nnet-component.h
80.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
// nnet2/nnet-component.h
// Copyright 2011-2013 Karel Vesely
// 2012-2014 Johns Hopkins University (author: Daniel Povey)
// 2013 Xiaohui Zhang
// 2014 Vijayaditya Peddinti
// 2014-2015 Guoguo Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET2_NNET_COMPONENT_H_
#define KALDI_NNET2_NNET_COMPONENT_H_
#include <mutex>
#include "base/kaldi-common.h"
#include "itf/options-itf.h"
#include "matrix/matrix-lib.h"
#include "cudamatrix/cu-matrix-lib.h"
#include "nnet2/nnet-precondition-online.h"
#include <iostream>
namespace kaldi {
namespace nnet2 {
/**
ChunkInfo is a class whose purpose is to describe the structure of matrices
holding features. This is useful mostly in training time.
The main reason why we have this is to support efficient
training for networks which we have splicing components that splice in a
non-contiguous way, e.g. frames -5, 0 and 5. We also have in mind future
extensibility to convnets which might have similar issues. This class
describes the structure of a minibatch of features, or of a single
contiguous block of features.
Examples are as follows, and offsets is empty if not mentioned:
When decoding, at input to the network:
feat_dim = 13, num_chunks = 1, first_offset = 0, last_offset = 691
and in the middle of the network (assuming splicing is +-7):
feat_dim = 1024, num_chunks = 1, first_offset = 7, last_offset = 684
When training, at input to the network:
feat_dim = 13, num_chunks = 512, first_offset = 0, last_offset= 14
and in the middle of the network:
feat_dim = 1024, num_chunks = 512, first_offset = 7, last_offset = 7
The only situation where offsets would be nonempty would be if we do
splicing with gaps in. E.g. suppose at network input we splice +-2 frames
(contiguous) and somewhere in the middle we splice frames {-5, 0, 5}, then
we would have the following while training
At input to the network:
feat_dim = 13, num_chunks = 512, first_offset = 0, last_offset = 14
After the first hidden layer:
feat_dim = 1024, num_chunks = 512, first_offset = 2, last_offset = 12,
offsets = {2, 10, 12}
At the output of the last hidden layer (after the {-5, 0, 5} splice):
feat_dim = 1024, num_chunks = 512, first_offset = 7, last_offset = 7
(the decoding setup would still look pretty normal, so we don't give an example).
*/
class ChunkInfo {
public:
ChunkInfo() // default constructor we assume this object will not be used
: feat_dim_(0), num_chunks_(0),
first_offset_(0), last_offset_(0),
offsets_() { }
ChunkInfo(int32 feat_dim, int32 num_chunks,
int32 first_offset, int32 last_offset )
: feat_dim_(feat_dim), num_chunks_(num_chunks),
first_offset_(first_offset), last_offset_(last_offset),
offsets_() { Check(); }
ChunkInfo(int32 feat_dim, int32 num_chunks,
const std::vector<int32> offsets)
: feat_dim_(feat_dim), num_chunks_(num_chunks),
first_offset_(offsets.front()), last_offset_(offsets.back()),
offsets_(offsets) { if (last_offset_ - first_offset_ + 1 == offsets_.size())
offsets_.clear();
Check(); }
// index : actual row index in the current chunk
// offset : the time offset of feature frame at current row in the chunk
// As described above offsets can take a variety of values, we see the indices
// corresponding to the offsets in each case
// 1) if first_offset = 0 & last_offset = 691, then chunk has data
// corresponding to time offsets 0:691, so index = offset
// 2) if first_offset = 7 & last_offset = 684,
// then index = offset - first offset
// 3) if offsets = {2, 10, 12} then indices for these offsets are 0, 1 and 2
// Returns the chunk row index corresponding to given time offset
int32 GetIndex (int32 offset) const;
// Returns time offset at the current row index in the chunk
int32 GetOffset (int32 index) const;
// Makes the offsets vector empty, to ensure that the chunk is processed as a
// contiguous chunk with the given first_offset and last_offset
void MakeOffsetsContiguous () { offsets_.clear(); Check(); }
// Returns chunk size, meaning the number of distinct frame-offsets we
// have for each chunk (they don't have to be contiguous).
inline int32 ChunkSize() const { return NumRows() / num_chunks_; }
// Returns number of chunks we expect the feature matrix to have
inline int32 NumChunks() const { return num_chunks_; }
/// Returns the number of rows that we expect the feature matrix to have.
int32 NumRows() const {
return num_chunks_ * (!offsets_.empty() ? offsets_.size() :
last_offset_ - first_offset_ + 1); }
/// Returns the number of columns that we expect the feature matrix to have.
int32 NumCols() const { return feat_dim_; }
/// Checks that the matrix has the size we expect, and die if not.
void CheckSize(const CuMatrixBase<BaseFloat> &mat) const;
/// Checks that the data in the ChunkInfo is valid, and die if not.
void Check() const;
private:
int32 feat_dim_; // Feature dimension.
int32 num_chunks_; // Number of separate equal-sized chunks of features
int32 first_offset_; // Start time offset within each chunk, numbered so that at
// the input to the network, the first_offset of the first
// feature would always be zero.
int32 last_offset_; // End time offset within each chunk.
std::vector<int32> offsets_; // offsets is only nonempty if the chunk contains
// a non-contiguous sequence. If nonempty, it must
// be sorted, and offsets.front() == first_offset,
// offsets.back() == last_offset.
};
/**
* Abstract class, basic element of the network,
* it is a box with defined inputs, outputs,
* and tranformation functions interface.
*
* It is able to propagate and backpropagate
* exact implementation is to be implemented in descendants.
*
*/
class Component {
public:
Component(): index_(-1) { }
virtual std::string Type() const = 0; // each type should return a string such as
// "SigmoidComponent".
/// Returns the index in the sequence of layers in the neural net; intended only
/// to be used in debugging information.
virtual int32 Index() const { return index_; }
virtual void SetIndex(int32 index) { index_ = index; }
/// Initialize, typically from a line of a config file. The "args" will
/// contain any parameters that need to be passed to the Component, e.g.
/// dimensions.
virtual void InitFromString(std::string args) = 0;
/// Get size of input vectors
virtual int32 InputDim() const = 0;
/// Get size of output vectors
virtual int32 OutputDim() const = 0;
/// Return a vector describing the temporal context this component requires
/// for each frame of output, as a sorted list. The default implementation
/// returns a vector ( 0 ), but a splicing layer might return e.g. (-2, -1, 0,
/// 1, 2), but it doesn't have to be contiguous. Note : The context needed by
/// the entire network is a function of the contexts needed by all the
/// components. It is required that Context().front() <= 0 and
/// Context().back() >= 0.
virtual std::vector<int32> Context() const { return std::vector<int32>(1, 0); }
/// Perform forward pass propagation Input->Output. Each row is
/// one frame or training example. Interpreted as "num_chunks"
/// equally sized chunks of frames; this only matters for layers
/// that do things like context splicing. Typically this variable
/// will either be 1 (when we're processing a single contiguous
/// chunk of data) or will be the same as in.NumFrames(), but
/// other values are possible if some layers do splicing.
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const = 0;
/// A non-virtual propagate function that first resizes output if necessary.
void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrix<BaseFloat> *out) const {
if (out->NumRows() != out_info.NumRows() ||
out->NumCols() != out_info.NumCols()) {
out->Resize(out_info.NumRows(), out_info.NumCols());
}
// Cast to CuMatrixBase to use the virtual version of propagate function.
Propagate(in_info, out_info, in,
static_cast<CuMatrixBase<BaseFloat>*>(out));
}
/// Perform backward pass propagation of the derivative, and
/// also either update the model (if to_update == this) or
/// update another model or compute the model derivative (otherwise).
/// Note: in_value and out_value are the values of the input and output
/// of the component, and these may be dummy variables if respectively
/// BackpropNeedsInput() or BackpropNeedsOutput() return false for
/// that component (not all components need these).
///
/// num_chunks lets us treat the input matrix as contiguous-in-time
/// chunks of equal size; it only matters if splicing is involved.
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const = 0;
virtual bool BackpropNeedsInput() const { return true; } // if this returns false,
// the "in_value" to Backprop may be a dummy variable.
virtual bool BackpropNeedsOutput() const { return true; } // if this returns false,
// the "out_value" to Backprop may be a dummy variable.
/// Read component from stream
static Component* ReadNew(std::istream &is, bool binary);
/// Copy component (deep copy).
virtual Component* Copy() const = 0;
/// Initialize the Component from one line that will contain
/// first the type, e.g. SigmoidComponent, and then
/// a number of tokens (typically integers or floats) that will
/// be used to initialize the component.
static Component *NewFromString(const std::string &initializer_line);
/// Return a new Component of the given type e.g. "SoftmaxComponent",
/// or NULL if no such type exists.
static Component *NewComponentOfType(const std::string &type);
virtual void Read(std::istream &is, bool binary) = 0; // This Read function
// requires that the Component has the correct type.
/// Write component to stream
virtual void Write(std::ostream &os, bool binary) const = 0;
virtual std::string Info() const;
virtual ~Component() { }
private:
int32 index_;
KALDI_DISALLOW_COPY_AND_ASSIGN(Component);
};
/**
* Class UpdatableComponent is a Component which has
* trainable parameters and contains some global
* parameters for stochastic gradient descent
* (learning rate, L2 regularization constant).
* This is a base-class for Components with parameters.
*/
class UpdatableComponent: public Component {
public:
UpdatableComponent(const UpdatableComponent &other):
learning_rate_(other.learning_rate_){ }
void Init(BaseFloat learning_rate) {
learning_rate_ = learning_rate;
}
UpdatableComponent(BaseFloat learning_rate) {
Init(learning_rate);
}
/// Set parameters to zero, and if treat_as_gradient is true, we'll be
/// treating this as a gradient so set the learning rate to 1 and make any
/// other changes necessary (there's a variable we have to set for the
/// MixtureProbComponent).
virtual void SetZero(bool treat_as_gradient) = 0;
UpdatableComponent(): learning_rate_(0.001) { }
virtual ~UpdatableComponent() { }
/// Here, "other" is a component of the same specific type. This
/// function computes the dot product in parameters, and is computed while
/// automatically adjusting learning rates; typically, one of the two will
/// actually contain the gradient.
virtual BaseFloat DotProduct(const UpdatableComponent &other) const = 0;
/// We introduce a new virtual function that only applies to
/// class UpdatableComponent. This is used in testing.
virtual void PerturbParams(BaseFloat stddev) = 0;
/// This new virtual function scales the parameters
/// by this amount.
virtual void Scale(BaseFloat scale) = 0;
/// This new virtual function adds the parameters of another
/// updatable component, times some constant, to the current
/// parameters.
virtual void Add(BaseFloat alpha, const UpdatableComponent &other) = 0;
/// Sets the learning rate of gradient descent
void SetLearningRate(BaseFloat lrate) { learning_rate_ = lrate; }
/// Gets the learning rate of gradient descent
BaseFloat LearningRate() const { return learning_rate_; }
virtual std::string Info() const;
// The next few functions are not implemented everywhere; they are
// intended for use by L-BFGS code, and we won't implement them
// for all child classes.
/// The following new virtual function returns the total dimension of
/// the parameters in this class. E.g. used for L-BFGS update
virtual int32 GetParameterDim() const { KALDI_ASSERT(0); return 0; }
/// Turns the parameters into vector form. We put the vector form on the CPU,
/// because in the kinds of situations where we do this, we'll tend to use
/// too much memory for the GPU.
virtual void Vectorize(VectorBase<BaseFloat> *params) const { KALDI_ASSERT(0); }
/// Converts the parameters from vector form.
virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms) {
KALDI_ASSERT(0);
}
protected:
BaseFloat learning_rate_; ///< learning rate (0.0..0.01)
private:
const UpdatableComponent &operator = (const UpdatableComponent &other); // Disallow.
};
/// This kind of Component is a base-class for things like
/// sigmoid and softmax.
class NonlinearComponent: public Component {
public:
void Init(int32 dim) { dim_ = dim; count_ = 0.0; }
explicit NonlinearComponent(int32 dim) { Init(dim); }
NonlinearComponent(): dim_(0) { } // e.g. prior to Read().
explicit NonlinearComponent(const NonlinearComponent &other);
virtual int32 InputDim() const { return dim_; }
virtual int32 OutputDim() const { return dim_; }
/// We implement InitFromString at this level.
virtual void InitFromString(std::string args);
/// We implement Read at this level as it just needs the Type().
virtual void Read(std::istream &is, bool binary);
/// Write component to stream.
virtual void Write(std::ostream &os, bool binary) const;
void Scale(BaseFloat scale); // relates to scaling stats, not parameters.
void Add(BaseFloat alpha, const NonlinearComponent &other); // relates to
// adding stats
// The following functions are unique to NonlinearComponent.
// They mostly relate to diagnostics.
const CuVector<double> &ValueSum() const { return value_sum_; }
const CuVector<double> &DerivSum() const { return deriv_sum_; }
double Count() const { return count_; }
// The following function is used when "widening" neural networks.
void SetDim(int32 dim);
protected:
friend class NormalizationComponent;
friend class SigmoidComponent;
friend class TanhComponent;
friend class SoftmaxComponent;
friend class LogSoftmaxComponent;
friend class RectifiedLinearComponent;
friend class SoftHingeComponent;
// This function updates the stats "value_sum_", "deriv_sum_", and
// count_. (If deriv == NULL, it won't update "deriv_sum_").
// It will be called from the Backprop function of child classes.
void UpdateStats(const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> *deriv = NULL);
const NonlinearComponent &operator = (const NonlinearComponent &other); // Disallow.
int32 dim_;
CuVector<double> value_sum_; // stats at the output.
CuVector<double> deriv_sum_; // stats of the derivative of the nonlinearity (only
// applicable to element-by-element nonlinearities, not Softmax.
double count_;
// The mutex is used in UpdateStats, only for resizing vectors.
std::mutex mutex_;
};
class MaxoutComponent: public Component {
public:
void Init(int32 input_dim, int32 output_dim);
explicit MaxoutComponent(int32 input_dim, int32 output_dim) {
Init(input_dim, output_dim);
}
MaxoutComponent(): input_dim_(0), output_dim_(0) { }
virtual std::string Type() const { return "MaxoutComponent"; }
virtual void InitFromString(std::string args);
virtual int32 InputDim() const { return input_dim_; }
virtual int32 OutputDim() const { return output_dim_; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &, //out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual bool BackpropNeedsInput() const { return true; }
virtual bool BackpropNeedsOutput() const { return true; }
virtual Component* Copy() const { return new MaxoutComponent(input_dim_,
output_dim_); }
virtual void Read(std::istream &is, bool binary); // This Read function
// requires that the Component has the correct type.
/// Write component to stream
virtual void Write(std::ostream &os, bool binary) const;
virtual std::string Info() const;
protected:
int32 input_dim_;
int32 output_dim_;
};
/**
* MaxPoolingComponent :
* Maxpooling component was firstly used in ConvNet for selecting an representative
* activation in an area. It inspired Maxout nonlinearity.
*
* The input/output matrices are split to submatrices with width 'pool_stride_'.
* For instance, a minibatch of 512 frames is propagated by a convolutional
* layer, resulting in a 512 x 3840 input matrix for MaxpoolingComponent,
* which is composed of 128 feature maps for each frame (128 x 30). If you want
* a 3-to-1 maxpooling on each feature map, set 'pool_stride_' and 'pool_size_'
* as 128 and 3 respectively. Maxpooling component would create an output
* matrix of 512 x 1280. The 30 input neurons are grouped by a group size of 3, and
* the maximum in a group is selected, creating a smaller feature map of 10.
*
* Our pooling does not supports overlaps, which simplifies the
* implementation (and was not helpful for Ossama).
*/
class MaxpoolingComponent: public Component {
public:
void Init(int32 input_dim, int32 output_dim,
int32 pool_size, int32 pool_stride);
explicit MaxpoolingComponent(int32 input_dim, int32 output_dim,
int32 pool_size, int32 pool_stride) {
Init(input_dim, output_dim, pool_size, pool_stride);
}
MaxpoolingComponent(): input_dim_(0), output_dim_(0),
pool_size_(0), pool_stride_(0) { }
virtual std::string Type() const { return "MaxpoolingComponent"; }
virtual void InitFromString(std::string args);
virtual int32 InputDim() const { return input_dim_; }
virtual int32 OutputDim() const { return output_dim_; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &, //out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual bool BackpropNeedsInput() const { return true; }
virtual bool BackpropNeedsOutput() const { return true; }
virtual Component* Copy() const {
return new MaxpoolingComponent(input_dim_, output_dim_,
pool_size_, pool_stride_); }
virtual void Read(std::istream &is, bool binary); // This Read function
// requires that the Component has the correct type.
/// Write component to stream
virtual void Write(std::ostream &os, bool binary) const;
virtual std::string Info() const;
protected:
int32 input_dim_;
int32 output_dim_;
int32 pool_size_;
int32 pool_stride_;
};
class PnormComponent: public Component {
public:
void Init(int32 input_dim, int32 output_dim, BaseFloat p);
explicit PnormComponent(int32 input_dim, int32 output_dim, BaseFloat p) {
Init(input_dim, output_dim, p);
}
PnormComponent(): input_dim_(0), output_dim_(0), p_(0) { }
virtual std::string Type() const { return "PnormComponent"; }
virtual void InitFromString(std::string args);
virtual int32 InputDim() const { return input_dim_; }
virtual int32 OutputDim() const { return output_dim_; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &, //out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual bool BackpropNeedsInput() const { return true; }
virtual bool BackpropNeedsOutput() const { return true; }
virtual Component* Copy() const { return new PnormComponent(input_dim_,
output_dim_, p_); }
virtual void Read(std::istream &is, bool binary); // This Read function
// requires that the Component has the correct type.
/// Write component to stream
virtual void Write(std::ostream &os, bool binary) const;
virtual std::string Info() const;
protected:
int32 input_dim_;
int32 output_dim_;
BaseFloat p_;
};
class NormalizeComponent: public NonlinearComponent {
public:
explicit NormalizeComponent(int32 dim): NonlinearComponent(dim) { }
explicit NormalizeComponent(const NormalizeComponent &other): NonlinearComponent(other) { }
NormalizeComponent() { }
virtual std::string Type() const { return "NormalizeComponent"; }
virtual Component* Copy() const { return new NormalizeComponent(*this); }
virtual bool BackpropNeedsInput() const { return true; }
virtual bool BackpropNeedsOutput() const { return false; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
private:
NormalizeComponent &operator = (const NormalizeComponent &other); // Disallow.
static const BaseFloat kNormFloor;
// about 0.7e-20. We need a value that's exactly representable in
// float and whose inverse square root is also exactly representable
// in float (hence, an even power of two).
};
class SigmoidComponent: public NonlinearComponent {
public:
explicit SigmoidComponent(int32 dim): NonlinearComponent(dim) { }
explicit SigmoidComponent(const SigmoidComponent &other): NonlinearComponent(other) { }
SigmoidComponent() { }
virtual std::string Type() const { return "SigmoidComponent"; }
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return true; }
virtual Component* Copy() const { return new SigmoidComponent(*this); }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
private:
SigmoidComponent &operator = (const SigmoidComponent &other); // Disallow.
};
class TanhComponent: public NonlinearComponent {
public:
explicit TanhComponent(int32 dim): NonlinearComponent(dim) { }
explicit TanhComponent(const TanhComponent &other): NonlinearComponent(other) { }
TanhComponent() { }
virtual std::string Type() const { return "TanhComponent"; }
virtual Component* Copy() const { return new TanhComponent(*this); }
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return true; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
private:
TanhComponent &operator = (const TanhComponent &other); // Disallow.
};
/// Take the absoute values of an input vector to a power.
/// The derivative for zero input will be treated as zero.
class PowerComponent: public NonlinearComponent {
public:
void Init(int32 dim, BaseFloat power = 2);
explicit PowerComponent(int32 dim, BaseFloat power = 2) {
Init(dim, power);
}
PowerComponent(): dim_(0), power_(2) { }
virtual std::string Type() const { return "PowerComponent"; }
virtual void InitFromString(std::string args);
virtual int32 InputDim() const { return dim_; }
virtual int32 OutputDim() const { return dim_; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual bool BackpropNeedsInput() const { return true; }
virtual bool BackpropNeedsOutput() const { return true; }
virtual Component* Copy() const { return new PowerComponent(dim_, power_); }
virtual void Read(std::istream &is, bool binary); // This Read function
// requires that the Component has the correct type.
/// Write component to stream
virtual void Write(std::ostream &os, bool binary) const;
virtual std::string Info() const;
private:
int32 dim_;
BaseFloat power_;
};
class RectifiedLinearComponent: public NonlinearComponent {
public:
explicit RectifiedLinearComponent(int32 dim): NonlinearComponent(dim) { }
explicit RectifiedLinearComponent(const RectifiedLinearComponent &other): NonlinearComponent(other) { }
RectifiedLinearComponent() { }
virtual std::string Type() const { return "RectifiedLinearComponent"; }
virtual Component* Copy() const { return new RectifiedLinearComponent(*this); }
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return true; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
private:
RectifiedLinearComponent &operator = (const RectifiedLinearComponent &other); // Disallow.
};
class SoftHingeComponent: public NonlinearComponent {
public:
explicit SoftHingeComponent(int32 dim): NonlinearComponent(dim) { }
explicit SoftHingeComponent(const SoftHingeComponent &other): NonlinearComponent(other) { }
SoftHingeComponent() { }
virtual std::string Type() const { return "SoftHingeComponent"; }
virtual Component* Copy() const { return new SoftHingeComponent(*this); }
virtual bool BackpropNeedsInput() const { return true; }
virtual bool BackpropNeedsOutput() const { return true; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
private:
SoftHingeComponent &operator = (const SoftHingeComponent &other); // Disallow.
};
// This class scales the input by a specified constant. This is, of course,
// useless, but we use it when we want to change how fast the next layer learns.
// (e.g. a smaller scale will make the next layer learn slower.)
class ScaleComponent: public Component {
public:
explicit ScaleComponent(int32 dim, BaseFloat scale): dim_(dim), scale_(scale) { }
explicit ScaleComponent(const ScaleComponent &other):
dim_(other.dim_), scale_(other.scale_) { }
ScaleComponent(): dim_(0), scale_(0.0) { }
virtual std::string Type() const { return "ScaleComponent"; }
virtual Component* Copy() const { return new ScaleComponent(*this); }
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return false; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual int32 InputDim() const { return dim_; }
virtual int32 OutputDim() const { return dim_; }
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
void Init(int32 dim, BaseFloat scale);
virtual void InitFromString(std::string args);
virtual std::string Info() const;
private:
int32 dim_;
BaseFloat scale_;
ScaleComponent &operator = (const ScaleComponent &other); // Disallow.
};
class SumGroupComponent; // Forward declaration.
class AffineComponent; // Forward declaration.
class FixedScaleComponent; // Forward declaration.
class SoftmaxComponent: public NonlinearComponent {
public:
explicit SoftmaxComponent(int32 dim): NonlinearComponent(dim) { }
explicit SoftmaxComponent(const SoftmaxComponent &other): NonlinearComponent(other) { }
SoftmaxComponent() { }
virtual std::string Type() const { return "SoftmaxComponent"; }
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return true; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
void MixUp(int32 num_mixtures,
BaseFloat power,
BaseFloat min_count,
BaseFloat perturb_stddev,
AffineComponent *ac,
SumGroupComponent *sc);
virtual Component* Copy() const { return new SoftmaxComponent(*this); }
private:
SoftmaxComponent &operator = (const SoftmaxComponent &other); // Disallow.
};
class LogSoftmaxComponent: public NonlinearComponent {
public:
explicit LogSoftmaxComponent(int32 dim): NonlinearComponent(dim) { }
explicit LogSoftmaxComponent(const LogSoftmaxComponent &other): NonlinearComponent(other) { }
LogSoftmaxComponent() { }
virtual std::string Type() const { return "LogSoftmaxComponent"; }
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return true; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual Component* Copy() const { return new LogSoftmaxComponent(*this); }
private:
LogSoftmaxComponent &operator = (const LogSoftmaxComponent &other); // Disallow.
};
class FixedAffineComponent;
// Affine means a linear function plus an offset.
// Note: although this class can be instantiated, it also
// functions as a base-class for more specialized versions of
// AffineComponent.
class AffineComponent: public UpdatableComponent {
friend class SoftmaxComponent; // Friend declaration relates to mixing up.
public:
AffineComponent(const AffineComponent &other);
// The next constructor is used in converting from nnet1.
AffineComponent(const CuMatrixBase<BaseFloat> &linear_params,
const CuVectorBase<BaseFloat> &bias_params,
BaseFloat learning_rate);
virtual int32 InputDim() const { return linear_params_.NumCols(); }
virtual int32 OutputDim() const { return linear_params_.NumRows(); }
void Init(BaseFloat learning_rate,
int32 input_dim, int32 output_dim,
BaseFloat param_stddev, BaseFloat bias_stddev);
void Init(BaseFloat learning_rate,
std::string matrix_filename);
// This function resizes the dimensions of the component, setting the
// parameters to zero, while leaving any other configuration values the same.
virtual void Resize(int32 input_dim, int32 output_dim);
// The following functions are used for collapsing multiple layers
// together. They return a pointer to a new Component equivalent to
// the sequence of two components. We haven't implemented this for
// FixedLinearComponent yet.
Component *CollapseWithNext(const AffineComponent &next) const ;
Component *CollapseWithNext(const FixedAffineComponent &next) const;
Component *CollapseWithNext(const FixedScaleComponent &next) const;
Component *CollapseWithPrevious(const FixedAffineComponent &prev) const;
virtual std::string Info() const;
virtual void InitFromString(std::string args);
AffineComponent(): is_gradient_(false) { } // use Init to really initialize.
virtual std::string Type() const { return "AffineComponent"; }
virtual bool BackpropNeedsInput() const { return true; }
virtual bool BackpropNeedsOutput() const { return false; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Scale(BaseFloat scale);
virtual void Add(BaseFloat alpha, const UpdatableComponent &other);
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual void SetZero(bool treat_as_gradient);
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
virtual BaseFloat DotProduct(const UpdatableComponent &other) const;
virtual Component* Copy() const;
virtual void PerturbParams(BaseFloat stddev);
// This new function is used when mixing up:
virtual void SetParams(const VectorBase<BaseFloat> &bias,
const MatrixBase<BaseFloat> &linear);
const CuVector<BaseFloat> &BiasParams() { return bias_params_; }
const CuMatrix<BaseFloat> &LinearParams() { return linear_params_; }
virtual int32 GetParameterDim() const;
virtual void Vectorize(VectorBase<BaseFloat> *params) const;
virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms);
/// This function is for getting a low-rank approximations of this
/// AffineComponent by two AffineComponents.
virtual void LimitRank(int32 dimension,
AffineComponent **a, AffineComponent **b) const;
/// This function is implemented in widen-nnet.cc
void Widen(int32 new_dimension,
BaseFloat param_stddev,
BaseFloat bias_stddev,
std::vector<NonlinearComponent*> c2, // will usually have just one
// element.
AffineComponent *c3);
protected:
friend class AffineComponentPreconditionedOnline;
// This function Update() is for extensibility; child classes may override this.
virtual void Update(
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_deriv) {
UpdateSimple(in_value, out_deriv);
}
// UpdateSimple is used when *this is a gradient. Child classes may
// or may not override this.
virtual void UpdateSimple(
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_deriv);
const AffineComponent &operator = (const AffineComponent &other); // Disallow.
CuMatrix<BaseFloat> linear_params_;
CuVector<BaseFloat> bias_params_;
bool is_gradient_; // If true, treat this as just a gradient.
};
// This is an idea Dan is trying out, a little bit like
// preconditioning the update with the Fisher matrix, but the
// Fisher matrix has a special structure.
// [note: it is currently used in the standard recipe].
class AffineComponentPreconditioned: public AffineComponent {
public:
virtual std::string Type() const { return "AffineComponentPreconditioned"; }
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
void Init(BaseFloat learning_rate,
int32 input_dim, int32 output_dim,
BaseFloat param_stddev, BaseFloat bias_stddev,
BaseFloat alpha, BaseFloat max_change);
void Init(BaseFloat learning_rate, BaseFloat alpha,
BaseFloat max_change, std::string matrix_filename);
virtual void InitFromString(std::string args);
virtual std::string Info() const;
virtual Component* Copy() const;
AffineComponentPreconditioned(): alpha_(1.0), max_change_(0.0) { }
void SetMaxChange(BaseFloat max_change) { max_change_ = max_change; }
protected:
KALDI_DISALLOW_COPY_AND_ASSIGN(AffineComponentPreconditioned);
BaseFloat alpha_;
BaseFloat max_change_; // If > 0, this is the maximum amount of parameter change (in L2 norm)
// that we allow per minibatch. This was introduced in order to
// control instability. Instead of the exact L2 parameter change,
// for efficiency purposes we limit a bound on the exact change.
// The limit is applied via a constant <= 1.0 for each minibatch,
// A suitable value might be, for example, 10 or so; larger if there are
// more parameters.
/// The following function is only called if max_change_ > 0. It returns the
/// greatest value alpha <= 1.0 such that (alpha times the sum over the
/// row-index of the two matrices of the product the l2 norms of the two rows
/// times learning_rate_)
/// is <= max_change.
BaseFloat GetScalingFactor(const CuMatrix<BaseFloat> &in_value_precon,
const CuMatrix<BaseFloat> &out_deriv_precon);
virtual void Update(
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_deriv);
};
/// Keywords: natural gradient descent, NG-SGD, naturalgradient. For
/// the top-level of the natural gradient code look here, and also in
/// nnet-precondition-online.h.
/// AffineComponentPreconditionedOnline is, like AffineComponentPreconditioned,
/// a version of AffineComponent that has a non-(multiple of unit) learning-rate
/// matrix. See nnet-precondition-online.h for a description of the technique.
class AffineComponentPreconditionedOnline: public AffineComponent {
public:
virtual std::string Type() const {
return "AffineComponentPreconditionedOnline";
}
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
void Init(BaseFloat learning_rate,
int32 input_dim, int32 output_dim,
BaseFloat param_stddev, BaseFloat bias_stddev,
int32 rank_in, int32 rank_out, int32 update_period,
BaseFloat num_samples_history, BaseFloat alpha,
BaseFloat max_change_per_sample);
void Init(BaseFloat learning_rate, int32 rank_in,
int32 rank_out, int32 update_period,
BaseFloat num_samples_history,
BaseFloat alpha, BaseFloat max_change_per_sample,
std::string matrix_filename);
virtual void Resize(int32 input_dim, int32 output_dim);
// This constructor is used when converting neural networks partway through
// training, from AffineComponent or AffineComponentPreconditioned to
// AffineComponentPreconditionedOnline.
AffineComponentPreconditionedOnline(const AffineComponent &orig,
int32 rank_in, int32 rank_out,
int32 update_period,
BaseFloat eta, BaseFloat alpha);
virtual void InitFromString(std::string args);
virtual std::string Info() const;
virtual Component* Copy() const;
AffineComponentPreconditionedOnline(): max_change_per_sample_(0.0) { }
private:
KALDI_DISALLOW_COPY_AND_ASSIGN(AffineComponentPreconditionedOnline);
// Configs for preconditioner. The input side tends to be better conditioned ->
// smaller rank needed, so make them separately configurable.
int32 rank_in_;
int32 rank_out_;
int32 update_period_;
BaseFloat num_samples_history_;
BaseFloat alpha_;
OnlinePreconditioner preconditioner_in_;
OnlinePreconditioner preconditioner_out_;
BaseFloat max_change_per_sample_;
// If > 0, max_change_per_sample_ this is the maximum amount of parameter
// change (in L2 norm) that we allow per sample, averaged over the minibatch.
// This was introduced in order to control instability.
// Instead of the exact L2 parameter change, for
// efficiency purposes we limit a bound on the exact
// change. The limit is applied via a constant <= 1.0
// for each minibatch, A suitable value might be, for
// example, 10 or so; larger if there are more
// parameters.
/// The following function is only called if max_change_per_sample_ > 0, it returns a
/// scaling factor alpha <= 1.0 (1.0 in the normal case) that enforces the
/// "max-change" constraint. "in_products" is the inner product with itself
/// of each row of the matrix of preconditioned input features; "out_products"
/// is the same for the output derivatives. gamma_prod is a product of two
/// scalars that are output by the preconditioning code (for the input and
/// output), which we will need to multiply into the learning rate.
/// out_products is a pointer because we modify it in-place.
BaseFloat GetScalingFactor(const CuVectorBase<BaseFloat> &in_products,
BaseFloat gamma_prod,
CuVectorBase<BaseFloat> *out_products);
// Sets the configs rank, alpha and eta in the preconditioner objects,
// from the class variables.
void SetPreconditionerConfigs();
virtual void Update(
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_deriv);
};
class RandomComponent: public Component {
public:
// This function is required in testing code and in other places we need
// consistency in the random number generation (e.g. when optimizing
// validation-set performance), but check where else we call sRand(). You'll
// need to call srand as well as making this call.
void ResetGenerator() { random_generator_.SeedGpu(); }
protected:
CuRand<BaseFloat> random_generator_;
};
/// Splices a context window of frames together [over time]
class SpliceComponent: public Component {
public:
SpliceComponent() { } // called only prior to Read() or Init().
// Note: it is required that the elements of "context" be in
// strictly increasing order, that the lowest element of component
// be nonpositive, and the highest element be nonnegative.
void Init(int32 input_dim,
std::vector<int32> context,
int32 const_component_dim=0);
virtual std::string Type() const { return "SpliceComponent"; }
virtual std::string Info() const;
virtual void InitFromString(std::string args);
virtual int32 InputDim() const { return input_dim_; }
virtual int32 OutputDim() const;
virtual std::vector<int32> Context() const { return context_; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return false; }
virtual Component* Copy() const;
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
private:
KALDI_DISALLOW_COPY_AND_ASSIGN(SpliceComponent);
int32 input_dim_;
std::vector<int32> context_;
int32 const_component_dim_;
};
/// This is as SpliceComponent but outputs the max of
/// any of the inputs (taking the max across time).
class SpliceMaxComponent: public Component {
public:
SpliceMaxComponent() { } // called only prior to Read() or Init().
void Init(int32 dim,
std::vector<int32> context);
virtual std::string Type() const { return "SpliceMaxComponent"; }
virtual std::string Info() const;
virtual void InitFromString(std::string args);
virtual int32 InputDim() const { return dim_; }
virtual int32 OutputDim() const { return dim_; }
virtual std::vector<int32> Context() const { return context_; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual bool BackpropNeedsInput() const { return true; }
virtual bool BackpropNeedsOutput() const { return false; }
virtual Component* Copy() const;
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
private:
KALDI_DISALLOW_COPY_AND_ASSIGN(SpliceMaxComponent);
int32 dim_;
std::vector<int32> context_;
};
// Affine means a linear function plus an offset. "Block" means
// here that we support a number of equal-sized blocks of parameters,
// in the linear part, so e.g. 2 x 500 would mean 2 blocks of 500 each.
class BlockAffineComponent: public UpdatableComponent {
public:
virtual int32 InputDim() const { return linear_params_.NumCols() * num_blocks_; }
virtual int32 OutputDim() const { return linear_params_.NumRows(); }
virtual int32 GetParameterDim() const;
virtual void Vectorize(VectorBase<BaseFloat> *params) const;
virtual void UnVectorize(const VectorBase<BaseFloat> ¶ms);
// Note: num_blocks must divide input_dim.
void Init(BaseFloat learning_rate,
int32 input_dim, int32 output_dim,
BaseFloat param_stddev, BaseFloat bias_stddev,
int32 num_blocks);
virtual void InitFromString(std::string args);
BlockAffineComponent() { } // use Init to really initialize.
virtual std::string Type() const { return "BlockAffineComponent"; }
virtual bool BackpropNeedsInput() const { return true; }
virtual bool BackpropNeedsOutput() const { return false; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual void SetZero(bool treat_as_gradient);
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
virtual BaseFloat DotProduct(const UpdatableComponent &other) const;
virtual Component* Copy() const;
virtual void PerturbParams(BaseFloat stddev);
virtual void Scale(BaseFloat scale);
virtual void Add(BaseFloat alpha, const UpdatableComponent &other);
protected:
virtual void Update(
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_deriv) {
UpdateSimple(in_value, out_deriv);
}
// UpdateSimple is used when *this is a gradient. Child classes may
// override this.
virtual void UpdateSimple(
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_deriv);
// The matrix linear_params_ has a block structure, with num_blocks_ blocks of
// equal size. The blocks are stored in linear_params_ as
// [ M
// N
// O ] but we actually treat it as the matrix:
// [ M 0 0
// 0 N 0
// 0 0 O ]
CuMatrix<BaseFloat> linear_params_;
CuVector<BaseFloat> bias_params_;
int32 num_blocks_;
private:
KALDI_DISALLOW_COPY_AND_ASSIGN(BlockAffineComponent);
};
// Affine means a linear function plus an offset. "Block" means
// here that we support a number of equal-sized blocks of parameters,
// in the linear part, so e.g. 2 x 500 would mean 2 blocks of 500 each.
class BlockAffineComponentPreconditioned: public BlockAffineComponent {
public:
// Note: num_blocks must divide input_dim.
void Init(BaseFloat learning_rate,
int32 input_dim, int32 output_dim,
BaseFloat param_stddev, BaseFloat bias_stddev,
int32 num_blocks, BaseFloat alpha);
virtual void InitFromString(std::string args);
BlockAffineComponentPreconditioned() { } // use Init to really initialize.
virtual std::string Type() const { return "BlockAffineComponentPreconditioned"; }
virtual void SetZero(bool treat_as_gradient);
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
virtual Component* Copy() const;
private:
KALDI_DISALLOW_COPY_AND_ASSIGN(BlockAffineComponentPreconditioned);
virtual void Update(
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_deriv);
bool is_gradient_;
BaseFloat alpha_;
};
// SumGroupComponent is used to sum up groups of posteriors.
// It's used to introduce a kind of Gaussian-mixture-model-like
// idea into neural nets. This is basically a degenerate case of
// MixtureProbComponent; we had to implement it separately to
// be efficient for CUDA (we can use this one regardless whether
// we have CUDA or not; it's the normal case we want anyway).
class SumGroupComponent: public Component {
public:
virtual int32 InputDim() const { return input_dim_; }
virtual int32 OutputDim() const { return output_dim_; }
void Init(const std::vector<int32> &sizes); // the vector is of the input dim
// (>= 1) for each output dim.
void GetSizes(std::vector<int32> *sizes) const; // Get a vector saying, for
// each output-dim, how many
// inputs were summed over.
virtual void InitFromString(std::string args);
SumGroupComponent() { }
virtual std::string Type() const { return "SumGroupComponent"; }
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return false; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
// Note: in_value and out_value are both dummy variables.
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual Component* Copy() const;
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
private:
KALDI_DISALLOW_COPY_AND_ASSIGN(SumGroupComponent);
// Note: Int32Pair is just struct{ int32 first; int32 second }; it's defined
// in cu-matrixdim.h as extern "C" which is needed for the CUDA interface.
CuArray<Int32Pair> indexes_; // for each output index, the (start, end) input
// index.
CuArray<int32> reverse_indexes_; // for each input index, the output index.
int32 input_dim_;
int32 output_dim_;
};
/// PermuteComponent does a permutation of the dimensions (by default, a fixed
/// random permutation, but it may be specified). Useful in conjunction with
/// block-diagonal transforms.
class PermuteComponent: public Component {
public:
void Init(int32 dim);
void Init(const std::vector<int32> &reorder);
PermuteComponent(int32 dim) { Init(dim); }
PermuteComponent(const std::vector<int32> &reorder) { Init(reorder); }
PermuteComponent() { } // e.g. prior to Read() or Init()
virtual int32 InputDim() const { return reorder_.size(); }
virtual int32 OutputDim() const { return reorder_.size(); }
virtual Component *Copy() const;
virtual void InitFromString(std::string args);
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
virtual std::string Type() const { return "PermuteComponent"; }
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return false; }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
private:
KALDI_DISALLOW_COPY_AND_ASSIGN(PermuteComponent);
std::vector<int32> reorder_; // This class sends input dimension i to
// output dimension reorder_[i].
};
/// Discrete cosine transform.
/// TODO: modify this Component so that it supports only keeping a subset
class DctComponent: public Component {
public:
DctComponent() { dim_ = 0; }
virtual std::string Type() const { return "DctComponent"; }
virtual std::string Info() const;
//dim = dimension of vector being processed
//dct_dim = effective lenght of DCT, i.e. how many compoments will be kept
void Init(int32 dim, int32 dct_dim, bool reorder, int32 keep_dct_dim=0);
// InitFromString takes numeric options
// dim, dct-dim, and (optionally) reorder={true,false}, keep-dct-dim
// Note: reorder defaults to false. keep-dct-dim defaults to dct-dim
virtual void InitFromString(std::string args);
virtual int32 InputDim() const { return dim_; }
virtual int32 OutputDim() const { return dct_mat_.NumRows() * (dim_ / dct_mat_.NumCols()); }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return false; }
virtual Component* Copy() const;
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
private:
void Reorder(CuMatrixBase<BaseFloat> *mat, bool reverse) const;
int32 dim_; // The input dimension of the (sub)vector.
bool reorder_; // If true, transformation matrix we use is not
// block diagonal but is block diagonal after reordering-- so
// effectively we transform with the Kronecker product D x I,
// rather than a matrix with D's on the diagonal (i.e. I x D,
// where x is the Kronecker product). We'll set reorder_ to
// true if we want to use this to transform in the time domain,
// because the SpliceComponent splices blocks of e.g. MFCCs
// together so each time is a dimension of the block.
CuMatrix<BaseFloat> dct_mat_;
KALDI_DISALLOW_COPY_AND_ASSIGN(DctComponent);
};
/// FixedLinearComponent is a linear transform that is supplied
/// at network initialization time and is not trainable.
class FixedLinearComponent: public Component {
public:
FixedLinearComponent() { }
virtual std::string Type() const { return "FixedLinearComponent"; }
virtual std::string Info() const;
void Init(const CuMatrixBase<BaseFloat> &matrix) { mat_ = matrix; }
// InitFromString takes only the option matrix=<string>,
// where the string is the filename of a Kaldi-format matrix to read.
virtual void InitFromString(std::string args);
virtual int32 InputDim() const { return mat_.NumCols(); }
virtual int32 OutputDim() const { return mat_.NumRows(); }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return false; }
virtual Component* Copy() const;
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
protected:
friend class AffineComponent;
CuMatrix<BaseFloat> mat_;
KALDI_DISALLOW_COPY_AND_ASSIGN(FixedLinearComponent);
};
/// FixedAffineComponent is an affine transform that is supplied
/// at network initialization time and is not trainable.
class FixedAffineComponent: public Component {
public:
FixedAffineComponent() { }
virtual std::string Type() const { return "FixedAffineComponent"; }
virtual std::string Info() const;
/// matrix should be of size input-dim+1 to output-dim, last col is offset
void Init(const CuMatrixBase<BaseFloat> &matrix);
// InitFromString takes only the option matrix=<string>,
// where the string is the filename of a Kaldi-format matrix to read.
virtual void InitFromString(std::string args);
virtual int32 InputDim() const { return linear_params_.NumCols(); }
virtual int32 OutputDim() const { return linear_params_.NumRows(); }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return false; }
virtual Component* Copy() const;
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
// Function to provide access to linear_params_.
const CuMatrix<BaseFloat> &LinearParams() const { return linear_params_; }
protected:
friend class AffineComponent;
CuMatrix<BaseFloat> linear_params_;
CuVector<BaseFloat> bias_params_;
KALDI_DISALLOW_COPY_AND_ASSIGN(FixedAffineComponent);
};
/// FixedScaleComponent applies a fixed per-element scale; it's similar
/// to the Rescale component in the nnet1 setup (and only needed for nnet1
/// model conversion).
class FixedScaleComponent: public Component {
public:
FixedScaleComponent() { }
virtual std::string Type() const { return "FixedScaleComponent"; }
virtual std::string Info() const;
void Init(const CuVectorBase<BaseFloat> &scales);
// InitFromString takes only the option scales=<string>,
// where the string is the filename of a Kaldi-format matrix to read.
virtual void InitFromString(std::string args);
virtual int32 InputDim() const { return scales_.Dim(); }
virtual int32 OutputDim() const { return scales_.Dim(); }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return false; }
virtual Component* Copy() const;
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
protected:
friend class AffineComponent; // necessary for collapse
CuVector<BaseFloat> scales_;
KALDI_DISALLOW_COPY_AND_ASSIGN(FixedScaleComponent);
};
/// FixedBiasComponent applies a fixed per-element bias; it's similar
/// to the AddShift component in the nnet1 setup (and only needed for nnet1
/// model conversion.
class FixedBiasComponent: public Component {
public:
FixedBiasComponent() { }
virtual std::string Type() const { return "FixedBiasComponent"; }
virtual std::string Info() const;
void Init(const CuVectorBase<BaseFloat> &scales);
// InitFromString takes only the option bias=<string>,
// where the string is the filename of a Kaldi-format matrix to read.
virtual void InitFromString(std::string args);
virtual int32 InputDim() const { return bias_.Dim(); }
virtual int32 OutputDim() const { return bias_.Dim(); }
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const ;
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return false; }
virtual Component* Copy() const;
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
protected:
CuVector<BaseFloat> bias_;
KALDI_DISALLOW_COPY_AND_ASSIGN(FixedBiasComponent);
};
/// This Component, if present, randomly zeroes half of
/// the inputs and multiplies the other half by two.
/// Typically you would use this in training but not in
/// test or when computing validation-set objective functions.
class DropoutComponent: public RandomComponent {
public:
/// dropout-proportion is the proportion that is dropped out,
/// e.g. if 0.1, we set 10% to a low value. [note, in
/// some older code it was interpreted as the value not dropped
/// out, so be careful.] The low scale-value
/// is equal to dropout_scale. The high scale-value is chosen
/// such that the expected scale-value is one.
void Init(int32 dim,
BaseFloat dropout_proportion = 0.5,
BaseFloat dropout_scale = 0.0);
DropoutComponent(int32 dim, BaseFloat dp = 0.5, BaseFloat sc = 0.0) {
Init(dim, dp, sc);
}
DropoutComponent(): dim_(0), dropout_proportion_(0.5) { }
virtual int32 InputDim() const { return dim_; }
virtual int32 OutputDim() const { return dim_; }
virtual void InitFromString(std::string args);
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
virtual std::string Type() const { return "DropoutComponent"; }
void SetDropoutScale(BaseFloat scale) { dropout_scale_ = scale; }
virtual bool BackpropNeedsInput() const { return true; }
virtual bool BackpropNeedsOutput() const { return true; }
virtual Component* Copy() const;
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const;
virtual std::string Info() const;
private:
int32 dim_;
BaseFloat dropout_proportion_;
BaseFloat dropout_scale_; // Set the scale that we scale "dropout_proportion_"
// of the neurons by (default 0.0, but can be set arbitrarily close to 1.0).
};
/// This is a bit similar to dropout but adding (not multiplying) Gaussian
/// noise with a given standard deviation.
class AdditiveNoiseComponent: public RandomComponent {
public:
void Init(int32 dim, BaseFloat noise_stddev);
AdditiveNoiseComponent(int32 dim, BaseFloat stddev) { Init(dim, stddev); }
AdditiveNoiseComponent(): dim_(0), stddev_(1.0) { }
virtual int32 InputDim() const { return dim_; }
virtual int32 OutputDim() const { return dim_; }
virtual void InitFromString(std::string args);
virtual void Read(std::istream &is, bool binary);
virtual void Write(std::ostream &os, bool binary) const;
virtual std::string Type() const { return "AdditiveNoiseComponent"; }
virtual bool BackpropNeedsInput() const { return false; }
virtual bool BackpropNeedsOutput() const { return false; }
virtual Component* Copy() const {
return new AdditiveNoiseComponent(dim_, stddev_);
}
using Component::Propagate; // to avoid name hiding
virtual void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update, // may be identical to "this".
CuMatrix<BaseFloat> *in_deriv) const { *in_deriv = out_deriv; }
private:
int32 dim_;
BaseFloat stddev_;
};
/**
* Convolutional1dComponent implements convolution over frequency axis.
* We assume the input featrues are spliced, i.e. each frame is in
* fact a set of stacked frames, where we can form patches which span
* over several frequency bands and whole time axis. A patch is the
* instance of a filter on a group of frequency bands and whole time
* axis. Shifts of the filter generate patches.
*
* The convolution is done over whole axis with same filter
* coefficients, i.e. we don't use separate filters for different
* 'regions' of frequency axis. Due to convolution, same weights are
* used repeateadly, the final gradient is a sum of all
* position-specific gradients (the sum was found better than
* averaging).
*
* In order to have a fast implementations, the filters are
* represented in vectorized form, where each rectangular filter
* corresponds to a row in a matrix, where all the filters are
* stored. The features are then re-shaped to a set of matrices, where
* one matrix corresponds to single patch-position, where all the
* filters get applied.
*
* The type of convolution is controled by hyperparameters:
* patch_dim_ ... frequency axis size of the patch
* patch_step_ ... size of shift in the convolution
* patch_stride_ ... shift for 2nd dim of a patch
* (i.e. frame length before splicing)
* For instance, for a convolutional component after raw input,
* if the input is 36-dim fbank feature with delta of order 2
* and spliced using +/- 5 frames of contexts, the convolutional
* component takes the input as a 36 x 33 image. The patch_stride_
* should be configured 36. If patch_step_ and patch_dim_ are
* configured 1 and 7, the Convolutional1dComponent creates a
* 2D filter of 7 x 33, such that the convolution is actually done
* only along the frequency axis. Specifically, the convolutional
* output along the frequency axis is (36 - 7) / 1 + 1 = 30, and
* the convolutional output along the temporal axis is 33 - 33 + 1 = 1,
* resulting in an output image of 30 x 1, which is called a feature map
* in ConvNet. Then if the output-dim is set 3840, the constructor
* would know there should be 3840 / 30 = 128 distinct filters,
* which will create 128 feature maps of 30 x 1 for one frame of
* input. The feature maps are vectorized as a 3840-dim row vector
* in the output matrix of this component. For details on progatation
* of Convolutional1dComponent, check the function definition.
*
*/
class Convolutional1dComponent: public UpdatableComponent {
public:
Convolutional1dComponent();
// constructor using another component
Convolutional1dComponent(const Convolutional1dComponent &component);
// constructor using parameters
Convolutional1dComponent(const CuMatrixBase<BaseFloat> &filter_params,
const CuVectorBase<BaseFloat> &bias_params,
BaseFloat learning_rate);
int32 InputDim() const;
int32 OutputDim() const;
void Init(BaseFloat learning_rate, int32 input_dim, int32 output_dim,
int32 patch_dim, int32 patch_step, int32 patch_stride,
BaseFloat param_stddev, BaseFloat bias_stddev, bool appended_conv);
void Init(BaseFloat learning_rate,
int32 patch_dim, int32 patch_step, int32 patch_stride,
std::string matrix_filename, bool appended_conv);
// resize the component, setting the parameters to zero, while
// leaving any other configuration values the same
void Resize(int32 input_dim, int32 output_dim);
std::string Info() const;
void InitFromString(std::string args);
std::string Type() const { return "Convolutional1dComponent"; }
bool BackpropNeedsInput() const { return true; }
bool BackpropNeedsOutput() const { return false; }
using Component::Propagate; // to avoid name hiding
void Propagate(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) const;
void Scale(BaseFloat scale);
virtual void Add(BaseFloat alpha, const UpdatableComponent &other);
virtual void Backprop(const ChunkInfo &in_info,
const ChunkInfo &out_info,
const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_value,
const CuMatrixBase<BaseFloat> &out_deriv,
Component *to_update_in,
CuMatrix<BaseFloat> *in_deriv) const;
void SetZero(bool treat_as_gradient);
void Read(std::istream &is, bool binary);
void Write(std::ostream &os, bool binary) const;
virtual BaseFloat DotProduct(const UpdatableComponent &other) const;
Component* Copy() const;
void PerturbParams(BaseFloat stddev);
void SetParams(const VectorBase<BaseFloat> &bias,
const MatrixBase<BaseFloat> &filter);
const CuVector<BaseFloat> &BiasParams() { return bias_params_; }
const CuMatrix<BaseFloat> &LinearParams() { return filter_params_; }
int32 GetParameterDim() const;
void Update(const CuMatrixBase<BaseFloat> &in_value,
const CuMatrixBase<BaseFloat> &out_deriv);
private:
int32 patch_dim_;
int32 patch_step_;
int32 patch_stride_;
static void ReverseIndexes(const std::vector<int32> &forward_indexes,
int32 input_dim,
std::vector<std::vector<int32> > *backward_indexes);
static void RearrangeIndexes(const std::vector<std::vector<int32> > &in,
std::vector<std::vector<int32> > *out);
const Convolutional1dComponent &operator = (const Convolutional1dComponent &other); // Disallow.
CuMatrix<BaseFloat> filter_params_;
CuVector<BaseFloat> bias_params_;
// When appending convolutional1dcomponents, appended_conv_ should be
// set ture for the appended convolutional1dcomponents.
bool appended_conv_;
bool is_gradient_;
};
/// Functions used in Init routines. Suppose name=="foo", if "string" has a
/// field like foo=12, this function will set "param" to 12 and remove that
/// element from "string". It returns true if the parameter was read.
bool ParseFromString(const std::string &name, std::string *string,
int32 *param);
/// This version is for parameters of type BaseFloat.
bool ParseFromString(const std::string &name, std::string *string,
BaseFloat *param);
/// This version is for parameters of type std::vector<int32>; it expects
/// them as a colon-separated list, without spaces.
bool ParseFromString(const std::string &name, std::string *string,
std::vector<int32> *param);
/// This version is for parameters of type bool, which can appear
/// as any string beginning with f, F, t or T.
bool ParseFromString(const std::string &name, std::string *string,
bool *param);
} // namespace nnet2
} // namespace kaldi
#endif