combine-nnet.h
2.93 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
// nnet2/combine-nnet.h
// Copyright 2012 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET2_COMBINE_NNET_H_
#define KALDI_NNET2_COMBINE_NNET_H_
#include "nnet2/nnet-update.h"
#include "nnet2/nnet-compute.h"
#include "util/parse-options.h"
#include "itf/options-itf.h"
namespace kaldi {
namespace nnet2 {
/** Configuration class that controls neural net combination, where we combine a
number of neural nets, trying to find for each layer the optimal weighted
combination of the different neural-net parameters.
*/
struct NnetCombineConfig {
int32 initial_model; // If provided, the index of the initial model to start
// the optimization from.
int32 num_bfgs_iters; // The dimension is small (e.g. 3 to 5 times the
// number of neural nets we were given, e.g. 10) so we do
// BFGS. We actually implement this as L-BFGS but setting the number of
// vectors to be the same as the dimension of the space. Note: this
// num-iters is in reality the number of function evaluations.
BaseFloat initial_impr;
bool test_gradient;
NnetCombineConfig(): initial_model(-1), num_bfgs_iters(30),
initial_impr(0.01),
test_gradient(false) { }
void Register(OptionsItf *opts) {
opts->Register("initial-model", &initial_model, "Specifies where to start the "
"optimization from. If 0 ... #models-1, then specifies the model; "
"if #models, then the average of all inputs; otherwise, chosen "
"automatically from the previous options.");
opts->Register("num-bfgs-iters", &num_bfgs_iters, "Maximum number of function "
"evaluations for BFGS to use when optimizing combination weights");
opts->Register("initial-impr", &initial_impr, "Amount of objective-function change "
"we aim for on the first iteration.");
opts->Register("test-gradient", &test_gradient, "If true, activate code that "
"tests the gradient is accurate.");
}
};
void CombineNnets(const NnetCombineConfig &combine_config,
const std::vector<NnetExample> &validation_set,
const std::vector<Nnet> &nnets_in,
Nnet *nnet_out);
} // namespace nnet2
} // namespace kaldi
#endif