ is the cholesky of the smoothed Fisher matrix F.
  // Let F = C C^T.
  // Preconditioned gradient is \hat{g} = C^{-1} g
  // Note: preconditioned parameter is \hat{p} = C^T p,
  // so p = C^{-T} \hat{p}.
  TpMatrix<double> C_;
  TpMatrix<double> C_inv_;
  Vector<double> params_; // the parameters we're optimizing-- in the
                          // preconditioned space.  These are the same dimension
                          // as the number of nnets we're combining times the
                          // number of updatable layers.

  const NnetCombineFastConfig &config_;
  const std::vector<NnetExample> &egs_;
  const std::vector<Nnet> &nnets_;
  Nnet *nnet_out_;
};


// static
void FastNnetCombiner::CombineNnets(const Vector<double> &scale_params,
                                    const std::vector<Nnet> &nnets,
                                    Nnet *dest) {
  int32 num_nnets = nnets.size();
  KALDI_ASSERT(num_nnets >= 1);
  int32 num_uc = nnets[0].NumUpdatableComponents();
  KALDI_ASSERT(nnets[0].NumUpdatableComponents() >= 1);


  *dest = nnets[0];
  SubVector<double> scale_params0(scale_params, 0, num_uc);
  dest->ScaleComponents(Vector<BaseFloat>(scale_params0));
  for (int32 n = 1; n < num_nnets; n++) {
    SubVector<double> scale_params_n(scale_params, n * num_uc, num_uc);
    dest->AddNnet(Vector<BaseFloat>(scale_params_n), nnets[n]);
  }
}


void FastNnetCombiner::ComputePreconditioner() {
  SpMatrix<double> F; // Fisher matrix.
  Nnet nnet;
  ComputeCurrentNnet(&nnet); // will be at initial value of neural net.

  { // This block does the multi-threaded computation.
    // The next line just initializes an "example" object.
    FisherComputationClass fc(nnet, nnets_, egs_,
                              config_.fisher_minibatch_size,
                              &F);

    // Setting num_threads to zero if config_.num_threads == 1
    // is a signal to the MultiThreader class to run without creating
    // any extra threads in this case; it helps support GPUs.
    int32 num_threads = config_.num_threads == 1 ? 0 : config_.num_threads;
    // The work gets done in the initializer and destructor of
    // the class below.
    MultiThreader<FisherComputationClass> m(num_threads, fc);
  }

  // The scale of F is irrelevant but it might be quite
  // large at this point, so we just normalize it.
  KALDI_ASSERT(F.Trace() > 0);
  F.Scale(F.NumRows() / F.Trace()); // same scale as unit matrix.
  // Make zero diagonal elements of F non-zero.  Relates to updatable
  // components that have no effect, e.g. MixtureProbComponents that have
  // no real free parameters.
  KALDI_ASSERT(config_.fisher_floor > 0.0);
  for (int32 i = 0; i < F.NumRows(); i++)
    F(i, i) = std::max<BaseFloat>(F(i, i), config_.fisher_floor);
  // We next smooth the diagonal elements of F by a small amount.
  // This is mainly necessary in case the number of minibatches is
  // smaller than the dimension of F; we want to ensure F is full rank.
  for (int32 i = 0; i < F.NumRows(); i++)
    F(i, i) *= (1.0 + config_.alpha);

  C_.Resize(F.NumRows());
  C_.Cholesky(F);
  C_inv_ = C_;
  C_inv_.Invert();

  // Transform the params_ data-member to be in the preconditioned space.
  Vector<double> raw_params(params_);
  params_.AddTpVec(1.0, C_, kTrans, raw_params, 0.0);
}

// Note, we ignore the regularizer in selecting the best one.  It shouldn't
// really matter.
void FastNnetCombiner::GetInitialParams() {
  int32 initial_model = config_.initial_model,
      num_nnets = static_cast<int32>(nnets_.size());
  if (initial_model > num_nnets)
    initial_model = num_nnets;
  if (initial_model < 0)
    initial_model = GetInitialModel(egs_, nnets_);

  KALDI_ASSERT(initial_model >= 0 && initial_model <= num_nnets);
  int32 num_uc = nnets_[0].NumUpdatableComponents();

  Vector<double> raw_params(num_uc * num_nnets); // parameters in
                                                 // non-preconditioned space.
  if (initial_model < num_nnets) {
    KALDI_LOG << "Initializing with neural net with index " << initial_model;
    // At this point we're using the best of the individual neural nets.
    raw_params.Set(0.0);

    // Set the block of parameters corresponding to the "best" of the
    // source neural nets to
    SubVector<double> best_block(raw_params, num_uc * initial_model, num_uc);
    best_block.Set(1.0);
  } else { // initial_model == num_nnets
    KALDI_LOG << "Initializing with all neural nets averaged.";
    raw_params.Set(1.0 / num_nnets);
  }
  KALDI_ASSERT(C_.NumRows() == 0); // Assume this not set up yet.
  params_ = raw_params; // this is in non-preconditioned space.
}

/// Computes objf at point "params_".
double FastNnetCombiner::ComputeObjfAndGradient(
    Vector<double> *gradient,
    double *regularizer_objf_ptr) {
  Nnet nnet;
  ComputeCurrentNnet(&nnet); // compute it at the value "params_".

  Nnet nnet_gradient(nnet);
  bool is_gradient = true;
  nnet_gradient.SetZero(is_gradient);
  double tot_weight = 0.0;
  double objf = DoBackpropParallel(nnet, config_.minibatch_size, config_.num_threads,
                                   egs_, &tot_weight, &nnet_gradient) / egs_.size();

  // raw_gradient is gradient in non-preconditioned space.
  Vector<double> raw_gradient(params_.Dim());

  double regularizer_objf = 0.0; // sum of -0.5 * config_.regularizer * params-squared.
  int32 i = 0; // index into raw_gradient
  int32 num_nnets = nnets_.size();
  for (int32 n = 0; n < num_nnets; n++) {
    for (int32 j = 0; j < nnet.NumComponents(); j++) {
      const UpdatableComponent *uc =
          dynamic_cast<const UpdatableComponent*>(&(nnets_[n].GetComponent(j))),
          *uc_gradient =
          dynamic_cast<const UpdatableComponent*>(&(nnet_gradient.GetComponent(j))),
          *uc_params =
          dynamic_cast<const UpdatableComponent*>(&(nnet.GetComponent(j)));
      if (uc != NULL) {
        double gradient = uc->DotProduct(*uc_gradient) / tot_weight;
        // "gradient" is the derivative of the objective function w.r.t. this
        // element of the parameters (i.e. this weight, which gets applied to
        // the j'th component of the n'th source neural net).
        if (config_.regularizer != 0.0) {
          gradient -= config_.regularizer * uc->DotProduct(*uc_params);
          if (n == 0) // only add this once...
            regularizer_objf +=
                -0.5 * config_.regularizer * uc_params->DotProduct(*uc_params);
        }
        raw_gradient(i) = gradient;
        i++;
      }
    }
  }
  if (config_.regularizer != 0.0) {
    KALDI_VLOG(2) << "Objf is " << objf << " + regularizer " << regularizer_objf
                  << " = " << (objf + regularizer_objf) << ", raw gradient is "
                  << raw_gradient;
  } else {
    KALDI_VLOG(2) << "Objf is " << objf << ", raw gradient is " << raw_gradient;
  }
  KALDI_ASSERT(i == raw_gradient.Dim());
  // \hat{g} = C^{-1} g.
  gradient->AddTpVec(1.0, C_inv_, kNoTrans, raw_gradient, 0.0);
  *regularizer_objf_ptr = regularizer_objf;
  return objf + regularizer_objf;
}

void FastNnetCombiner::ComputeCurrentNnet(
    Nnet *dest, bool debug) {
  int32 num_nnets = nnets_.size();
  KALDI_ASSERT(num_nnets >= 1);
  KALDI_ASSERT(params_.Dim() == num_nnets * nnets_[0].NumUpdatableComponents());
  Vector<double> raw_params(params_.Dim()); // Weights in non-preconditioned space:
  // p = C^{-T} \hat{p}.  Here, raw_params is p, params_, is \hat{p}.

  if (C_inv_.NumRows() > 0)
    raw_params.AddTpVec(1.0, C_inv_, kTrans, params_, 0.0);
  else
    raw_params = params_; // C not set up yet: interpret params_ as raw parameters.

  if (debug) {
    Matrix<double> params_mat(num_nnets,
                              nnets_[0].NumUpdatableComponents());
    params_mat.CopyRowsFromVec(raw_params);
    KALDI_LOG << "Scale parameters are " << params_mat;
  }
  CombineNnets(raw_params, nnets_, dest);
}

/// Returns an integer saying which model to use:
/// either 0 ... num-models - 1 for the best individual model,
/// or (#models) for the average of all of them.
int32 FastNnetCombiner::GetInitialModel(
    const std::vector<NnetExample> &validation_set,
    const std::vector<Nnet> &nnets) const {
  int32 num_nnets = static_cast<int32>(nnets.size());
  KALDI_ASSERT(!nnets.empty());
  int32 best_n = -1;
  double best_objf = -std::numeric_limits<double>::infinity();
  Vector<double> objfs(nnets.size());
  for (int32 n = 0; n < num_nnets; n++) {
    double num_frames;
    double objf = ComputeNnetObjfParallel(nnets[n], config_.minibatch_size,
                                          config_.num_threads, validation_set,
                                          &num_frames);
    KALDI_ASSERT(num_frames != 0);
    objf /= num_frames;

    if (n == 0 || objf > best_objf) {
      best_objf = objf;
      best_n = n;
    }
    objfs(n) = objf;
  }
  KALDI_LOG << "Objective functions for the source neural nets are " << objfs;

  int32 num_uc = nnets[0].NumUpdatableComponents();

  if (num_nnets > 1) { // Now try a version where all the neural nets have the
                       // same weight.  Don't do this if num_nnets == 1 as
                       // it would be a waste of time (identical to n == 0).
    Vector<double> scale_params(num_uc * num_nnets);
    scale_params.Set(1.0 / num_nnets);
    Nnet average_nnet;
    CombineNnets(scale_params, nnets, &average_nnet);
    double num_frames;
    double objf = ComputeNnetObjfParallel(average_nnet, config_.minibatch_size,
                                          config_.num_threads, validation_set,
                                          &num_frames);
    objf /= num_frames;
    KALDI_LOG << "Objf with all neural nets averaged is " << objf;
    if (objf > best_objf) {
      return num_nnets;
    } else {
      return best_n;
    }
  } else {
    return best_n;
  }
}

void CombineNnetsFast(const NnetCombineFastConfig &combine_config,
                      const std::vector<NnetExample> &validation_set,
                      const std::vector<Nnet> &nnets_in,
                      Nnet *nnet_out) {
  // Everything happens in the initializer.
  FastNnetCombiner combiner(combine_config,
                            validation_set,
                            nnets_in,
                            nnet_out);
}


} // namespace nnet2
} // namespace kaldi